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1. INTRODUCTION

1.1. The Modeling Process

A glance at the table of contents of this volume reveals that the
organization of the chapters bears close resemblance to the much-discussed
phases of the modeling process.

For example, the first step in a multicomponent systems analysis is
usually the definition of what the compartments are and how their state
may be described quantitatively. The first three chapters on the aggregation
problem indicate that this task is certainly nontrivial.

The identification of the qualitative interactions between components
usually follows. While one may speak in general terms about causality, in
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the ecological realm it is usually the transfer of matter, energy, or
information that constitutes such interaction.

Choosing a mathematical statement to describe the time evolution of
the interactions (usually in terms of the states of the compartments)
constitutes what some (Dale, 1970) refer to as the modeling step in systems
analysis. Despite the fact that this phase is the most explicitly mathematical,
it generates relatively little theoretical interest as witnessed by the absence
of contributions on the problem in this book.

This brings us to the final step of model verification (elsewhere
referred to as model validation). A model is generally held to be valid
insofar as it can reproduce the behavior of the system under conditions
different from those used to create the model, i.e., to the degree that it has
prediction ability. To be sure, there are occasions where invalid models
provide useful insights, and the organization which the modeling scheme
lends to one’s thought processes or experimental program is not to be
underestimated; but it may still be argued that the sine gqua non of model
validation remains—prediction ability.

1.2. Incomplete Results of Ecosystem Models

As defined, the modeling procedure is quite broad. For example, the
chosen compartments may contain a single organism, a population of
organisms, or an ensemble of populations. A population compartment, in
turn, could be homogeneous or possess structure in size or age. Likewise,
the mathematical statements may be deterministic or probabilistic in
nature, linear or nonlinear, autonomous or able to possess memory.
Examples of all types appear in the literature.

In practice, however, ecosystem modelers have focused upon
particular types of model constructions. Most analyses seem to treat
compartments which are nonsegregated (populations or trophic levels) and
homogeneous. The accompanying mathematics is, for the most part,
deterministic and autonomous.

Despite the enormous effort which has gone into such ecosystem
modeling, there remains a paucity of models which meets the rigorous
validation criteria which might be applied to a model of a mechanical
system. Most ecosystem models are short on prediction ability. Even some
classical examples, such as the Lotka—Volterra predator—prey scheme, have
not spawned validated examples.

1.3. Three Views on the Adequacy of Ecosystem Modeling

There are three possible schools of thought concerning the apparent
failure of ecosystems analysis to predict with confidence.
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The first school points to our ignorance and the need for more data.
The present approach is considered to be sound, but our inability to gather
enough information on the components and interactions proscribes
ascertaining the proper constitutive relations which will lead to valid
models. In time, additional information will evolve models with greater
predictive ability. Meanwhile, we can appreciate the new insights into
particular ecosystems which the modeling exercise uncovers. This is a
frequent argument given to funding agencies to support modeling projects. I
have used it on occasion myself.

The second group is more iconoclastic (Mann, 1975). The current
approach is futile because the models are poorly posed. To use populations
as components is reductionistic and blinds one to emergent properties. To
use trophic levels as compartments is nonsensical in light of the confused
webs which characterize most ecosystems. Anyhow, stochastic influences
upon model parameters yield confidence limits on ecosystems predictions
which are too large to make them of any practical use. This group is not
without its optimism, however. As our ability to look at ecosystems
holistically advances, properties will appear along with their own laws, just
as ethology emerges when we expand our scale of observation from the
cellular level to the organism and then to the social unit.

Several published works of the past few years reveal that a third
opinion on the ecosystem modeling problem is possible. This outlook
allows that the modeling construct in vogue may be sound; however, it will
not lead to useful results on the systems level because the deterministic
behavior of large ecosystem models is indistinguishable from chaos. That is,
prediction ability is short range at best. The only obvious emergent
property of ecosystems is chaos. This does not exclude the possibility that
macroscopic properties with their own laws exist. But the likelihood is that
they are imposed by constraints from without (the abiotic universe) rather
than emergent from within.

Because this outlook is relatively new and seemingly paradoxical, it is
helpful to regard its development in more detail beginning with its
theoretical origins in meteorology.

