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This paper considers the aggregation and hierarchical structure of ecologi-
cal networks from the viewpoint of information theory. It is pointed out
that the aggregation which maximizes the amount of information preserved
during the process of aggregation bears heavily upon the concept of trophic
compartments. Hierarchical structure is defined as a series of aggregation
processes. How the organization at one level is related to that at the next
level is elucidated by two propositions and attendant corollaries.

1. Introduction

“A model which must be capable of accounting for all the input-output
behavior of a real system and be valid in all allowable experimental frames
can never be fully known™ (Zeigler, 1976). The starting point for considering
any “system”, be it flows in an ecosystem, an economic network, or a
transportation grid, is perforce arbitrary to some degree; and any analysis
which lumps smaller elements into a few system compartments must reckon
with the errors introduced by the aggregation process.

Most previous analyses of aggregation error center around the effects of
consolidation upon the assumed dynamics of the system (Cale & Odell,
1979, 1980; O’Neill & Gardner, 1979; O’Neill & Rust, 1979; Cale, O’Neill
& Gardner, 1983). Initial compartmentalization, however, is done on the
basis of observation and intuition. The question arises, therefore, as to
whether it is possible to describe a systematic and rational scheme for
combining compartments based solely on the observed transitions occurring
in the system.
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Observation of a system is intended to produce information about the
ensemble. The information value of quantitative observations (measure-
ments) is properly the domain of information theory. For this reason
ecosystems researchers have lately been paying attention to the applications
of information theory to ecosystems networks (Rutledge, Basore & Mulhol-
land, 1976; Ulanowicz, 1979). In particular, it has been suggested
(Ulanowicz, 1980, 1981) that the average mutual information inherent in
the structure of an ecological flow network is a pertinent indicator of the
degree of organization (development) exhibited by the given community,
and Hirata & Ulanowicz (1984) formally derived such an index from the
body of information theory. '

Common sense dictates that one wishes to avoid, whenever possible,
any combination of compartments which would serve to obscure important
facets of organization in a system. This translates directly into a preference
for those aggregation schemes which minimize the decrease in mutual
information of the associated network. In particular, it will be shown by
way of example how grouping compartments so as to minimize the loss of
mutual information creates collections of species that coincide with trophic
compartments defined a priori on intuition.

As a prelude to the search for such desirable combinations of compart-
ments, the process of aggregation is first defined, and how the information
in the network varies upon aggregation is then discussed. Thereafter, atten-
tion is turned to information in hierarchical systems. The results from the
study of aggregation are used to define the notion of total information in
a hierarchically-nested network. ‘

2. Aggregation
Definition 1

N and N are the sets of elements

N={ay}r1..n (1)
N={B}iz1,.m  (m=n). (2)

If a homomorphic mapping ¢ is made from N to N as
¢:N->N; (3)

then N is called the original network; N, the aggregated network of N;
and ¢, the aggregation mapping.

A matrix is a convenient representation of an aggregation mapping as
follows:
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Definition 2

Define an aggregation matrix S as

S= [Sik]i=1,...,m,k=1 ..... n

S11 %2 S1n
_ 821 - (4)
Sml L) sm
where
0=s,=1 and Y su=1 (5)

If all s; are either O or 1, the mapping is referred to below as a **discrete
aggregation” (Hirata, 1978). Otherwise, it is referred as a “weighted aggrega-
tion”. One may consider the discrete aggregation as a special case of the
weighted aggregation (e.g., Ulanowicz & Kemp, 1979).

Those positions of s, which are not zero signify which elements shouid
aggregated into the same group, i. Because the aggregated network (N) of
the original network (N) depends on an aggregation matrix (S), it may be
expressed as the function of S, N(S).

Example 1
Consider an aggregation between N and N as follows:
N= {ala @, O3, Ay, Os, aﬁ}
N: {Bla BZ: B3}'

A 63 matrix S describes the aggregation of N into N.
Figure 1(a) is the case of weighted aggregation shown by an aggregation
matrix as

(6)

140000
S=10 3 % %2 0 0f. (7)
0 0 2 L 11

In this case
— +l
Bi=atza;
-1 1 2
B2=za;+305+30,

B =%a3+%a4+.a5+a6. (8)
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FIG. 1. Schematized aggregation. (a) weighted aggregation, (b) discrete aggregation.

