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The general equations of biomass and energy transfer for an n-species, 
closed ecosystem are written. It is demonstrated how in "ecological time" 
the parameters describing the dynamics of biomass transfer are related to 
the parameters of energy transfer, such as respiration, fixation, and energy 
content. This relationship is determinate for the straight-chain ecosystem, 
and a simple example is worked out. The results show how the density- 
dependent terms in population dynamics arise naturally, and how the stable 
system exhibits a hierarchy in energy per unit biomass. A procedure is 
proposed for extending the theory to include webbed systems, and the 
particular difficulties involved in the extension are brought before the 
scientific community for discussion. 

"Just as the essence of food cannot be conveyed in calories; the essence 
of life will never be captured by even the greatest formulas." 

A. SOLZHENITSYN: The First Circle 

1. Introduction 

Models, in the words of Kac (1969), are caricatures of reality. Always 
simplified, sometimes distorted, they nevertheless serve to portray some of the 
features of the real world, to polarize thinking, and to pose sharp questions. 
But if the cycle of scientific activity is to be completed, they should also give 
some indication to the empiricist of how to minimize the requisite information 
to describe a system. 

The bane of the ecologist is that his systems are so complex, so multi- 
parametered, that to treat them as a whole, even with the help of systems 
analysis, is a formidable task. In approaching this problem, one may choose 
between two approaches. One may attempt to model the system in as great 
detail as is possible and consistent with modern high-speed computers. With 
good programing the machine will then serve to model and predict the 
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behavior of the system. A fine review of the benefits and problems of this 
approach has been made by Leigh (1968). 

On the other hand, one may search for a judicious frame of reference, such 
that, when the system is viewed in this perspective, relationships among the 
various parameters become more obvious. For example, it would be very 
difficult to deduce the second law of thermodynamics from observations on A 

the molecular time and space scale. Expand these scales to those of everyday 
, 

observation, and the law is readily demonstrable. Information on individual 
molecules and their behavior is lost in the chaos, but new variables and 
parameters are defined which congeal into a unified theory. 

Along these lines, Slobodkin (1961) has defined the concept of "ecological 
time" as distinct from "physiological time" and "evolutionary time". The 
physiological time scale ranges from the duration of some biochemical 
reactions up to the lifespan of the organism being studied. Of course, all of 
the behavioral aspects of ecology are studied within this time scale. At the 
other end of the spectrum, over periods of time of half a million years or more, 
it may be expected that significant changes in community structure and 
genetic make-up will occur. Between these two ranges lies the realm of 
ecological time, of the order of ten times the generation time of the longest- 
lived species involved. 

Many communities (though certainly not all) achieve a steady state with 
respect to their physical and chemical surroundings within this time period. 
Also, it is important to note here that population interactions, when viewed 
on the scale of ecological time, may lose their explicit dependence on spatial 
distribution. That is, within a given community, distances separating indivi- 
duals of the various species are usually traversed by these individuals or their 
progeny within ten generation times of the longest-lived component. 

While the word population usually suggests a discrete numerical census, it 
has long been practice to quantify a comnlunity component in terms other 
than number. Particularly where individuals are small and numerous, such as 
with protozoa, bacteria, and fungi, or where the individual is hard to dis- 
tinguish, total biomass has been a more convenient quantification of a popu- 
lation (A. Fredrickson et al., manuscript in preparation). When viewed on a : 
larger community scale, even the higher forms become numerous enough to 
be treated in this manner. 

2. The Mass Balance 

Thus, if a large population of a species is observed in ecological time, the 
biomass of the population will behave like a continuous rather than a 
discrete variable. Any species utilized by another as food, or whose respira- 
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tion by-products are assimilated by another, will give rise to what appears in 
this context as a continuous biomass flux from the first species to the second. 

Phenomena such as these are best treated with continuous variables and 
differential equations. To this end, the arbitrary, simple system of Fig. 1 will 
serve as an initial example. 

FIG. 1. Biomass fluxes in an arbitrary five-component closed ecosystem. 

