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ABSTRACT

Ulanowicz, R.E., Flemer, D.A., Heinle, D.R. and Huff, R.T., 1978. The empirical modelihg
of an ecosystem. Ecol. Modelling, 4: 29—40.

The authors have endeavored to create a verified a-posteriori model of a planktonic
ecosystem. Verification of an empirically derived set of first-order, quadratic differential
equations proved elusive due to the sensitivity of the model system to changes in initial
conditions. Efforts to verify a similarly derived set of linear differential equations were
more encouraging, yielding reasonable behavior for half of the ten ecosystem compart-
ments modeled. The well-behaved species models gave indications as to the rate-con-
trolling processes in the ecosystem.

INTRODUCTION

Most modelers are acutely aware of the necessity to relate their constructs
to quantifiable observables. This tendency in extremum has led to a school
of modeling which stresses the a-posteriori aspects of systems analysis. The
approach holds that one should minimize and generalize the a-priori assump-
tions which go into a given model. Insofar as is possible, antecedent data
should determine the structural and parametric elements of the model.

One possible methodology to accomplish this end has been described in
detail by Mobley (1973) and will be briefly discussed later in this paper. This
method has been applied to several compartments of a planktonic system by
Ulanowicz et al. (1975).

To date, however, verification of a-posteriori type models is notably
lacking. Until such time as an a-posteriori model is applied with some degree
of success to independent data, the models will be regarded by many as mere
descriptors of data, i.e., complicated curve-fitting.

The goal of the authors is to achieve a verified a-posteriori model of a
total ecosystem. The work described herein is toward this end. While a fully



30

verified ecosystems model cannot be claimed, the results are most encourag-
ing. Even the difficulties incurred and the partial nature of the final model
reveal interesting aspects of this particular ecosystem and, possibly, systems
in general.

EXPERIMENTAL

The observation of all the major elements in a functioning ecosystem is
generally an awesome task. To keep the temporal and spatial scales manage-
able and to insure that the same populations are sampled each time, many
investigators have turned to studying a microcosm of the total system
(Levandowsky, 1977).

The authors had been engaged in using the microcosm as an empirical tool
to assess the effects of treated sewage upon estuarine planktonic systems. This
necessitated following the time evolution of the various nutrient and
planktonic species. In principle, that is the type of data required by the
Mobley algorithm and a preliminary run provided the data for the earlier
application (Ulanowicz et al., 1975).

The run reported upon here consisted of three replicate pairs of micro-
cosms. One pair served as a control and the other two pairs were enriched to
0.1% and 1.0% secondarily treated waste water from an Annapolis, Md.,
wastewater facility. All external environmental variables were kept the same
among the six microcosms. Thus, if the same biological mechanisms were
operating in all six tanks, a modeler might expect a single system of equa-
tions to describe the evolution under each treatment — only the initial con-
ditions need be changed to reflect the different nutrient allocations.

One may regard the data for the three conditions as independent. An a-
posteriori model can be derived from one condition and applied to the other
sets with only a change in initial conditions. The subsequent ability of the
model to track the latter conditions would provide some measure of verifica-
tion of the model.

The technical details of the experiment have been set forth by Ulanowicz
et al. (1975). Only the pertinent elements are repeated here for completeness.

Six, 757-1 polyethylene cylinders mounted in the laboratory compartment
of the Research Barge ORCA contained the microcosms. A 500 W General
Electric quartz-iodide wide flood lamp provided approximately 0.18 cal/m?/
min of synthetic sunlight at the surface of each tank. The tubs were lighted
for 16 h of each day and were automatically stirred gently four times a day
for 1-h periods. Temperature varied by about 2°C around a mean of 25°C.
The salinity remained near 8%/, throughout the experiment.

