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Information theoretical analysis of ecological networkst
HIRONORI HIRATAI§ and ROBERT E. ULANOWICZ{

Etological petworks are considered from the viewpoint of information theory.
Rutledge ef al.’s model for choice within closed systems is extended to apply to open
systems ; and an unbiased version of Ulanowiez’s ascendency, a purported index of
the development of ecological communities, is given. This information theoretical
analysis is also applicable to flow networks arising as models of biological systems,
economic systems, social systems, ste.

1. Introduction ‘

The problem of describing how living systems develop is one of the most
intriguing issues in all of science. During the past two decades it has become
apparent that there are properties shared in common by all systems engaged
in the process of development (Glansdorff and Prigogine 1971, Odum 1977).
From a strategic point of view it matters little whether one seeks to describe
development as it occurs in ontological, ecological, economie, social or political
systems—so long as the language of description is sufficiently broad, a general
principle could emerge from any of the various disciplines.

An appropriately general language in which to expound the phenomenon of
development is that of networks (Bunow and Mikulecky 1982). In ecology,
an early attempt at focusing upon a particular property of more developed
networks was made by Odum (1953) when he suggested that a multiplicity of
parallel pathways between arbitrary pairs of compartments (species or trophic
levels) in the network of flows occurring in an ecosystem contributed to greater
homeostasis of the entire network. He reasoned that a disturbance along any
flow pathway could be compensated for by altered flows in parallel pathways.
MacArthur (1955) immediately recognized that Odum was speaking about a
particular application of the problem of communication in networks and
attempted to invoke information theory to quantify the redundancy inherent in
the pathways of communication. MacArthur believed that the entropy of the
flow network was a sufficient deseriptor of flow redundancy. Unfortunately,
the concept of flow redundancy soon became confounded with that of diversity
of species ; and over a decade of vigorous, but inconclusive, research ensued
on the issue of whether ecosystem species diversity contributed to system
homeostasis. ‘

Meanwhile, information indices more useful than entropy in quantifying
Odum’s argument had become more widely known. Some twenty vears after
MacArthur had proposed entropy as a descriptor of flow redundancy, Rutledge

Received 8 March 1983,

T Coniribution No. 1434 of the Center for Environmental and Estuarine Studies
of the University of Maryland.

I Chesapeake Biological Laboratory, University of Maryland, P.O. Box 38,
Solomons, Maryland 20688-0038, U.S A.

§ Permanent address: Department of Electronics, Faculty of FEngineering,

Chiba University, 1-33 Yayoi-cho, Chiba-ghi, 260 Japan.

5.8, L



262 H. Hirata and R. E. Ulanowicz

et al. (1976) recast Odum’s argument in terms of a more appropriate quantity—
the conditional entropy. Conceptually this was quite a refinement of
MacArthur’s suggestion, except, as Rutledge points out, that the conditional
entropy is not always sufficient for ecosystem analysis based upon longer time
scales.

Ulanowicz (1979) argued that the complement of the conditional entropy,
the average mutual information, more appropriately captured the notion of
development in networks over a longer span of time. Later, Ulanowicz (1980)
suggested that a scaled variation of the average mutual information synthesized
most of Odum’s (1969) 24 indicators of mature ecosystems into a single index,
which he called the system ascendency. Ulanowicz also attempted to generalize
Rutledge’s analysis so that it would pertain to open systems. Unfortunately,
the information component of Ulanowicz’s ascendency had a hidden bias and
did not evolve fluently from the body of information theory.

In this work we show how a change in the normalization of the constituent
probabilities allows one to derive a revised ascendency from basic concepts in
information theory. Furthermore, the new index is more readily extended to
non-steady-state networks, The basicforms of the overhead terms (components
of the conditional entropy for open systems) remain the same as those defined
by Ulanowicz.

2. Ecological networks

We consider ecological networks like the one shown in Fig. 1. Hach
compartment £ is characterized by its throughput 7', of a single given medium
such as carbon, nitrogen, mass, energy, ete., and may have several kinds of
inputs and outputs as shown in Fig. 2. The inputs are distinguished as to
whether they come from the outside world or from other compartments. The
outputs entail dissipative flows (respiration, death, ete.), exports useful to other
systems, and the flows to other compartments.
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Figure 1. Simple example of an ecosystem flow network. Flows of energy among
the five major compartments of the Cone Springs ecosystem are schematically
depicted. Annual values for flows are given in k cal/m2 Ground symbols
represent respiration.
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Figure 2. The kth compartment of an ecological network.