Figure 1(b) is the case of discrete aggregation shown by an aggregation
matrix as

1 1.0 0 0 O
S={0 01 0 0 O 9)
0 0 01 1 1
In this case B, =a;+a,, B,=a,
33:a4+a5+a6. (10)
3. Networks

Consider networks consisting of n compartments each of which is charac-
terized by its throughput of a single given medium such as carbon, nitrogen,
mass, energy, etc. The kth compartment is characterized as shown in
Fig. 2. The symbols for the kth compartment are as follows:

T,;: the flow leaving the kth compartment and directly contributing to
the jth compartment; T); =0.

D,: the dissipated flow leaving the kth compartment; D, =0.

E;:  the useful export leaving the kth compartment; E; = 0.

I.: the input flow to the kth compartment from the outside world; I, = 0.

The throughput of the kth compartment, 7, is defined as

Tk= Z Tkj+Dk+Ek- (11)
j=1
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F1G. 2. The typical kth compartment of an ecological network.

For convenience one uses the vector and matrix forms of these variables
as follows:

T:(Tk);c=1 n:(le"-aTn)’.

,,,,,

D_(Dk)kfl n
E=(E)k=1,.n (12)
I_(Ik)k=1 ..... n

where the prime (') represents the vector transpose. Equation (11) may then
be expressed as

T=T*1+D+E (13)

where 1=(1,...,1)". In a system at steady state T, also equals }.7 | Ty +
I, i.e.

T=T*1+D+E=T*1+L (14)

Consider the problem of making an aggregated network, N (S), from the
network, N. The bar over the symbols, e.g. T;, T, D;, E; and I, means that
they pertain to the aggregated network. One may then set

T=(T)i,,.
D=(D)io1..m
E=(E)i-1,..m (15)
I=(L)ic1m

,,,,,

,,,,,
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The relation

T=T*1+D+E (16)
is preserved in analogy with (13).

_Relations between the original network, N, and the aggregated network,
N(S), are derived by using aggregation matrix S as shown in Proposition 1.

Proposition |

The relations between the variables of the original network, N, and those
of the aggregated network, N(S), are as follows:

T=ST

D=SD

E=SE (17)
T=51

T*=ST*S'.

The model for choice within open systems is studied as shown in Fig. 3,
where exogenous inputs come from the Oth compartment; exports enter the

Fi1G. 3. A generic model for choice in open systems.

(n+1)st compartment; and dissipation is collected in the (n +2)nd compart-
ment. Although one could consolidate input, export and dissipation into
one global compartment, they are treated separately to facilitate extension
of the theory.

Now time is introduced into the analysis. The time interval for flow from
one compartment to another is taken to be 6. New variables are defined as
follows:
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Q«:  the percentage of the total flow through the ecological network at

time #, which passes through the kth compartment; Q=0 (k=

0’ R ] n): Qn+1 = Qn+2=0-

the percentage of the total flow through the ecological network at

time ¢, + @ which passes through the jth compartment; P,=0, P,=0

(j=1,...,n4+2).

fiy:  the percentage of the total flow through the kth compartment at time
t, that passes into the jth compartment between time ¢, and ¢, + 8,

fu=0.

r: the percentage of the flow through the kth compartment which is
dissipated; r, =0.

e.:  the percentage of the flow through the kth compartment which is
exported as useful flow; ¢, =0.

The relations between these variable are provided by the equations

Pj=§ﬁchk (j=1,...,n)
k=0
I’rn—#l:ké1 eka (18)

Pn+2: Z erk
k=1
where
L fytnte=1 (k=1,...,n)
s n (19)
Z ﬂ)j =1
i=1
At steady state the following additional relations hold
Qk=Pk (k=1,...,n)
QO = Pn+1+ Pn+2-
In network N one may identify variables Q, fi;, 7 and e, as follows

Qk=Tk/(T+I) (k:'l,.-.,n)

(20)

(21)
Qo=1/(T+I)
fo=Tg/Te (kj=1,...,n)
ijsz/I (.i:l""!n) (22)

Jo=0 (k=0,...,n)
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re=Dy/ T (23)
ex=Eo/ T (24)
where
T=3% T, (25)
k=1
and
I=% I. (26)
k=1

It is a simple matter to reinterpret the model for choice shown in Fig. 3
as the classical mode of a channel (Hirata & Ulanowicz, 1984). One may
consider that A={a,}x_g, . na+1.+2 is the set of input events with prob-
abilities P(ay) = Qw. B=1{b;};—01. _nn+1.n+2 is the set of output events with
probabilities P(b;) = P, F =[ f;;] is the communication matrix of this chan-
nel, i.e. P(b;/ay) = fi;

The orthodox way of calculating the mutual information contained in
the network is derived in an earlier paper (Hirata & Ulanowicz, 1984). For
the convenience of the reader the results are repeated in Proposition 2
below. As has been mentioned by Rutledge et al. (1976), mutual information
represents the average amount of uncertainty resolved by the knowledge of
the network structure.