The tanks were filled with water taken from a depth of 0.5 m below the
surface and filtered through a 500-um mesh. Natural populations of
copepods, rotifers, protozoans, and algae were therz=by introduced. Just prior
to taking the first sample, treated sewage was added to four of the tanks so
that one pair received a 1% addition and the remaining two a 0.1% addition.
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The systems were sampled for the next 14 days at the same time each day.
Those variables recorded on a daily basis and germane to this study included
particulate carbon (PC), active chlorophyll ¢ (CHLA), herbivore carbon
(HERB), particulate nitrogen (PN), dissolved organic carbon (DOC),
ammonia (NHj), nitrates (NOjy), nitrites (NO,), total phosphorus (TP),
total dissolved phosphorus (TDP), and dissolved inorganic phosphorus (DIP).
(DIP). ‘

DATA TRANSFORMATION PRIOR TO MODELING

One step which necessarily preceeds a-priori is the lexical, i.e., the
identification of the compartments (or state variables) to be modeled. The
foregoing list of variables is centered around the elements carbon, nitrogen,
and phosphorus. The resultant model should describe the cycling of these
elements through the abiotic, primary producer and herbivorous trophic
levels. The measured variables are not immediately suitable for such descrip-
tion. With a few assumptions, however, they can be recast into the desired
compartments. Strictly speaking, these assumptions are an a-priori part of
the final model and are described below for completeness.

In the first instance, the only clue to phytoplankton biomass is contained
in the active chlorophyll @ measurements. To arrive at a value for the carbon
content of the primary producers (PP), it is necessary, in the absence of
more detailed information, to make the assumption that the chemical com-
position of the total phytoplankton biomass does not change throughout the
experiment. Thus, the primary producer carbon will be at all times propor-
tional to the measured active chlorophyll ¢ (CHLA). The constant of propor-

TABLE I

Data transformations

Values used in model = f[values recorded]

(1) PP (ug atom C/1) = 2.5 * CHLA (ug/l)

(2) DN (ug atom N/1) = PN (ug atom N/1) —0.1132 * PP (ug atom C/1)
— 0.1983 * HERB (ug atom C/1)

(3) DP (ug atom P/1) = TP (ug atom P/1) — TDP (ug atom P/1)
—9.43 x 1073 * HERB (ug atom C/1)

(4) DC (ugatom C/1) = 83.33 * PC (ug C/1) — PP (ug atom C/1) — HERB (ug atom C/1)
(5) DOP (ug atom P/l) = TDP (ug atom P/I) — DIP (ug atom P/1)
(6) NO (ug atom N/1) = NOj3 (ug atom N/1) + NO, (ug atom N/1)

HERB, NH3;, DON, DIP used as recorded in ug atom/l.
See text for description of variables.
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tionality is assumed to be 2.5 ug at C for each ug of chlorophyll a, after
Strickland (1965).

In like manner, the carbon : nitrogen : phosphorous atomic ratios of the
phytoplankton and herbivores are assumed to be 106 : 12 : 1 and 100 :
19.83 : 0.74 (Redfield et al., 1963; Ryther and Dunstan, 1971), respectively.
These ratios then allow the estimation of the concentrations of any two of
the elements in a living compartment once data on the remaining element
is available. Since data are available on the carbon content of the living com-
partments (PP and HERB) as well as the total particulate accumulations of
the three elements, the detrital compartments (DC, DN, DP) may be
calculated by difference (see egs. (2), (3), and (4) in Table I).

To complete the representation of compartments, the dissolved organic
phosphorous (DOP) is estimated by the difference between the total
dissolved phosphorus (TDP) and the dissolved inorganic phosphorus
(DIP). Also, the nitrate (NOg) and nitrite (NO,) measurements are pooled as
a single species (NO).

The set of transformation equations is summarized in Table 1. The units of
each variable are included for clarity.

THE MODELING EXERCISE

The present description of the a-posteriori method as found in the
literature cited above can be paraphrased in four steps:

(1) The assumption of what the state variables (compartments) will be.
This is usually a prerequisite for data acquisition.

(2) The choice of a general mathematical description of all possible inter-
actions. If one considers the time rate of change of a given state variable to be
an autonomous function of all of the k state variables,

dt

=fi(N1’N2aN3’ "'7Nk), (1)

then Mobley suggests that the unspecified f; be expanded as an algebraic
series of the N’s and terms greater than the quadratic be neglected, e.g.,

AN k k k
dtl =g; + ,Z=>1 biN; + Jgim%:l CijmNiNm . (2)
This compromise has the advantage of being quite general in nature, limiting
the number of possible coefficients, and still including the rudiments of non-
linear behavior.

