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Abstract: 

 

 The application of information theory (IT) to ecology has occurred along two 

separate lines: (1) It has been used to quantify the distribution of stocks and numbers of 

organisms; and (2) it has been employed to quantify the pattern of interactions of trophic 

processes. By and large, the first endeavor has resulted in relatively few insights into 

ecosystem dynamics and has generated much ambiguity and disappointment, so that most 

ecologists remain highly skeptical about the advisability of applying IT to ecology. By 

contrast, the second, and less well- known application has shed light on the possibility 

that ecosystem behavior is the most palpable example of a purely natural “infodynamics” 

that transcends classical dynamics, but remains well within the realm of quantitative 

description.  
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Introduction: 

 

 Ecosystem theory, or “synecology” (Odum 1959) is mostly a relational endeavor. 

That is, its practitioners are usually more intent upon elucidating the relationships among 

the various populations that make up an ecosystem than they are with determining how 

much or what kind of organisms comprise those elements. Such emphasis on 

relationships allows the discipline to be interpreted as the study of the communication of 

material, energy and information among systems components. Whence, synecology is 

especially well- suited for quantification by the same methods that were developed for 

communications theory, i.e., information theory (IT). 

 

By way of contrast, the ecology of  individual organisms and populations, or 

autecology, is far more involved with the nature of systems elements themselves. It tends 

to be less process- oriented; and, therefore, the application of a mathematical formulation 

arising out of communications theory appears more ad hoc and strained. 

 

 The thesis I wish to propose here and discuss below is that the introduction of 

information theory into ecology has proceeded along two identifiably separate lines, each 

of which has met with markedly different degrees of success: The application of 

information indices to quasi- static stocks or numbers (autecology) has led to a number of 

difficulties with interpretations that, at one point in time resulted in an almost total 

repudiation of any role for information theory in ecology. Because the larger majority of 

ecologists traffic in stocks and sizes rather than processes, this failure was widely 

advertised and engendered negative attitudes towards information theory in ecology. The 

echoes of this debacle persist to this very day. On the other hand, the use of information 

theory to quantify patterns of processes has become a wellspring of new insights and 

theories for ecology. Unfortunately, because processes and flows are much more difficult 

to conceptualize and measure, and because far fewer ecologists concern themselves with 

systems processes, these contributions of information theory to ecosystems research 

remain today in relative obscurity. 
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A Propitious Beginning: 

 

 Although there exist earlier formalisms that some place under the rubric of 

information theory (e.g., Boltzmann 1872), the beginnings of IT are usually dated from 

Claude Shannon’s (1948) exegesis of the mathematics used to break codes during World 

War II.  Because it derives from the field of communications, IT soon took on the rather 

rigid format of “sender, receiver, channel, alphabet,” etc. Such formalities did not, 

however, stop many from adapting this new calculus to a variety of fields. Thus it was in 

1955 that Robert MacArthur interpreted how IT might be used to characterize networks 

of ecological processes or flows. His formulation drew heavily upon the earlier narratives 

of Raymond Lindeman and Eugene Odum. MacArthur followed  Lindeman’s (1943) lead 

by describing the ecosystem as a configuration of flows.  

 

He compared various configurations in the effort to identify which ones were 

likely to be most stable over time, and his criterion for stability he drew from Odum 

(1953), “The amount of choice which the energy has in following the paths up through 

the food web is a measure of the stability of the community.” He argued that if one 

species happened to be abnormally common in the system, it would exert but a small 

effect upon the rest of the community only if its energy were distributed among a large 

number of predators. Similarly, if a population were abnormally uncommon, it could 

persist only if its predators had a large number of alternative hosts from which to draw 

their sustenance.  