Proposition 2

The information, M (N), contained in the structure of network N may
be considered as the sum of four terms

M(N)= T M(N) &)
where
M,(N)= élﬁon log [ﬁzj/(léoﬁjo.l)] =0 (28)

M(N)=Y ¥ f,Qulog [fkj / (éof,,-oz)] =0 (29)

k=1j=1

M.(N)= él exQx log [ek/(é:l elQl)] =0 (30)

M,(N) =k§=:1 Q. log ["k/(él rlQl)] =0 (31
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Proof of Proposition 2. From the definition of the mutual information of
a channel

M(N)=M(A; B)=H(A)-H(A/B)=H(B)-H(B/A)  (32)
=EB P(ay, b;) log [ P(b;/ a)/ P(b;)] (33)

Equations (27)-(31) derive from (32) because the probabilities, P(ay), P(b;),
P(b;/ ai), etc. are obtained from (21)-(26). O

M, captures the amount of information associated with the pattern of
inputs; M,, the amount assigned to the internal network flow structure; M.,
the amount contained in the pattern of useful exports; and M,, the amount
included in the pattern of dissipative flows.

4, Aggregation of Networks

Consider how the process of aggregation (weighted aggregation and
discrete aggregation) affects the variation of information. For the aggregated
network N(S), A= {ﬁi}i=0,1,...,m,m+l,m+2; P(a)= Gi; B=
{B}tior...mm+1mr2; P(B) =P, and F=[f,] are defined in the same ways
as for the original network N.

Proposition 3

During the process of network aggregation (both weighted and discrete)
the following relation is maintained

M(N)=M(N) (34)

Proof of Proposition 3. Relation (34) as it pertains to discrete aggregation
was proved by Theil (1967). One may extend this result to the more general
case of weighted aggregation by straightforward modification of his proof.
The revisions necessary to extend Theil’s theorem appear in Appendix 1.

Proposition 3 shows that information cannot increase (it is generally lost)
during the process of aggregation, i.e. the difference M(N)— M(N) is never
negative. This loss of information may be considered a cost, J, of the
aggregation

J=M(N)-M[N(8)] (35)

and this cost, J, must always be compared with the economic cost of not
aggregating, i.e. the cost of gathering extra data for or otherwise analyzing
the expanded system. Very often these latter costs are fixed by fiscal and
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manpower constraints, so that the problem usually boils down to the
dimension of the aggregated system, say m, being determined by the avail-
able resources (e.g. manpower, funds, etc.) and the aggregation down to m
compartments being chosen so as to minimize the loss of information, i.e.
J is minimized by choosing the optimal S* such that

J*=min J = M(N) - M[N(5%)]. (36)
{S}

An example of discrete aggregation now follows.

Example 2

The flows among 17 compartments of a tidal marsh stream ecosystem (in
milligrams carbon/m?-d) were measured by Homer & Kemp (unpublished
ms) and are shown schematically in Fig. 4. This system of flows was subjected
to an impartial stepwise aggregation of compartments to reduce the number
components one at a time until the desired level (7) was reached. (There
were 100 many combinations of 17 things taken 7 at a time to test all possible
simultaneous contractions of the number of boxes. Thus, the optimal aggre-
gation was estimated in a stepwise fashion condensing only two boxes at
each step until the total was reduced to 7. Because all possible aggregation
pairs were considered at each step, the search algorithm was impartial.)

The stepwise aggregations yielding the least decrease in network informa-
tion are indicated by the dotted perimeters in Fig. 4, and the final condensed
network appears in Fig. 5. The resulting groupings make good intuitive
sense. In fact the underlying diagram for Fig. 4 was prepared for other
purposes several months before the stepwise aggregation algorithm was
even written. At that time the boxes in the diagram were juxtaposed so as
to intuitively group boxes with similar apparent functions in proximity to
one another. The fact that a blind search confirmed such a priori guesses
should not be regarded as either suspicious or mysterious. Rather, the results
serve to support the suppositions that mathematical information measures
are excellent representations of what is meant by information and that
average mutual information, in turn, captures the intuitive notion of
organization.