(8) The regression of the more important terms of the model to the time
series data. This step is sometimes misunderstood. It should be emphasized
that the iterative algorithm used (Greenberger and Ward, 1956) is simulta-
neously a sensitivity analysis and a regression scheme. This iterative method
starts with all constants set equal to zero and amends the value of a single
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constant each iteration, beginning with the most sensitive and continuing
until the criterion of fit is achieved. It is possible to limit the regression to
the n most sensitive coefficients (as determined during the course of the
iteration). This allows one to begin with a field of coefficients whose number
exceeds that of the data points taken, so long as regression is confined to a
number of coefficients not exceeding the number of data points. This exclu-
sion of certain terms is part of the model parsing.

(4) Testing the significance of the remaining terms to arrive at a final
reduced model. Each term, and then groups of terms, is dropped in turn
from the model. The change thereby induced in the fit is used in statistical
hypothesis testing techniques to evaluate whether the term in question can
be dropped from the model. The complexity of the final model is, hence,
determined by the confidence levels specified in the hypotheses testing.

Two important points not fully discussed by Mobley include:

(1) The ability of the derived model to reproduce, upon integration, the
data used to fix the coefficients. The criterion-of-fit and the hypotheses
testing are both based upon the errors between the observed derivatives and
their predictor values determined by prescribed combinations of coefficients
and state variables. There is no guarantee that the model, when integrated,
will reasonably reproduce the data from which it was derived.

(2) The ability of the model to simulate independent data.

Problems immediately arose with regard to the first point. Ecological data,
even from controlled microcosms, tend to be noisy, and this noise is exaggerated
in the derivative (the criterion vector, in this case). It was obvious that some form
of data smoothing would be necessary if the higher frequency noise in the
derivative were not to dominate the regression scheme. To this end, the
authors employed orthogonal polynomials (Forsythe, 1957) to represent the
data and its derivatives over the given time domain. Experimentation showed
that fourth degree polynomials were quite adequate in representing the 15
values of the state variables and their derivatives. Integration of models
derived from the smoothed data proved to be quite successful in recon-
structing the input data. (It should be pointed out that the 15 data points
for each species are now being represented by five polynomial coefficients.)

The authors also felt that the hypothesis testing would be more meaning-
ful if the errors between the original data and the integrated model were
used for comparison instead of those recommended by Mobley. The
algorithm was accordingly rewritten.

The amended methodology yielded systems of equations which were quite
efficient in simulating the generative data.

When the data (15 time series points) for each species were regressed to
the generalized form (66 terms to choose from), the terms which most
efficiently fit the observations were almost exclusively bilinear. This
indicated that the mechanisms of interaction between the components were
nonlinear in nature.

Difficulties arose, however, when the initial conditions applied to these
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resultant quadratic models were changed to reflect conditions in the other
microcosms. Universally, the models went unstable shortly after integration
commenced. Numerous attempts at dropping very sensitive quadratic terms
resulted only in new unstable configurations.

In desperation, the authors removed the nonlinear terms from considera-
tion. That the resultant linear models fit the data with accuracy was not
surprising, considering that one had as many as ten terms to choose from in
fitting data summarized by five polynomial coefficients. The encouraging
aspect was that, when run with different initial conditions, several of the
compartment models remained stable and positive.

Further selection of terms to limit the number of parameters in each
species model ensued. The primary criterion used was the relative sensitivity
of the constant in the Greenberger—Ward algorithm, although in a few
instances less sensitive terms were retained, preferentially to conform with
biological intuition. This particular step in the modeling process needs to be
made less subjective. The final reduced model described the generating data
as well as the full model with at least 95% confidence in all cases, save on
(NHj3). The reduced model is presented in Table II.

TABLE II
The reduced model

(1) 92F-—0.00279 PP — 0.0543 * HERB + 0.1193 * NO

(2) 4HERB._ 00121 + PP — 0.004459 * DN

(3) 92 -0.009364 * PP —0.02316 * DON

(4) dl?f = 0.000199 * PP + 002282 * NH; — 0.1576 * DOP + 0.0002304 * DC

(5) 9RON_ 005702  NH; —0.01045 * NO + 0.5474 * DIP + 0.00180 * DC

) 92N -0.001353 « PP —0.01088 * HERB

(1) 9NO_ _0.0003882 PP —0.01370 * NO +0.06898 + DOP

(8) d—Ddi—P - 0.002750 * NH; — 0.0003603 * DON — 0.0001958 * NO — 0.02340 * DIP
dDOP

9 at - 0.00004611 * PP — 0.0008026 * NO

(10) df—tp= —0.00006686 * PP + 0.0002551 * HERB + 0.0006665 * NO

All constants in h™!.
All concentrations in ug atom/1 (of C, N, or P).
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Fig. 1 (pp. 35—37). Behavior of the empirical model for various initial conditions.