The symbols for the kth compartment are as follows :

: the flow leaving the kth compartment and directly contributing to
the sustenance of the jth compartment ; 7',,>0

Dy, . the dissipated flow leaving the kth compartment ; D, >0

B, : the useful export leaving the kth compartment ; K, >0

I, : the input flow to the kth compartment from the outside world ;
I,>0. '

One further defines the throughput of species b as
»
Ty= '21 Tyi+ Dy + By, (1)
i=
In a system at steady state, such as the one depicted in Fig. 1, T, also equals

121 Ty+1
that is
n n
2 Ty+ Dy+ By = 121 Ty+1; (2)
i=1 =

In what follows constraint (2) does not need to be satisfied, and the development
will be applicable to non-steady-state configurations.

3. Model for choice within open systems

As shown in Fig. 3, exogenous inputs come from the zeroth compartment ;
exports enter compartment (z -+ 1) ; and dissipation is collected in compartment
(n+2). Although one could consolidate input, export and dissipation into

one global compartment, they are treated separately to facilitate further
extension. '

Now time is introduced into the analysis. The time interval for flow from
one compartment to another is taken to be 8. New variables are defined as

follows :

@, : the percentage of the total flow through the ecological network at
time ¢, which passes through the kth compartment ; @,>0(k =0, ..., n),
Qm—l = Qn+2 =0 »
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t=t1 t=t1 +4

Figure 3. Generic model for choice in open systems.

P, : the percentage of the total flow through the ecological network at
time ¢+ 6 which passes through the jth compartment; P,=0,
P,20(j=1, .., n+2)

frs : the percentage of the total flow through the kth compartment at
time ¢, that passes into the jth compartment between time #; and
ti+05 fr;20

r, . the percentage of the flow through the kth compartment which is
dissipated ; r,20

e, : the percentage of the flow through the kth compartment which is

exported as useful flow ; ¢, >0.

The relations between these variables are provided by the equations

N

Pj= IcZO fkak’ (j:l, ’n)

"

Po= kzl exQs | f‘ (8)
Poa= Y 7%
et ]

where

k1
Y frptrete=1 (k=1,.., n)
i=1

-
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At steady state the following additional relations hold
Qk—_—-'Pk (]C=l,..., n)}

Qo = Pn+1 + Pn+2

4, Information theoretical discussion of ecological networks
In ecological networks one may identify variables @, f;, 7, and e, as

follows
Q=T /(T+1I) k=1, ..., n)
(6)
W Q0=1/(T+I)
fei=TylTy (b, j=1,....m)
for =11 (G=1,..,n) O
fro=0 (=0, ...,n)
re=DyT, (8)
ek=Ekak (9)
where
T= Y T, (10)
k=1
I= Y I, (11)
F=1
B It is a simple matter to reinterpret the model for choice shown in Fig. 3 as

the classical model of a channel illustrated in Fig. 4. Here 4 ={a,},k=0,1, ...,
s n,n+1,n+2, is the set of input events with probabilities Plae,)=0Q,.
- B=1{b;},j=0,1,...,n,n41, n+ 2, is the set of ontput events with probabilities
P(b;)=P;. F={fy;} is the communication matrix of this channel.

Channel

A-{ag B={bj} _
Fan-ac L il [Fayr

Figure 4. Schematic diagram of a generic channel.

According to the orthodox way of calculating mutual information (e.g.,
Abramson 1963), one may identify the mutual information contained in the
ecological network in the manner shown in Proposition 1. As has been men-
tioned by Rutledge ef al. (1976), this gqnantity represents the average amount
of uncertainty resolved by the knowledge of the network structure.
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Proposition 1
The information M contained in the ecological network structure is the sum

of three terms
M=Ms+cr+ﬂ[e+Mr (12)

] e

Y fi@
=0
M= }‘21 @z log [ek /( li 91@1)] . (14)

M, = i 7@y log ["k /( i ‘”lQl)] (15)
k=1 I=1

-This is proved in the Appendix.

M, captures the amount of information associated with the network flow
structure and the pattern of inputs ; M, the amount assigned to the pattern of
useful exports ; and M., the amount contained in the pattern of dissipative
flows.

where

M, .= i i 1@ log l:fkj /(

k=0 j§=1

The network information expressed by M, and M, is usually lost to the
outside world. However, if one considers this network as a subnetwork of a
composite system, as in Fig. 5, the information of export M, becomes a part
of the information contained in the composite network flow structure. The
information of dissipation M, is lost in all cases.

—
Network Network
. Me l Me
} i
e

Figure 5. Composite network.

Because M is the mutual information as normally defined, it is always
non-negative (Abramson 1963). Although in general one cannot guarantee the
non-negativity of an arbitrary part of mutual information, one can prove the
non-negativity of M, ., M, and M,.

Proposition 2
The three terms of the mutual information in open flow networks are
separately non-negative

Me .20 (16)
M,>0 17
M,>0 (18)

This, too, is proved in the Appendix.
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Proposition 2 guarantees that each of M ., M, and M, may properly be

“interpreted as information.