This closed system consists of five species in the general sense (i.e. biotic 
species or abiotic, chemical species which enter the web of life). The biomass 
of species i is designated by M i  ( i  being a superscript, not to be confused with a 
power index). The "flow" of biomass from species p to species q is designated 
mPq. With this notation, the conservation of biomass of any one of the five 
species in the community may be written following the formula that the rate 
of accumulation of biomass is equal to the rate of influx of biomass minus 
:he rate of biomass efflux. For the system illustrated, the five equations of 
biomass conservation would be: 
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The sum of all five equations implies that the total biomass of such a closed 
system is a constant: 

In order to speak of systems like (1) in a more concise fashion, and to 
generalize the form to a community of n species, it is helpful to make use of 
indicia1 notation and write 

Here n is the number of species in the community, and i will take on the 
successive values 1, 2, 3, . . ., n to represent each of the n equations. The 
n-cubed values of the array a:, will take on the values + 1,0, or - 1 depending 
on the structure of mass flows in the community, and will henceforth be 
designated as the structure array. The term uiq will be + 1 if mPq flows into 
species i; it will be - 1 if mPq flows out of species i ;  it will be zero if mPq does 
not directly involve species i. Thus, in the illustrated community u:,  = +1, 

1 1 a , ,  = - 1, = 0, etc. To simplify further the notation, the Einstein 
summation convention will be employed. Briefly stated, if the same index 
appears twice in any term, as both a subscript and superscript, that index is 
to be summed over the n species. Hence, the equations in system (3) are 
concisely written as 

System (4) is a statement of the conservation of biomass for an n species 
community; but possessing two sets of dependent variables, biomasses and 
the biomass fluxes, it is of little use mathematically. In such cases one 
assumes a set of constituitive relations describing the biomass fluxes in 
terms of the biomasses, or functions thereof. For example, one may assume 
that the biomass flux from host speciesp to predator species q is proportional 
to the biomass of host species. This is a linear assumption often favored in 
systems analysis for its mathematical simplicity and the well-developed 

I 

mathematical tools which can be brought to bear on linear systems. While 
mathematically simple, and probably applicable in certain limited cases, it is 
conceptually unsatisfying to think of a predator-prey relationship as always , 
independent of one of the interacting species. This objection is removed by 
invoking the Lotka-Volterra hypothesis (Lotka, 1956) which states that the 
biomass flux between two interacting populations varies as the product of the 
interacting biomasses. This quadratic assumption will cause the resulting 
differential equations to be non-linear. 
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In the realm of ecology everything seems to influence everything else, and 
it seems somewhat restrictive to say the biomass flux between two species is 
dependent only on the populations of host and predator. It is easy to envision 
situations in which a third party, by altering the habitat of one species (such 
as providing cover for the host), will affect the rate of transfer of biomass 
between the first two species without ever directly exchanging biomass with 
either of them. It is easy to generalize the Lotka-Volterra hypothesis to 
include indirect interactions of this nature without altering the mathematical 
nature of the constituitive assumption. One amends the Lotka-Volterra 
hypothesis so that the flux of biomass between two species is a bilinear 
combination of the biomasses of all species in the community. Written with 
the help of the Einstein summation convention, this becomes 

The Biz is a fourth-order array of parameters which describes all the 
population dynamics of the system. The reader will notice that the mathe- 
matical statement of the Lotlca-Volterra hypothesis will look exactly like ( 9 ,  
with the exception that certain of the B's will a priori be set equal to zero. 
Here, these parameters are not as yet specified. 

Substitution of ( 5 )  into (4) gives the equations of population dynamics: 

It is a system of first-order, ordinary, quadratic differential equations. There 
is, as yet, no analytical solution for a general set of such equations, but that is 
not to say that information about system behavior cannot be derived from 
such equations without their explicit solution. 

Other investigators who have brought the computer to bear on simplified 
sets of equations such as (6) have run into several interesting difficulties. 
Foremost among these problems is finding a set of parameters which will 
yield stable and meaningful behavior. In an interesting series of articles, 
Garfinkel (1962, 1967) and Garfinkel & Sack (1964) found that not long 
after the commencement of a numerical analogue for such systems, some of 
the populations would become negative or begin to increase without bound. 
Curiously, he found that orthodox behavior of the system could be prolonged 
by the addition of quadratic "density-dependent" terms. That is, the time 
rate of change of a given population is proportional to, among other things, 
the negative square of the population itself. 