 

MacArthur proposed the Shannon- Weaver index to gauge the uncertainty 

(choice) in the flows,. If, for example, fi represents the ith flow, and F represents the sum 

of all the flows ( ), then p∑=
i

ifF i = fi/F becomes the fraction that the ith flow 

comprises of the total system activity. MacArthur’s candidate for the measure of stability 

then became 
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( )∑−=
i

ipipS log .    (1) 

MacArthur made no effort whatsoever to force his formalisms to comply with the 

categories of communication theory. 

 

 MacArthur demonstrated his extraordinary insight when he discussed the 

limitations of the index he had just proposed. He noted that stability rests upon species 

that have diets with many degrees of freedom; a restricted diet tends to lower stability. 

But a restricted diet is essential for efficiency, and both efficiency and stability are 

necessary for survival under natural conditions. That is, efficiency and stability tend to be 

antagonistic, but simultaneously necessary attributes of persistent systems. It therefore 

seemed to MacArthur at the time that (1) did not encompass all the attributes necessary 

for survival. With those observations MacArthur quit the argument, and his promising 

lead remained virtually untouched for another 20 years. 

 

A Costly Diversion: 

 

 Although many subsequent investigators acknowledged MacArthur’s 1955 paper 

as the origin for information theory in ecology, subsequent authors seemed to have 

abandoned MacArthur’s approach. In particular, it was perhaps understandable that 

investigators might want to attempt another tack towards measuring system diversity, 

given the relative difficulty of measuring ecosystem flows. Besides, there was precedent 

for measuring community diversity in terms of population sizes and stocks using more 

conventional mathematics (Simpson 1949.) So it was that investigators after MacArthur 

chose to apply the Shannon- Weaver, not to system flows, but to the contents of each 

population. Thus, Margalef (1957, 1961) chose as pi, not the fraction of total activity, but 

rather the fraction a population comprises of the total number of organisms, or their total 

biomass. In symbols, he set pi=ni/N, where ni is the number of organisms in population i 

and , so that the biodiversity, D, became ∑=
i

inN
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For any number of reasons, not unrelated to those cited by MacArthur, a higher 

biodiversity was thought to impart greater stability to the system. 

 

 In the argument, “diversity begets stability”, ecology had a seemingly testable 

hypothesis, and the decade of the 60’s saw widespread and intense efforts among 

ecologists to test and elaborate the hypothesis (Woodwell and Smith 1969.) From the 

outset, the Shannon index was prominent among the candidates for quantifying 

biodiversity. Methods for assessing stability, however, arose more slowly. Because the 

study of dynamical stability was a well- developed component of applied physics, 

developments there eventually were imported into ecology, most prominently by the 

erstwhile physicist, Robert M. May. May (1973) recapitulated the results of Gardner and 

Ashby (1970), who studied the stability properties of randomly- assembled collections of 

coupled linear differential equations. These theoreticians discovered that systems of low 

connectivity and moderate interaction were almost always inherently stable. As both the 

degree of connectivity and the strength of interaction increased, however, the systems 

became unstable. He used the stability criterion of Wigner (1959) to quantify the point at 

which the probability for stability suddenly becomes negligible. One may conclude that, 

for linear dynamics among randomly- connected systems at least, diversity implies 

decreased stability.  

 

May did cautioned that, since many diverse stable systems do exist, one should 

make the effort to discover why such diversity persists in ecosystems, but his warning 

was largely ignored. In the mind of most ecologists, it was the refutation of “diversity 

begets stability” that persisted. In the end, because May had stated his argument so 

eloquently, both mathematically and rhetorically, the feverish activity that had been 

devoted to the diversity- stability hypothesis collapsed very abruptly among a widespread 

but tacit embarrassment that swept through ecology. Information theory, because it had 

figured so prominently in the debate, was painted with the stigma of failure in the minds 

of many ecologists, and even today an undercurrent of this negative attitude continues -- 

 5



some 30 years after these events -- to ramify among ecologists, despite numerous 

opinions and evidence to the contrary (e.g., Van Voris et al. 1980, Hastings 1984, Tilman 

and Downing 1994.) 