Five of the eigenvalues of the reduced model possessed positive real parts,
thereby introducing instability into the model. However, five of the species
(PP, HERB, DN, NO, DOP) were not tightly coupled to the dominant un-
stable eigenvalues. In fact, perusal of Table IT will reveal that these species
are actually decoupled from the rest of the model, i.e. they form a self con-
tained sub-model. The sub-model remains well-behaved over the 15-day
sampling period for all three sets of initial conditions.

The predictions of the five cited species are graphed in Fig. 1. In each
figure the curve A represents the integration of the model derived from the
data of the 1% sewage microcosma. Curves B and C represent the behavior
of the model under the initial conditions representative of 0.1% sewage and
the control, respectively. The actual data from the three circumstances are
pictured for comparison.

DISCUSSION

Probably the most interesting result of this endeavor is the failure of the
quadratic differential equations to give reasonable results when applied to
independent data. This is in contrast to the qualified success of the linear
equations to do the same. B.C. Patten (personal communication, 1976) has
frequently met with some success in employing linear ecological models in
instances where nonlinear models have failed. These empirical observations,
which parallel the independent results presented here, have led him (Patten,
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1975) to hypothesize that ecological interactions on the macroscopic scale
are intrinsically linear in nature.

The above results are necessary, but certainly not sufficient, to provide a
proper test of Patten’s hypothesis. It is still possible that other, less general,
nonlinear forms would not exhibit the unstable behavior observed here. It is
also possible, though not too probable, that noise in the data has precluded
the selection of a stable set of bilinear terms.

There are problems, however, with pursuing other nonlinear interactions
in the a-posteriori context. Primary among these is the attendant loss in
generality that accompanies the choice of most nonlinear forms. The a-
posteriori approach should be viewed less in the strict sense of a model and
more as a tool with which data can be analyzed in the hope that repeated
application to different circumstances and systems will uncover macroscopic
patterns that lead to phenomenological laws. In such a search all possibilities
must be kept open. Hence, the decomposition of the functions describing
the interactions (right-hand side of eq. (1)) should be into terms capable of
synthesizing very general behavior.

The problem incurred with the quadratic terms also points up a difficulty
in using the Greenberger—Ward algorithm, or any equivalent combination of
sensitivity analysis and regression. Namely, the most sensitive terms with
respect to effecting a fit of the data are likely to also be the sensitive terms
which induce instability in a model. This quandary does not make empirical
modeling impossible, but does underscore the importance of attempting
some form of verification.

The separation of the ten species into two sub-models is striking. It could
be fortuitous. On the other hand, it could be symptomatic of a mismatch
between the fundamental kinetics and the daily sampling interval. The
species involved primarily in rapid transactions could describe spurious
trends when sampled daily. These trends would give rise in turn to false and
possibly destabilizing terms in their models. This process is likely related to
aliasing in time series analysis and is in evidence in the ammonia model.

The derived models did not track the independent data with precision. In
fact, one should not attach too much significance to the numerical
magnitude of the rate constants. One may expect, however, that the qualita-
tive behavior of the system is mirrored in the final set of constants.

To investigate these interactions it is useful to regard egs. (1), (2), (6),

(7) and (9) of Table II as a set of five, first-order linear differential equations,

5
dN;

i_ AT 3
at ™ o )

The set of coefficients, b;;, can be decomposed into symmetric and anti-
symmetric parts according to the identity

bi; = si; t ayj, (4)
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where
s = Yalby; + b;1), (52)
a;;j = %(bi; — bj;)- (5b)

The advantage of this device is that the anti-symmetric components can be
regarded as describing “flows of causality’ in analogy to predator—prey
interactions, whereas the symmetric parts described mutualistic (+) or com-
petitive (—) interactions in accordance with the sign of the component.

Fig. 2 graphically displays the flow directions according to the signs of g;;.
The two interesting features of the diagram are the closed loop of “causality”
connecting NO, PP and DOP and the apparent “sink” of causality from PP
and DN into HERB.