But rather than guessing at the proper configuration of population 
dynamics constants, a systematic way of arriving at a set of constants which 
yields stable behavior is necessary. Hopefully, such a system would pose 
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another point of view in the controversy over ecological stability, as well as 
show necessary relationships between parameters so that input information 
may be reduced-as alluded to previously. L 

Odum & Odum (1959) state that the first order of population control is the 
energy flow-physical factor complex. While certain elements of the physical 
factor complex are outside the scope of this model, the energy flow can be 
handled in much the same way that biomass was treated. Hopef~~lly, the 
energy balance will shed at least partial light on the problem of community 
stability. 

3. The Energy Balance 

For a population in an isobaric, isothermal environment, it is sufficient to 
consider the fate of the bound chemical or internal energy possessed by the 
population. The pathways over which energy may travel in the arbitrary five 
component system previously considered are illustrated in Fig. 2. Biomass 
fluxes into and out of any one population carry energy along with them. The 
chemical energy carried from species p to species q is labeled ePq. But the 
community is not closed with respect to energy, as it is to mass. Indeed, there 
is continual degradation of chemical energy into heat via metabolic respiration. 
The second law of thermodynamics applied to each population requires that 
an amount of energy, say R', be lost in this manner. 

FIG. 2. Energy fluxes in an arbitrary five-component closed ecosystem. 
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Of course, there are situations in ecosystems such as host-parasite mass flows 
and detritus-decomposer fluxes, where the constants of proportionality 
between biomass flux and bioenergy flux will not be identical to those in (8). I 
Thus, it may be necessary to define another diagonal array, A:', whose diagonal 
elements are equal to 1; when the biomass flux is from prey to predator, but 
are otherwise not identical. The general proportionality between biomass 
fluxes and bioenergy flows would then be 

e ~ 4  = ~ t n l ' q .  (10) 

Utilization of (5) in (10) gives 

ep4  = ~ P ' B I ~  IIv ~ M ~ ~ M ~ .  (11) 

Substitution of (8) and (1 1) into (7) yields 

The set of equations (12) bears marked similarity to (6) but with the addi- 
tional terms for respiration and fixation. The question of how these may be 
related to the biomasses should then be pursued. 

Using an argument analogous to the one leading up to the statement of (E), 
it may be hypothesized that the rate of energy lost through the respiration of a 
population is proportional to the biomass of that population. The constants 
of proportionality, or the specific respiration coefficients, may likewise be 
represented as a diagonal array, p f ,  so that 

R' = p : . ~ ' .  (13) 

Likewise, in an environment with a constant light source, the rate of 
fixation is proportional to biomass of the primary producer: 

ri = $ f ~ j ,  
d (14) 

where the diagonal element of $:. is zero when species i is heterotrophic. 
With these assumptions, equation (12) now reads, 

Still, the right-hand side of (15) contains two linear terms, unlike (6). 
However, in a closed ecosystem this poses no particular difficulty (Aris, 
1964). For example, in the five species arbitrary system one may integrate the 
equation of total mass conservation (2) to get 

M ' + M ~ + M ~ + M ~ + M ~  = 4,  a constant (16) 
Each of the linear terms in (15) may be multiplied by unity in the form 
(M1 + M2 + M3 + 11f4+ M5)/$  to yield a series of bilinear terms. Thus, 
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The system does not run down, however, because certain members of the 
community are continually fixing an amount of energy, Ei, from a light 
source. The term E' is zero if the population i is not a primary producer. 