 

 Notwithstanding the disdain for information theory as a theoretical device in 

ecology, nor the lack of any significant theoretical justification to support it, popular 

interest in biodiversity remains quite healthy today. The Shannon measure of biodiversity 

often is invoked and/or measured when assessing the integrity of an ecosystem. For 

purely technical reasons, therefore, the Shannon index has been studied in much detail – 

centering on issues such as the dual meaning of the term (number and evenness), or the 

statistics of how to estimate the index using finite collections (Pielou 1969.) In fact, 

biodiversity has become such a prominent theme in the realm of environmental 

protection, that one is left to wonder why the fundamental assumption to focus on the 

diversity of population contents rather than the configuration of ecosystem processes has 

received so little scrutiny? 

 

MacArthur Revisited: 

 

 MacArthur had been frustrated by the ostensible inability of the Shannon measure 

of choice in energy flow to embody both the notion of stability and that of efficiency. 

Demonstration of the fact that both attributes contribute to the Shannon measure awaited 

further refinements in information theory itself. The solution to parsing the contributions 

of correlative constraints to complexity from those made by dissociative factors called for 

Bayesian considerations. Instead of regarding only a single distribution of probabilities, 

A, which yields a Shannon measure H(A), one must as well consider the distribution of a 

second character, B, and study how A distributes when it interacts with B. If we call p(ai) 

the probability that ai occurs, p(ai,bj) the joint probability that ai and bj occur together, and 

p(ai|bj) the conditional probability that ai occurs, given that bj has transpired, then we may 

define a term called the average mutual information, I(A;B), such that 
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One can prove analytically that 0);()( ≥≥ BAIAH , and the interpretation of I(A;B) is 

that it gauges how much of the complexity measured by H(A) is resolved by the action of 

B. I.e., it measures the degree to which A is constrained by B (and vice-versa, because 

I(A;B) = I(B;A) [the information is mutual.]) The complement of I(A;B) w.r.t H(A) is 

called the conditional entropy1, H(A|B) = H(A) – I(A;B). In effect, the Shannon index 

H(A) has been decomposed into two components according to its relationship to B, 

 

H(A) =  I(A;B) + H(A|B),    (2) 

 

where I(A;B) describes how much A is correlated with (constrained by) B, and H(A|B) 

quantifies how much freedom A exhibits in the presence of B. 

 

 Rutledge et al. (1976) used this decomposition in a very clever way to resolve 

MacArthur’s predicament. They identified ai with the set of events, “a quantum of 

material or energy enters compartment i.”, while bj was denoted as “a quantum leaves 

compartment j.” In this way the resulting measures all become reflexive (a key attribute 

of self- organizing systems.) The interpretation given to equation (2) thereby becomes, 

“The complexity of the behavior of feeding (inputs) in the ecosystem equals the sum of 

the constraints that exist between predators and prey and the degree of choice left to the 

typical predator.” Since predator- prey constraints are usually associated with feeding 

efficiencies, it became explicitly clear how Shannon’s index embodies both elements of 

efficiency and freedom. Rutledge et al. suggested that H(A|B) was the appropriate 

measure of choice extant in the system, and it should be related to system stability. 

 

 Rutledge et al. also suggested how the three measures could be estimated 

consistent with MacArthur’s earlier conventions. If Tij represents the magnitude of flow 

 7



from i to j, then the total system activity becomes ∑=
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ensue, and H(A|B) can be calculated by difference using (2). 

 

 Rutledge et al. sought to pursue Odum’s idea that those systems with the most 

choice were the most stable and persisted longest. Thus, they hinted at the conditional 

entropy of flows as the prime measure of system status. Ulanowicz (1980), on the other 

hand, was not convinced that system development could be identified entirely with 

stability. Of course, when indeterminate perturbations are significant, stability will play 

the pivotal role in defining system status. In the absence of major perturbations, however, 

one could argue that systems develop more along the lines of increasing efficiency. He, 

therefore, focussed upon mutual information as the measure of system organization. 