2. DETERMINISM AND CHAOS

The transition of a fluid flow field from laminar to turbulent has long
intrigued theoreticians. Whether the Navier—Stokes equations (or any other
form of Newton’s second law) were germane to the turbulent field was a
matter of much debate. To the meteorologist the issue was more than an
interesting theoretical question. With the advent of computational
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machinery efforts were underway to apply the discrete forms of the
equations of motion to meteorological flow fields for the purpose of
forecasting weather. The limits to employing deterministic tools on a
turbulent field thus became a matter of applied interest.

It was against this background that Lorenz (1963) published his
elegant treatise on deterministic nonperiodic flow. Lorenz reduced the
equations of motion for a particular two-dimensional, rotating, heated fluid
to three, first-order, quadratic differential equations:

X = —10x+ 10y, y=—xz4+27x—y, Z=Xxy. (1)

Here x, y, and z are complicated transforms of the stream function and
excess temperature. The exciting point of this analysis is that these simple
equations (mathematical cousins of the Lotka—Volterra equations) behave
in such a peculiar manner.

The solutions to Eq. {1) always remain bounded. After a given period
of time, however, the variables x and y go into oscillations with no finite
period. This is strange behavior for a deterministic function; however, the
path is uniquely determined in that starting the solution at any point on the
trajectory will always result in tracing out the same pathway. Further
experimentation with the system reveals that the trajectories are not stable
in the strict mathematical sense. Starting the system arbitrarily close to the
given initial conditions will result in a trajectory that eventually bears no
coherence to the given one.

Trying to predict the future behavior of such a system is obviously
perplexing. Since one can never measure initial conditions with exactitude,
model and prototype evolutions are bound to become incoherent
eventually. Likewise, efforts to replicate the behavior of such a system under
controlled conditions is sure to meet with difficulty. In short, there is little
to distinguish this deterministic entity from one that behaves chaotically.

Lorenz traced the chaotic behavior of his continuous system to
discrete transitions of the trajectory between regions with qualitatively
different behavior. He characterized these transitions by the numerical
sequence:

m,.q, = 2m, it m, <3,
m, 1 is unidentified if m,=1%, 2)
M, = 2—2m, if m, > 1,

O<my<l,

and showed for a nondenumerable set of irrational m, that the behavior of
the sequence was qualitatively similar to that of Eq. (1). At about the same
time that Lorenz was making these observations, Ulam (1963) was
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reporting chaotic-like behavior in quadratic numerical transforms such as
Xn+1 = 2x,,y,,+2x,,z,,+2y,,z,,,
Yn+1 :xnz—'—znza (3)
Za+ 1= yn2 :

Needless to say, the bizarre behavior of these numerical sequences
captivated applied mathematicians such as Li and Yorke (1975), who
set about elucidating the kinetics of pathological nonlinear numerical se-
quences. Fortunately, Yorke also appreciated the potential application of
such mathematics to ecological situations. He brought his example of the
discrete form of the logistic equation

Xn+1 = yx,,[l _xn/K] {4)

to the attention of May (1974), who thereupon devoted much effort to
making deterministic, chaotic behavior familiar to ecologists (May, 1975;
Hassell et al., 1976; May and Oster, 1976).

May’s analyses center about the simple, one-dimensional discrete
logistic equation:

Xn+1 = xnexp[r(l _xn/k)]’ (5)

which is qualitatively similar to Eq. (4). It is not too difficult to show that
Egs. (4) and (5) possess three parameter ranges, each endowed with
qualitatively different behavior. In particular, Eq. (4) always possesses a
stable equilibrium point when 2 > r > 0. In the range 2.570 > r > 2.00 the
solutions possess stable cycles of period 2" (n, integer) beginning with a two-
point cycle near r = 2.0 and changing to 4-, 8-, 16-,.. ., etc.,, point cycles as r
increases. Finally, cycles of arbitrary period, or aperiodic (chaotic) behavior
occur for r > 2.570.

May’s emphasis upon these one-dimensional systems has the
advantage that analytical methods can readily be brought to bear on the
equations. It also points out the fact that even the simplest of nonlinear
ecological models can give rise to chaotic behavior.

When data from real populations are applied to the discrete logistic
algorithms, however, none of the naturally occurring populations possesses
parameters in the chaotic range. Indeed, few naturally occurring popu-
lations show behavior more interesting than a monotonically damped
return to steady state. The single example of a real population in the chaotic
regime comes from a laboratory controlled population of blowflies
(Nicholson, 1954).

Hence, the behavioralist or experimental ecologist might be inclined
to dismiss the whole discussion about determinism and chaos as the
rantings of theoreticians more concerned with their equations than with
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reality. To do so at this time, however, would be unfortunate and
premature—for two reasons.