An energy balance for the population i may now be written. In words, the 
time rate of change of energy of a population is equal to the rate of biomass 
energy flux into the population, minus the rate of biomass energy flux out of 
the population, minus the rate of energy loss through respiration, plus the 
rate of fixation energy, if the species is autotrophic in nature. As an equation : 

The structure array u is identical to that defined in the mass balance. 
One may rightfully ask whether a population with biomass M' and total 

energy Ei possesses a constant energy per unit biomass, A'. To assess this 
question, it is necessary to regard the structure of a population. If a population 
consisted of perfectly identical individuals never changing over their lifespan, 
A' would certainly be constant. But populations possess a structure, i.e. a 
distribution of age, morphology, lifespan, etc. (This structure is not to be 
confused with community structure as defined by the structure array u.) 
Since population structure is time dependent, it would follow that A' is a 
function of time. The perspective here, however, is over ecological time where 
these variations appear as rapid fluctuations about some mean quantity. 
This mean quantity, in turn, would be a characteristic of the species itself, 
expected to change only when the species itself changes, i.e. evolves over the 
evolutionary time scale. The observer in ecological time, with his eyes too 
blurred to perceive the fluctuations on the physiological time scale, perceives 
a constant A'. Henceforth in this argument, it will be assumed that the 
"energy content" or energy per unit biomass of a species, is a constant pro- 
perty of the population. 

At this point, it would be a waste to abandon the summation convention 
which has served so well. Thus, in order to write the last assumption, it is 
necessary to define a two-dimensional array A: such that when i = j, A: = A', 
and when i + j, A: = 0. Then the proportionality between biomass and 
energy may be written as 

E' = A;M'. (8) 

To be consistent with the preceding assumption, the energy flows associated 
with predator-prey relationships should be proportional to biomass flow, 
with the constant of proportionality being the specific energy content of the 
host population. This may be written as 

eP4 = Ivrn~'q. (9) 
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the respiration of species 1 may be written: 

R' = ptM1 

Proceeding in this manner, one may generate a third order array, rf,, such 
that 

Ri = r~vMuMu,  (18) 
and the elements of the degenerate array r:#, are related to the respiration 
coefficients and the total biomass of the system. 

In exactly similar manner, one may define an even more degenerate third 
order array for the fixation terms so that: 

,Zi = af,M"MV. (19) 
Now that the respiration and fixation terms appear in bilinear form, the 

energy balance (12) appears in the same form as the mass balance (6) 

This isomorphism of the mass and energy balance implies a relationship 
between the population dynamics coefficients and the energy parameters. 
To state these constraints more explicitly, it is advantageous to use equation 
(6) to eliminate the derivative in (20) 

],i.aj BPqMuMv = 
I p4 1 1 ~  (akqAf'B%- rkv+ a;,) M'M", (21) 

or, upon rearranging, 
BPQ-ai Ap'Blq -ai )MUMU = 0, J Pq UV pq 1 U V  UV UL' (22) 

(Matrix multiplication is a non-commutative group operation, and the reader 
should verify that the first two terms in parentheses will not cancel, even if the 
I and A' arrays are identical.) For the sake of abbreviation, the constant 
arrays in parentheses may be relabeled as one single third-order array: 

Q ~ , M ~ ~ L M ~  = o, (23) 
where - . , 

Qi = Ai.aj BP4- ;L 
uv J p4 uv pq P B?v + rku-akv. (23a) 

System (23) is a set of quadratic homogeneous equations which must be 
valid for any arbitrary positive apportionment of biomass among the M'. 
This will hold if and only if Q is antisymmetric in the lower indices, i.e. 

i a:, = - Q",. (24) 
T.B. 17 
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Equations (24) now explicitly relate the energy parameters to the parameters 
of population dynamics, once the structure of the community has been 
determined. The relationship is not always deterministic, however, since 

h 
there are usually more B's to be determined than there are equations in (24). 
To be exact, there are jmn (n+ 1) independent B's, where m is the number of 
mass flows in the system, and the factor 3 comes from the fact that the B's , 
are symmetrical in their lower indices by definition. There are +n2 (n- 1) 
constraints in (24). the number of mass flows in a community is bounded 
from below by the number of species present, and from above by the number 
of flows in a system which each species transfers mass with every other 
species reciprocally, i.e. 

n 6 m < n(n-1). (25) 
The system, then, is usually indeterminate with *(nt--TZ) (n2+n) degrees of 
freedom. 