The organization imposed by the minimization algorithm might best be
characterized as trophic structure. If in Fig. 5 one distinguishes pathways
of active feeding (heavy lines) from passive, detrital flows (fine lines) it
becomes possible to decompose the network into two acyclic subgraphs as
shown in Figs 6(a) and 6(b). The trophic identities of the aggregated
compartments in Fig. 6(a) are apparent. The microphytes (I) and detritus
(II1) provide a food base for the pelagic herbivores (IV) and benthic
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2530

F1G. 5. The system in Fig. 4 after aggregation into seven compartments.

herbivores (V). These in turn are fed upon by the carnivores (VI), and the
top carnivores-omnivores (VII).

In retrospect it is not too difficult to see why minimizing the decrease in
network mutual information should lump compartments in a fashion similar
to trophic levels. Implicit in the idea of a trophic level is the notion of
function redundancy, i.e. several ecological components performing the

FIG. 6. A decomposition of the system in Fig. 5 into acyclic subgraphs. (a) the structure of
the grazing chain, (b) the detrital returns.
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same function as regards the transfer of material and energy. Functionally
redundant components act in parallel with little transfer among themselves.
For example, none of the species which are mapped into compartment (VI)
communicate with one another. The same goes for the components of (IV)
and there is negligible transfer among those species comprising (VII).

The average mutual information appears in equation (32) as the difference
between two terms—H(A), the entropy of the flows, and H(A/B) the
so-called conditional entropy of the flows. Rutledge et al. (1976) point out
how parallel pathways are the chief contributors to the conditional entropy.
If one wishes to minimize the decrease in M(N), one way of achieving
that objective is to force as large a decrease as possible upon the conditional
entropy. Hence, parallel pathways are eliminated by aggregation into what
resembles trophic levels.

5. Information Theoretical Discussion of Hierarchical Structure

The information contained in the structure of a network without reference
to hierarchy was derived in a previous paper (Hirata & Ulanowicz, 1984)
and has been addresssed again in section 3 of this paper. In this section,
the information contained in the structure of a hierarchically nested set of
networks is derived. Real systems usually have several specific levels, each
characterized by different functions. For example, in ecosystems, one may
consider events at the level of the cell, the organ, the organism, the species,
the community, etc.

The network with p hierarchical levels is expressed by the symbol N. The
network showing the ith hierarchical level is N,. So N consists of {N;}i_;
In a nested hierarchical structure, N, an upper level is considered as the
aggregated network of lower levels as shown in Fig. 7, i.e. the network

ﬂ

Level i+1 5 | Network N = N,

i

Aggegated

Level % B Network A

Level 1 Network Ny 4)

F1G.7. Schematic representation of hierarchical structure. Network N ={Network
M}i=1
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which shows the ith level, N, is the aggregated version of the network at
the (i —1)st level, N,_,.

For simplicity, a nested hierarchy consisting of only two levels, N=
{N;}i=12, will be discussed, and the results will then be extended to that
with n levels.

The hierarchical structure with two levels, N={N,, N} can be reinter-
preted as the classical model of a channel illustrated in Fig. 8. According

F————— A B
I —le oA i:
Level 2 (N2) —A—T S /’/ 3 _ B
T — + —
pied N B
Level 1 (N}) ——kC— e :
A | B A B

L

F1G. 8. Schematic diagram of a generic channel for the hierarchical structure with two levels.
N={N,, Na}.

to the orthodox way of calculating mutual information (e.g. Abramson,
1963), one may identify the mutual information contained in the network
with two hierarchical levels in the manner shown in Proposition 4. This
quantity represents the average amount of uncertainty resolved by the
knowledge of the structure.

Proposition 4

The information, M(N), contained in the network structure with two
hierarchical levels, N={N,, N,} is:

2 2
MN)=M(N)+M(N)+ ¥ ¥ M[N;>N] (37)
i=1 j=1
(i)
where M(N;)=0 (i=1,2) and M[N,> N;]1=0 (i,j=1,2,i#j). M(N;} is
the information associated with the network structure showing the ith level
and has already been defined in Proposition 3. M[N;-> N;] shows the
information of the mutual relations between N; and N, Its concrete form
is revealed in the proof of this proposition.