To begin with, the analytical work has emphasized single populations,
whereas ecosystems, by definition, consist of collections of interacting
populations. The little theoretical work that has been done on interacting
populations indicates that chaotic behavior is more likely to occur with
several species (May and Oster, 1976). Theoretical studies of host—parasite
interactions (Beddington et al., 1975) and competing species (Hassell and
Comins, 1976) indicate that chaos will intercede sooner (at lower parameter
values) than in the single-population case.

It is tempting to proceed by induction to the many-species problem,
where interactions which deviate only slightly from linearity give rise to
chaos. In fact the mechanical analog of this many-species problem has been
well studied (Tuck and Menzel, 1972). The Fermi—Pasta—Ulam system of
many mass points connected by springs with weakly nonlinear properties
readily gives rise to apparent chaos. Hence, if these analogies and intuitions
hold, the most obvious emergent property of ecosystems is chaos!

The second reason for not dismissing the possibility of chaotic-like
determinism in ecosystems lies with the consequences of a negative result.
One way to argue the nonexistence of chaos on an ecosystems scale would
be to demonstrate the existence of an emergent, organizing property. Such a
discovery would be a major breakthrough in ecological theory.

There remains one final possibility—total ecosystems do not become
chaotic because they are inherently linear. The radical hypothesis that
ecosystems are fundamentally linear was formalized by Patten (1975).
Furthermore, there are empirical results which purport that linear models
are somewhat more robust than their nonlinear counterparts (Ulanowicz et
al., 1978). It is yet to be resolved, however, whether linear models work a
little better because the prototype systems are inherently linear or because,
within the limited predictability possible in chaotic systems, linear models
work just as well as (or better than) anything else.

Before leaving the subject of deterministic, chaotic-like behavior, it
should be pointed out that the discussion in the ecological literature has
dwelled upon discrete-time numerical sequences. The possibility that
discrete-mass or discrete-space numerical models might also lead to
chaotic-like behavior has not been fully assessed. Cohen (1976), for example,
shows how certain discrete reproduction processes such as the breeding of
pigs or the growth of algae may not converge to a single limit as numbers
become large (i.e., they possess a nondegenerate limit). He points out how
his examples share the lack of predictability and reproducibility exhibited
by those of May.

Of course, one should always remember, too, that chaotic-like
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behavior is not confined to discrete sequences and was, in fact, first studied
as resulting from continuous, ordinary differential equations with constant
coefficients.

3. ECOLOGICAL PERSPECTIVE

From a pragmatic point of view, it matters little whether the holist or
the chaoticist holds the proper perspective on ecosystems behavior. (The
two are not necessarily mutually exclusive.) Common to both philosophies
is the belief that ecosystems modeling, as it has been known for the past few
decades, has reached the point of diminishing returns, and that radical
progress in the understanding of ecosystems will ensue only by expanding
the scales of observation in ecosystems modeling. Conceptually, this means
defining new macroscopic variables and deriving meaningful relationships
among them.

The search for a macroscopic ecosystems theory is likely to be a long
and costly endeavor wrought with much futile effort. Nevertheless, it is one
of the most intriguing contemporary issues in basic science. It should
command the attention of the best theoretical ecologists and the support of
every sponsoring agency.

But how do we begin? In fact, efforts are already underway —it is just
that some efforts are not advertised as endeavors in macroscopic ecology
and thereby escape our recognition.

A case in point is the long controversy over the relationship (if any)
between diversity and stability. These variables are properly macroscopic.
Diversity is an ensemble property abstracted in an ad hoc manner from
physics and information theory. Much attention has been focused on the
ambiguities of defining diversity. Unfortunately, much less effort has been
devoted to unambiguously defining stability.

The issue is not always perceived as macroscopic, however. The
proper approach would then be phenomenological in nature, with effort
aimed at defining stability as a function of diversity in much the same
empirical way that engineers once sought to relate the efficiency of engines
to the temperature difference driving them. Instead, the literature is replete
with attempts to arrive at the relationship deductively from simple model
examples, that is, from the lower level in the hierarchy (see May, 1973).