Earlier, in a seminal paper Eugene Odum (1969) had enumerated 24 attributes that could 

be used to identify ecosystems in the later stages of succession. Ulanowicz noted 

significant overlap between many of these indices and the average mutual information. 

Howard Odum (and Pinkerton 1955), however, had shown that efficiency is a poor 

indicator of system development in its inchoate early stages. During the initial stages of 

                                                                                                                                                                             
1 The term entropy, chosen by Shannon, is retained only because it has become common usage. No 
relationship to thermodynamical entropy is implied thereby. 
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development, when resources often abundant, system changes seem to follow more the 

direction of increasing power throughput. In an effort to encapsulate the whole course of 

system development in a single index, Ulanowicz borrowed a cue from Tribus (and 

McIrvine 1971) and scaled the average mutual information of the network of trophic 

processes (organization) by the total system throughput, T, (power) to create a new 

variable he called the system ascendency, A, where 
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  (3) 

 

Because so many of Odum’s criteria for development appeared to correlate with increases 

in the ascendency index, Ulanowicz proposed the phenomenological principle: “In the 

absence of major perturbations ecosystems exhibit a propensity to increase in 

ascendency.  

 

Perturbations always do intervene, however, so it was necessary to track these 

impacts as well. Whereas Rutledge et al. had used the conditional entropy, H(A) – I(A;B) 

to measure freedom or dissociation, Ulanowicz and Norden (1990) pointed out how this 

difference is biased in favor of inputs over outputs, and suggested that the upper limit for 

the ascendency be estimated by the joint entropy instead. That is, they scaled the 

difference between the joint entropy and the mutual information by the total system 

throughput (as done earlier with the ascendency) to yield a more symmetrical system 

property, Φ, called the system overhead. 
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Their inference was that the stability of the system is maintained by the disorganized, 

incoherent, inefficient system processes that contribute to the overhead. Under quiescent 

or benign conditions, these inefficiencies tend to encumber system performance. During 

times of novel or stochastic stress, however, the same collection of such processes acts as 

a reservoir from which the system can draw to reconfigure itself (adapt) to the 

perturbation. 

 

 As MacArthur had surmised, both efficiency and stability are necessary for 

system persistence over the long run. It follows then from MacArthur’s lead that system 

integrity or sustainability should be related to the sum of these agonistic measures. 

Accordingly, the system capacity, C, can be gauged by the product of the total system 

throughput and the joint entropy, 
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Because the capacity serves as an upper bound on both A and Φ, anything which would 

contribute to an increase in C would also provide capacity for either ascendency or 

overhead to grow. Brooks and Wiley (1986), for example, argue as how there is a natural 

tendency for C to grow that is analogous to the thermodynamic drive towards increasing 

the entropy of the universe. 

 

 Critics of the information theoretic approach are quick to point out that the suite 

of variables defined thus far can be applied only to static or quasi- static configurations of 
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flows. Real ecosystems are heterogeneous in space and dynamical in time. Although 

gathering sufficient data to quantify networks over time and space can pose significant 

logistical problems, there is no conceptual barrier to extending the indices into the 

temporal and spatial domains, for all the information indices treated thus far possess 

counterparts in 3 or more dimensions (Abramson 1963.) Claudia Pahl- Wostl (1992) 

cautions, however, that the proper extension for the average mutual information in 3 

dimensions is not the 3-dimensional counterpart, I(A;B;C), but rather the cluster 

{I(A;B;C) + I(A;B|C) + I(B;C|A) + I(C;A|B)}. In quantitative terms, if Tijk denotes the 

amount of medium flowing from i to j during time interval k (or in spatial cell k), then the 

corresponding 3- dimensional ascendency becomes  

 

.log
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In similar manner, four and higher dimensional versions of ascendency can be 

constructed to treat more complicated systems. The principle of increasing ascendency is 

presumed to apply as well to spatial and temporal dynamics. That is, systems are assumed 

to adapt to perturbations that possess regularities in time and/or space by adjusting their 

flow distributions in (4) so as to achieve higher values of the system ascendency. In part, 

at least, the answer to one of the central questions in ecology, “Why are organisms 

distributed over time and space according to the patterns we observe?” should lie in the 

application of the principle of increasing (multi- dimensional) ascendency (Ulanowicz 

2000.)  