The particular case where the system is determinate (m = n) represents 
the straight chain ecosystem. In spite of the fact that most actual systems 
resemble webs more than a closed straight chain, much of ecological con- 
ceptualizationis done in terms of trophiclevels with the implication of straight 
chains. For this reason, an example of how the parameters are related in a 
simple straight chain should prove to be an informative exercise. 

4. A Simple Example 

The system illustrated in Fig. 3 will now be considered. The energy per unit 
biomass of each species will be designated by A,, A2, and A,, respectively, 
and the respirations per unit biomass per unit time by r,, r,, and r,. The rate 
of fixation of energy per unit biomass of the single producer, say species 1, is 
represented by a. The total biomass will be 4, and it will be further assumed 
that ~ j '  = Aj. 

FIG. 3. A simple three-component straight-chain ecosystem. 



MASS A N D  ENERGY F L O W  IN CLOSED ECOSYSTEMS 249 

The structure array will have the following entries: 

a:,  = = a;3 = +I,  
1 - 2 - a 3  

a 1 2  - a23 - 3 1  - 

all other a's = 0 .  

The energy content array will have as its entries: 

with all the non-diagonal elements being zero. 
As explained above, the pseudo-third-order arrays for respiration and 

fixation can be generated and are as follows: 

4 1  = r1149 
r i l  = rf2  = r i l  = rf3  = r 1 / 2 4 ,  

2 r;z = r Z 1  = r:2 = r i3  = r2 /24 ,  

6 2  = r2l4, 
r33 = rzz = r:3 = r:l = r3 /24 ,  

4 3  = 7.3149 

all other rd, = 0 ,  

0: 1 = 014, 
1 

= a z l  = a:3 = = a / 2 4 ,  
all other a:, = 0 .  

The only variables without assigned values are the B's and these are deter- 
mined by substitution of the above into (24) and solving. When the 18 
independent B's are solved for, they in turn can be substituted into (6) and the 
population equations will be written directly with the energy parameters as 
follows : 
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One notices the presence of density-dependent terms [such as the first 
term on the right-hand side of (26)] which arise naturally in this derivation. 
In fact, if the B's connected with these terms had a priori been set equal to 
zero, it can be shown with the help of (24) that this leads to a contradiction 
of the second law of thermodynamics in at least one of the species. One may 
question the sign of these density dependent terms and how they affect tlie 
behavior of the system. Indeed, one might better inquire of the conditions 
on the parameters for which the system as a whole behaves acceptably. 

I am unable to give necessary and sufficient conditions for stable behavior 
at this time; however, the direction in which one might seek these conditions 
is discussed later. One is able, nevertheless, to state a set of sufficient (but not 
necessary) conditions which will always insure that the biomasses remain 
positive (Wei, 1965). For example, in (26) the independent variable does not 
appear explicitly on the right hand side of the equation. If one chooses 
parameters such that the limit of the right hand side as M1 approaches 
zero is always positive, then this implies that if M' ever gets close enough to 
extinction, it must begin to increase again, i.e. it never goes negative. One can 
impose this same condition on (27) and (28) so that the entire system can 
never misbehave. In mathematical notation the conditions are: 

dM1 
lim - 

Ml+O dt 
> 0, 

lim -- 
M2-0 dt 

dM3 
lim -- > 0. 

M - 0  dt 
Applying these restrictions to (26), (27), and (28) yields respectively: 

- ~ - z / ~ ( A I -  22) > 0, (32) 

-7-3/4(&-A3) > 0, (33) 

-(a-7-1)/4(A1-A3) > 0. (34) 

Now the total biomass 4 is always positive, and the respiration coefficients, 
fixation coefficient, and specific energies are all defined as intrinsically 
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positive. Therefore, (32) and (33) yield the inequalities 

A, > A, > 1,. (35) 
In turn, (34) and (35) give 

a > r , .  (36) 
That specific fixation must on the average exceed specific respiration in the 

% primary producer, as in (36), agrees well with intuition. That specific energies 
should increase as one ascends the trophic ladder seems less intuitive. The 
fact that animal fats and proteins have generally higher caloric values than 
plant proteins and carbohydrates does not argue against the result, however 
(White, Handler, Smith & Stetten, 1959). Interestingly enough, if the equa- 
tions of population dynamics are compared with a community entropy 
balance in the same manner as was done above with the energy, the analogue 
of (35) would state that the specific entropy would decrease as one ascends 
the trophic levels, in agreement with intuition. 