Fig. 3 illustrates the mutualistic (+) and competitive (—) interactions
between the five species. The minus signs above the NO and PP compart-
ments indicate the self-limitation of these species.

Two features emerge from this analysis. The first is the cycle associated
with primary productivity. This cycle appears to consist of stimulating
transfers damped in part by the self-limitation of two of the species. Further
management of the system is provided by the herbivore compartment which
drains the phytoplankton and detrital nitrogen compartments.

‘Obviously this is only a partial picture of the microcosm dynamics.
Presumably, more data taken at shorter intervals and extending over a longer
time would allow for the inclusion of other species and cycles.

An analysis of the dominant modes of the system (performed on the
symmetric matrix, s;;) reveals little new information beyond the fact that the
model system will eventually go unstable because of the presence of two
positive eigenvalues. An analysis of the eigenvectors reveals that one pair of
eigenvalues (nearly equal in magnitude, but opposite in sign) is primarily
associated with the production cycle. A second pair (again nearly equal in
magnitude, but opposite in sign) is dominated by the herbivore compart-
ment. The remaining eigenvalue is small in comparison with the others and
is dominated by the detrital compartments.

Anti-Symmetric Interactions Symmetric Interactions
DOP HERB
NO DN

Fig. 2 (left). Anti-symmetric behavior of the empirical model.

Fig. 3 (right). Mutualistic and competitive interactions in the empirical model.



40

FUTURE WORK

The results to date give encouragement for perfecting the linear modeling
scheme. There are two points in the algorithm described above which un-
necessarily require a-priori intervention.

The first of these involves specification of the degree of data-smoothing
employed. It should be possible to use the same hypothesis testing routines
to systematically determine the degree of polynomial smoothing appropriate
to each time series.

Secondly, the determination of the reduced model should be automated
according to objective criteria.

With these two improvements the algorithm would, for all practical
purposes, be fully automated. All that would be necessary as input would be
the time series data along with the desired confidence limit, and a suitably
parsed linear model would result without further intervention. Such an
objective process should provide a useful tool in the continuing search for
phenomenological laws of ecosystem behavior.

ACKNOWLEDGEMENTS

The experimental work discussed herein was supported by the National
Science Foundation, grant number GI-29906. Funds for the computational
work came from the State of Maryland, Power Plant Siting Commission,
project number 17-74-04. The authors would like to thank Mrs. Linton
Beaven, Mrs. Shelly Sulkin, and Mr. Richard Murtagh for their assistance in
chemical analyses of the microcosms and Mr. Curtis Mobley for his helpful
review of the manuscript.

REFERENCES

Forsythe, G.E., 1957, Generation and use of orthogonal polynomials for data-fitting with
a digital computer. J. SIAM, 5: 74—88.

Greenberger, M.H. and Ward Jr., J.H., 1956. An iterative technique for multiple correlation
analysis. IBM Techn. Newsletter, No. 12, pp. 85—97.

Levandowsky, M., 1977. The use of microcosms in marine biology. In: O. Kinne (Editor),
Marine Ecology, Vol. 3. Wiley, New York, N.Y., in press.

Mobley, C.D., 1973. A systematic approach to ecosystems analysis. J. Theor. Biol., 41:
119—136.

Patten, B.C., 1975. Ecosystem linearization: An evolutionary design problem. Am. Nat.,
109(969): 529—539.

Redfield, A.C., Ketchum, B.H. and Richards, F.A., 1963. The influence of organisms on
the composition of seawater. In: M.N. Hill (Editor), The Sea, Vol. II. Wiley-Inter-
science, New York, N.Y., pp. 26—77.

Ryther, J.H. and Dunstan, W.M., 1971. Nitrogen, phosphorous and eutrophication in the
coastal marine environment. Science, 171: 1008—1113.

Strickland, J.D.H., 1965. Production of organic matter in the primary stage of marine
food chains. In: J.P. Riley and G. Skirrow (Editors), Chemical Oceanography.
Academic Press, New York, N.Y., pp. 478—610.

Ulanowicz, R.E., Flemer, D.A., Heinle, D.R. and Mobley, C.D., 1975. The a-posteriori
aspects of estuarine modeling. In: L.E. Cronin (Editor), Estuarine Research, Vol. I.
Academic Press, New York, N.Y., pp. 602—616.

——