Other efforts are appropriately empirical, but are so presented by
conventional modeling philosophy that their potential value to macroscopic
ecology is obscured. Thus Bargmann and Halfon (1977), Mobley (1973), and
Ulanowicz et al. (1978) approach modeling in an a posteriori fashion,
allowing the data to define interactions. The same methodologies applied to
macroscopic variables could prove to be very useful tools.
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One empirical approach is intentionally divorced from the main-
stream of ecological modeling. Platt and Denman (1975) have advocated
spectral analysis as a useful way of presenting time series data so as to
evoke new hypotheses. Their strategy is to relate the Fourier spectrum of
one component to that of another. In this vein Platt (1972) and Powell et al.
(1975) compare the spectra of chlorophyll abundance with that of turbulent
water motion to define regions of frequency space where the profiles
are closely related or significantly different. One can envision the
result of such analysis as an empirical correlation between two variables
over segments of their spectra. This is in contrast to the cause—effect
relation which conventional modeling assumes valid for any continuous time
scale.

Platt and Denman emphasize a tendency of nonlinear systems
towards “periodic (cyclic) organization in time, in space, or in both.” They
further argue that characteristic periods should emerge from many-species
nonlinear ensembles such as ecosystems. Their speculations on this point
stand in contradiction to the intuition of May and Oster. Therefore, further
work with spectral analysis of whole ecosystems may help to resolve whose
notion is in closer agreement with biological reality.

Of course, the argument for a macrobiology is not new. It arises by
analogy to the relationship between statistical mechanics and classical
thermodynamics (e.g., Kerner, 1971). It seems, therefore, that the tools of
statistical thermodynamics would be the proper instruments with which to
begin the development of a macrobiological theory.

Unfortunately, there seems to be little inclination among the
ecological community to pursue this line of investigation (the sole exception
being diversity indices which come to ecology from statistical mechanics via
the intermediate discipline of information theory). The reason for this
reticence seems to be twofold.

First, there exists the usual communications barrier between the
physicist and ecologist, promoted by the reluctance of most of the parties to
spend a significant period of study in the other’s discipline.

More easily remedied, however, is the desire of both parties to draw
the analogy too closely. Kerner’s (1957) work provides a good example.

Without going into detail, Kerner began with a set of generalized
Lotka—Volterra predator—prey differential equations written for many
species. Under the assumption of antisymmetry of the interaction terms, one
may derive a constant of motion for the system, invoke the ergodic
hypothesis, and thereby define macroscopic variables such as
ecotemperature.

In the eyes of Kerner and his critics the validity of the concept of
ecotemperature rests upon the strengths or weaknesses of the derivation.
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But this is drawing the analogy with statistical mechanics too tightly. After
all, the laws of mechanics and thermodynamics are quite precisely defined.
In ecology the models for population dynamics are usually analogies in
themselves and only the vaguest notions exist for what macrobiological
laws might be. Therefore, it appears premature to argue whether the ergodic
hypothesis is applicable to ecosystems, when the entire argument is to
connect two realms whose underpinnings are quite uncertain. Rather,
Kerner’s arguments can be regarded as heuristic in nature and the variable
ecotemperature can be subjected to empirical scrutiny in its own right. Such
an ad hoc adaptation of a variable is, after all, what occurred with species
diversity.

In qualitative terms, the ecotemperature of a species is the expectation
value of the square of the deviation of a species from its mean, divided by
the mean. When expressed in energetic terms, the “temperature” of lower
trophic species is probably greater than that of more predatory species. The
difference in ecotemperature, therefore, suggests itself as a candidate for the
force conjugate to the energetic flow between compartments (Ulanowicz,
1972). Of course, temperature and energy flow immediately suggest an
analog to entropy and an inverse to Odum’s (personal communication)
much sought after “energy quality.”

“Ecopressure” as a quantity which is equal throughout an ecosystem
at steady state could likely be heuristically derived. The analogs from
classical and irreversible thermodynamics are manifold and exciting.
However, caution should be exercised so as to not blind oneself to any new
phenomena peculiar to the thermodynamics of macrobiological systems.
Phenomenology, not strict analogy, is what is necessary.

4. SUMMARY

In the relative inability of ecological models to provide a degree of
robust prediction, ecosystems analysis has encountered its counterpart to
the “Ultraviolet Catastrophe” of physics. Just as the difficulties posed by the
breakdown of previous theories led to the magnificent advances of quantum
physics, the search for alternate strategies of ecosystems analysis holds
promise for a major breakthrough in the understanding of ecosystems
function. Dilemma and chaos usually force a new perspective, and a
different perspective is necessary if one is to view new wonders.
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