M, in Proposition 1 corresponds to the unscaled ascendency in Ulanowicz
(1980). Hence, Proposition 1 established the theoretical background for the
ascendency and shows how the original version must be revised to agree with
the conventions of information theory. Also, to be consistent with the
normalization of the P, and @, (see eqn. (6)), the scaling factor for the mutual
information should become 7'+ 1.

For simplicity the ascendency 4 will be identified with M in what
follows. One can easily verify the following useful relationship among network
capacity, network overhead and ascendency.

Proposition 3

The ascendency is the difference between the network capcity and the
overhead. The overhead, in turn, consists of three non-negative components
associated with the three types of output flows. That is

A=C—(E+D+R) (19)
where

== % @log @ (20)

= - L_i @ log @y, ' (21)

D=~ kZ:l iy log @ (22)

R=— kéo 5-230 i@ log [fk]@k /( é_:o flez):l (23)

Proof of Proposition 3

Equation (19) may be algebraically verified by substitution of definitions
(13) and (20)—(23) for the respective terms. Because 0<@, <1 and 7, and e,
are both non-negative, it follows from inspection of (20)~(22) that C, # and D
are non-negative. The non-negativity of R is proved in exactly the same
manner as the non-negativity of M, in the Appendix. ||

In Proposition 3, C is the network capacity for development. E+ D+ Ris
network overhead, i.e. the portions of the network capacity encumbered by
exports (&), dissipation (D) and redundancy of structure (R).

Corollary 1
The ascendency has the upper limit C, i.e.
O=24>20 (24)

R in (19) corresponds to the index of ecological stability 8, in Rutledge et al.
(1976). The larger 8 a system has, presumably the more stable it is. After
replacing B by 8, one can rewrite (19) as

S=C—(E+D+A4) (25)
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Then
S=[{C—-(F+D)]-4 (26)

A=[C—(E+D)]-S | (27)

Thus, development and stability stand in opposition to each other, as seen in
(26) and (27).

The particular reasons why ascendency should serve as a reliable index of
development in ecological communities are detailed in Ulanowicz (1980, 1981).
Briefly, the major attributes of more developed ecosystem networks are a
larger number of species, higher degree of cycling within the system, increased
efficiency of the components, and greater specialization of the components.
Each of these properties is capable of increasing the ascendency of the network.
More compartmentalization leads to a higher entropy, thus raising the upper
bound on the increase in ascendency (eqn. (24)). The ascendency reaches its
upper limit under the ideal conditions when the medinm is cycled around a
single loop with no losses. Finally, greater specialization is the same as lower
redundancy R, which has been shown to detract from the ascendency.

5. Summary

The definitions and propositions presented here should serve to demonstrate
the role of information theory in systems ecology. By paying careful attention
to definitions Rutledge et al.’s model for choice in ecosystems can be extended
to open systems and to networks not in balance. Ulanowicz’s notion of
ascendency can now be strictly identified with accepted variables in information
theory. The clear conceptual and mathematical distinction between
Ulanowicz’s ascendency (4 =DM, ,) and Rutledge’s index of stability (8)
should provide a starting point for a more enlightened discussion of develop-
ment and stability than has hitherto been possible.
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Appendix
Proof of Proposition 1
From the definition of mutual information of the channel depicted in Fig. 4

M=M(A; B)
—H(A)—~H(A/|B)
=H(B)—H(BJA)

= AZB P(ay, b;) log [ P(b;/a;,)/ P(b;)] (A1)

>

ek
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Here
Play)=fr; (k=0,....,n, j=1,..,0)

Pelay)=e;, (k=1,...,n), Plefo)=0 (A 2)

Prlay)=r, (k=1,...,n), Prlo)=0

¥=0
P(e)= kél e r (A 3)
P(r)= é"] 7. @5

Play, b;) = Pblap) Plag) =11;Qe (=0, ....»n, j=1,.., n))

Pa,, e)=e,0;, (k=1,..,n)

ro (A4
P(aka '7‘)=7‘ka (k—:l’ s W)
" Plo, &)= P(c, ) =0
where o=ag, e=b,.,, and r=5b, .
From (A 1)-(A 4), one can derive (12)—(15).
Proof of Proposition 2
One can easily rewrite — M, as follows
—‘Ms+a=( kZO 'Zl fk’iQk) G (A 5)
where
G= % Z o log ( Y fleZ/fkj) (A 6)
F=0 =1 =0
oty = f15Q /( kZO ‘21 fk'iQk) 20 (A7)

Because the logarithm function is concave, it is possible to derive the
following inequality using Jensen’s inequality

G <log ( k;no 121 Cgej zio / i!J'Ql/fkj) (A 8)

=log( o) (A9)
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From the definition of @,

Therefore
a<0 (A 10)

Equation (16) follows from (A 5) and (A 10).
Equations (17) and (18) are proved in the same way as (16).
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