Proof of Proposition 4. This is proved in Appendix 2.
Information M(N) consists of four terms, M(N;), M(N,), M[N,~> N,]

and M[N,~ N;] as shown in Proposition 4. The former two terms show
the information contained in network structure of each level. The latter two
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terms are the information associated with the mutual relations between two
levels. M[N;- N;] express how much information one can obtain about
the structure of level N; through knowledge about level N,

A hierarchical structure wherein each level is a discrete aggregation of
the next lower level is a very important special case having numerous
applications. Concerning this special case the following proposition can be
obtained.

Corollary 1

If the upper level of a 2-level hierarchy is made by discrete aggregation
of the first level, the information, M (N}, contained in the network structure
N={N,, N,}, is as follows:

M(N)=M(Ny)+M(N;)+M[N,~> N,] (38)
Here
m m IZ’ Z* QlQrﬁt rk
MIN>N1= 3 ¥ ¥ Qificlog (39)
B 2 T* QQfut
where

rt a,eS”~ (ag) b,eS™ (b_l)
and xe S7'(X) means that x belongs to the group of elements mapped
into %.
Proof of Corollary 1. This is proved in Appendix 3.

Corollary 1 shows that the upper level does not contain any direct
information about the lower level because M[N,; - N,]=0. It is readily
noticed that the information about the upper level, M{N,), implicitly
includes the information on the lower level.

Proposition 4 and Corollary 1 can be easily extended to a general hierar-
chical structure with p levels.

Proposition 5
The information, M (N), contained in the network structure with p hierar-

M(N)= ¥ M(N)+3 MIN,> 5 Ni (40)
i=1 i=1 i=1
(j#=i)

where M[N;>3Y? ;. N;] is the information on the mutual relations
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F1G. 9. Schematic diagram of a generic channel for the hierarchical structure with p levels.
N= {]Vi}i=1,‘.,,p'

between N; and the rest of levels (Ny, ..., Ni-y, Nity, ..., N,) and its form
is clearly defined in the proof.

Proof of Proposition 5. This is proved in Appendix 4.

In Proposition 5, M[N;» 3% <y N;] shows how much information
about level N; the rest of levels (Ny, ..., N;_j, Nity, ..., N,) contains.

Corollary 2

If each succeeding level is made by discrete aggregation of the preceding
lower level; the information M(N), contained in the network structure with
p hierarchical levels, N ={Ny, ..., N,}, is as follows:

p
M(N)= T M(N)+ 3 M[Ni» ) N] (41)
= = &=

One should notice that the difference between Proposition 5 and Corollary
2 is that (i3 j) has been replaced by (i>j). This shows that in a strictly
reductionistic system any upper level does not contain the direct information
on lower levels.

Much of ecological (and, in general, biological) research is conducted
under the implicit assumptions that give rise to the last corollary. It should
be clear from the last two propositions that the strictly-nested hierarchies
is but a narrow example of a much broader set of possible perspectives. In
principle, it should be possible to acquire data on biological hierarchies to
test whether (41) is a sufficient description of the information in hierarchies,
or whether it is necessary to invoke (40).

6. Summary

Mutual information appears to be instrumental to the most desirable way
to aggregate systems compartments in the absence of a priori assumptions

~
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about network dynamics. The lexicon used to describe the lumping of
compartments may be applied to the definition of the total information
inherent in an hierarchical system. In general, the total system information
is affected by interactions among all levels of the hierarchy and can be
simplified only when the hierarchy is strictly nested, that is, consists of a
cascade of discrete, homomorphic mappings.