 

 Yet another criticism of the theory as presented thus far might be that they are all 

estimated solely in terms of processes, and dynamics are not controlled by the rates of 

processes alone. The criticism made early in this essay of the awkwardness of applying 

information theory to population numbers and stocks notwithstanding, it remains 

inconceivable that the magnitudes of the contents of the compartments should play no 

role in guiding system dynamics. How then to introduce compartmental stocks into the 

calculation of the ascendency in a manner that is consonant with the formalisms of 
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information theory? One effective solution (Ulanowicz and Abarca 1997) appears to be to 

regard the apriori probability for an exchange of medium between i and j to be 

proportional to the product of the stocks contained in those respective nodes (the law of 

mass action.) If Bi represents the level of the contents of i and Bj that of j, then the joint 

probability that a flow will transpire from i to j could be estimated by the product 

BiBj/B2, where The corresponding aposteriori probability may be taken simply 

as the fraction that the observed flow, T

.∑=
i

iBB

ij, constitutes of the total activity, i.e., Tij/T. The 

weighted difference between the aposteriori and apriori probabilities is what in 

information theory is called the Kullback- Leibler difference. In terms of the measured 

quantities already described, the biomass-inclusive form of the ascendency, Ab, becomes 
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which can be generalized for 3 or more dimensions as discussed in the previous 

paragraph. 

 

 The partial derivatives of the ascendency w.r.t. either flows, Tij or biomasses, Bi 

represent the sensitivities of the whole system status w.r.t changes in the corresponding  

individual system elements. Typically, large values of these derivatives signify where 

resistance is controlling further system development. Ulanowicz and Baird (1999, 

SCOPE 1999) therefore employed a sensitivity analysis of the spatial networks of several 

nutrient elements in the Chesapeake Bay ecosystem to pinpoint which element should 

control system dynamics during each season. 

 

Infodynamics: 

 

 MacArthur paid little heed to the conventions of communications theory when he 

framed his index of flow diversity, and subsequent developments discussed here have 

departed even further afield. The characteristics measured by Rutledge’s indices bear 
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little conceptual relation to the quantitative attributes of channels for communication of 

code (unlike the applications of IT to molecular biology, where the coding theory is 

explicit.) Rather, they represent the overall effect of numerous unidentified constraints at 

various scales that serve to guide physical medium through the ecosystem. Collier (1990) 

chose to refer to such constraints as “enformation” to distinguish their immanent nature 

from that of conventional information. In one sense, at least, information theory applied 

to ecosystem networks makes explicit and measurable the effects of “signs” and other 

agencies that one encounters today as somewhat more cryptic narrative under the rubric 

of “semiotics” (Hoffmeyer 1993.) 

 

 More than the nature of information is at issue when IT is applied to ecology, 

however. System “dynamics” can take on a radically new guise. In conventional science, 

the world is perceived as a uni-directional hierarchy, wherein causes arising at 

microscopic scales ramify upwards to generate macroscopic patterns. The goal of theory 

usually is to describe events at the lowest level possible in terms of deterministic 

mechanical dynamics. The effects of these mechanical agencies may be modified by 

chance interferences, but their effect is believed to be expressed at higher levels in some 

simple aggregated fashion. Under this scenario, any correspondence of conventional 

dynamics with the applications of information theory could be considered only 

accidental, at best. 