The density-dependent terms for the stable situation do turn out to be 
negative, which is consistent with Garfinkel's results. 

The reader may have noticed that the bilinear right-hand sides of equations 
(26) through (28) can be rearranged into linear form. This simplification 
seems to be due to the simple straight-chain system, and is not to be expected 
of more complicated food webs. 

5. Extending the Theory 

The preceding analysis is incomplete in two respects. First, there remains 
the question of the "degrees of freedom" in the general case. Are these true 
degrees of freedom, always changing; or does the system usually tend 
towards, or oscillate about, a steady state? If there is a steady state, how are 
the remaining population parameters determined? Second, there is a need for 
necessary and sufficient conditions which will assure the proper behavior of 
any system, once the structure has been determined. 

The student of irreversible thermodynamics will immediately recognize 
that these two issues are not unrelated. In the theory of near-equilibrium 
thermodynamics, the criterion for a stable steady state is that the entropy 
production be at a minimum. Written out: 

where the Ji are the generalized thermodynamic fluxes in the system, and the 
Xi are the generalized thermodynamic forces. Examples of thermodynamic 
fluxes are the rates of chemical reactions, the mass diffusion flux, and a 
conductive heat flux. Their respective thermodynamic forces are the affinity 
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of a chemical reaction, the chemical potential gradient (for isothermal 
systems), and the temperature gradient. 

Besides assuring stability, a theory such as that of minimum entropy 
production can be used to fix certain relations between parameters in the 
absence of other determining factors. For example, in a non-straight chain 
ecosystem, $n2 (n+ 1) population parameters could be eliminated with the 

# 

help of (24). The entropy could then be written in terms of the energy para- 
meters and the remaining B's. Finally, with the help of variational calculus, 
the remaining $(m -n) (n2 +n) population parameters could be chosen so that 
the entropy production was at a minimum. In this proposed procedure the 
importance of the constraints (24) should not be underemphasized. If one 
were to attempt to write the entropy production in terms of the B's alone, the 
minimization procedure would result in thermodynamic equilibrium, or the 
total death of the system. By using (24), one introduces the energy fixation 
and respiration rates which set the lower and upper bounds, so to speak, of 
the scale of mass cycling. In mathematical terms, one is minimizing with 
respect to a set of constraints, which precludes the trivial solution. 

In the above outline, minimization of the entropy production was said to 
determine the stable steady state. Entropy production is a concept for which 
many have, to some greater or lesser extent, an intuitive feel, and was employed 
for that reason. Actually, the hypothesis of minimum entropy production is 
valid only in the near-equilibrium domain. While this domain cannot be 
excluded from ecological interest, it is more likely that ecosystems operate far 
from thermodynamic equilibrium. 

Fortunately, Prigogine (1967) has advanced a minimization principle valid 
over the whole range of thermodynamics. This new principle states that at a 
steady state 

C Ji dXi = 0. 
i 

(38) 

In the last reference Prigogine shows how (38) reduces to (37) in the near- 
equilibrium range. 

With the procedure thus outlined for treating webbed ecosystems, one 
may next inquire as to the identity of the fluxes and forces. The fluxes, quite 
obviously, are the biomass fluxes between the species. The forces pose another 
problem; in fact, they elude me at the present time. What is needed is the 
biological analogue of the affinity function. The principle which allows the 
definition of the affinity function in chemical systems is the law of definite 
proportions, or stoichiometry. There appears to be no analogue to the 
law of definite proportions which acts on a macrobiological scale. A 
force which is dimensionally consistent with the biomass flux, and at the same 
time makes good biological sense, is needed. I am presently working to 
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evaluate alternative hypotheses for the thermodynamic force behind the 
biomass flows. 
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