This work was supported by a grant from the System Theory and Operations
Research Program of the National Science Foundation (ECS-8110035). The Com-
puter Science Center of the University of Maryland also contributed free computer
time. The authors are grateful to Dr Alan J. Goldman and Dr Albert Cheung of the
Johns Hopkins University for their heipful comments during the course of the
development of this article.
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APPENDIX 1

Proof of Proposition 3

This proof is patterned after Theil (1967), but requires a more general
set of definitions:
Define py;, px and S as follows:

Py = P(ay, bj) =fkak

B (A1)
Pu= P(ﬁi, bz) =filQi
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A A
S = [Spq]p=0,1,..4,m,m+1,m+2,q=0,1,4..,n,n+1,n+2

110 222 0,0 0
01 o 0
=tis
oy . L0 0
0,0 0/1 0
0] 0 010 1]

The following relations among these quantities hold.
n+2 n+2

Pui=X X §ikij§zj

k=0 j=0

D= Y Sabr

By further defining

and noticing that

it becomes possible to rewrite the loss of information as

m+2 m+2

M(N)—M(N)= ; g ﬁit(M1+MII+MIII)

where

My ="y Ty Tidul P
1= - o
j=o Pa PSP
M _«"iz §ikckllo SuCia/ Pu
= B e
k=0 P Sudr/ B

Moo = '%2 "iz SupisSy log SuPigSy/ Pu
m= - .~ -\ A g
k=0j=0 Pu ("ijslj/Pﬂ)(Sikaz/Pil)

(A2)

(A3)

(A4)

(A5)

(A6)

(AT)

~

‘s
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Because Yo 7y8y/Pu= Yy PSy/P1=1, oné¢ may employ Shannon’s
inequality to show that M is non-negative. The non-negativity of My; and
My follows in similar fashion. Therefore, from (A6),

M(N)=M(N) (A8)

with equality pertaining only when

”ij/ﬁﬂ = P.j/ﬁ.l
/P = Pr/ P (A9)
Pigl Pt = rcua] (Pu)*. O
APPENDIX 2

Proof of Proposition 4

From the definition of mutual information of the channel depicted in
Fig. 8,

M(N)= M(A; B, B)+ M(A; B, B) (A10)
where

M(X; Y,Z)=X§Z P(x, y,z) log [ P(x, y,z)/ P(x) P(y, z)].  (All)

M(X:Y,Z) is the average amount of information about X provided by
observation of both Y and Z. Equation (Al1) can be rewritten as follows

M(X;Y,Z)=M(X; )+ M(X:Z/Y) (A12)
where

M(X.Y) =XZY P(x, y)log [P(x, y)/ P(x)P(y)] (A13)

M(X;Z/Y) =X§Z P(x, y,z)log[P(x, y, z)/ P(x/y)P(y, 2)1.
{Al14)

The first term on the right of (Al2) is the mutual information between
X and Y. The second term on the right of (A12) is the mutual information
between X and Z given that Y is known.

Using (A12), equation (A10) can be rewritten as follows

M(N)=M(A;B)+M(A; B)+ M(A; B/B)+ M(A; B/B). (Al5)
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From the definition of M(N;,)
M(N;)=M(A; B)

(A16)
M(N,)=M(A; B)

>
o~ ]]

’

and the following notations are defined.
MI[N,> N,}=M(A; B/ B)
M[N,-> N,]=M(A; B/B)
Therefore, equation (37) follows from (A15)-(A17) O

(A17)

APPENDIX 3
Proof of Corollary 1

From the definition of a discrete aggregation, the following relations are
apparent: If P(b, b) =1, then P(a/b, b)= P(a/b). If P(b, b)=0, then P(q,
b, b) =0. Therefore

MI[N,> N,]=M(A: B/B)
= ¥ P(a, b, b)log[P(a/b,b)/P(a/b)]

ABB

’ =0 {A18)
The third term of (38) is calculated as

MIN,> Nil= M(4: B/B) ] )
= 3 P(a,b,b)log[P(a/b,b)/P(a/b)]. U

ABB

APPENDIX 4
Proof of Proposition 5

From the définition of mutual information of the channel illustrated in
Fig. 9

14
M(N)=73 M(A;;B,,...,B,) (A20)
i=1
where
M(AI; Bl;"" Bp)

p

= M(AiZ Bi)+ Z M(Ai; Bj/Bia B, ...,Bi_1,Bi1,..., Bj—l)- (A21)
j=1
G=i)

a®
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The following notation is defined

P
M[N, > ¥ NJ:I =[the second term of (A21}]. (A22)
=0
From (A21), (A22) and the definition of M(N;), Equation (40) is derived.
The second term of (A21) may be rewritten as

P
M(A; Bi/B)+ Y H(A; Bj/Bl) (A23)
&=
because B, is the finest set in all {B;};., _, Here it should be noted that
there are several ways to express the amount M(A;; B,, ..., B,). Equation
(A21) is not necessarily unique. O
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