 

 There is another possibility, however – that the dynamics expressed in terms of 

information variables are legitimate in their own right. That is, the world is not structured 

simply by the machinations of energy and mass. Structures, such as those containing 

positive feedback or autocatalysis, can act as agencies in the sense of Aristotle’s formal 

cause (Ulanowicz 1999), and their effects can ramify downwards as well as up the 

hierarchy of scales. In this view, the increase of ascendency is more than a 

phenomenological quirk to be explained away by reductionistic exegesis. Increasing 

ascendency constitutes the controlling dynamic. Particular mechanisms and elements can 

come and go and are selected for (and against) according to the driving dynamic. A 

scenario wherein information plays a key causal role has been termed “infodynamics” by 
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Weber et al. (1989), and we leave the reader to ponder whether ecology might be 

governed as much (or more) by infodynamics as by the conventional sort. 

 

 At this point one might inquire exactly where in the information indices do 

system dynamics lie? One answer would be to note how increasing ascendency 

represents changing constraints, but that is only part of the story. A peculiar formal 

property of the ascendency is that, even when it is calculated on a static network, clues to 

the dynamics behind the network pattern are built into the index of status. To appreciate 

this remarkable circumstance, one need only calculate the derivatives of the ascendency 

w.r.t. the individual flows. Thus, taking the derivative of (3) w.r.t. Twx, one arrives, after 

some algebra, at 
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so that the equation for the ascendency can be rewritten as  
 

∑
∂
∂

=
ji ij

ij T
ATA

,
. 

 

But this relation is homologous to the chain rule, 
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Whence we conclude that, whenever information theory is applied to the system 

structure, one obtains implicit clues about how the system is likely to change. This 
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contrasts with the situation in conventional dynamics, where information on static 

configurations tells one nothing at all about the system’s dynamical behavior. 

 

Summary and Conclusions: 

 

 It appears the study of ecology will always be pursued along two separate lines. 

The majority of ecologists will continue to pursue autecology, or the study of single 

populations in relation to an external environment. Emphasis in autecology is upon 

population size and contents, and relationships with other populations remain of 

secondary concern. As suggested above, information theory arose out of a relational 

context, so that any applications it may find in autecology are likely to appear awkward 

and not wholly natural. Past attempts to apply information theory to population 

distributions appeared ad-hoc, and the confusions that arose as a result have soured 

autecologists on the utility of IT. It seems unlikely that in the eyes of autecologists the 

reputation of information theory will ever recover from such setbacks, so that the tool 

probably will continue to be deemed ineffective by the great majority of ecologists. 

 

 Synecology, by contrast, places primary emphasis upon the relationships of 

populations with one another. As MacArthur and Rutledge have demonstrated, 

information theory can be applied in a very natural way to the investigations of 

interrelated processes. As a result, the development of theory cast in terms of IT and the 

rate at which this theory has generated hypotheses has outpaced the ability of community 

ecologists to produce systems- level data with which to test the propositions. 

Furthermore, the nature of the dynamics suggested by the use of information theory seem 

to be quite unconventional, albeit intriguing and full of promise. Because synecologists 

remain such a small minority, however, it remains questionable whether such promise 

will ever be appreciated by the community of ecologists at large. 

 

 This predicament is perhaps well- illustrated by how IT has been applied to the 

very visible and politically popular issue of biodiversity. There seems to exist an 

overwhelming consensus that global biodiversity is worth preserving. The use of IT to 
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quantify biodiversity in terms of the diversity of populations contributes to a theory that 

stubbornly refuses to justify such concern, predicated as such conventional theory is upon 

contents and mechanical dynamics. Information theory, used to quantify the diversity of 

trophic flows, on the other hand, opens a vista on a whole new relational dynamics – one 

which provides ready justification for the protection of the diversity of ecosystems 

processes. Perhaps it is time to reconsider the assumptions we use to view the living 

world? 
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