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Summary. Numerous applications of variational principles derived from physical
thermodynamics have been made to the description of development in living sys-
tems. While some have met with varying degrees of success, it appears none of
the measures from classical thermodynamics adequately incorporates the roles of
intrinsic system constraints into a robust description of biotic development. The
flow network measure ascendency, therefore, has been formulated to express more
explicitly the constraints immanent in ecosystem trophic exchanges. Ascendency
has wide applicability and can be used as well to provide a measure of the over-
all degree of organization inherent in a purely physical flow field, such as rates of
energy exchange. It can also be employed to pinpoint the bottlenecks that control
the fluid flow field.

5.1 Introduction

The body of phenomenology known as thermodynamics derives almost en-
tirely from observations on physical systems. It remains rich, however, in
its implications for living systems. Of especial interest to biologists is the
concept of entropy, and particularly the derivative variational principles of
minimal and maximal entropy productions. For example, one encounters the
Prigoginian notion of minimal entropy production applied to living systems
(Zotin 1972). Conversely, the tendency towards maximal entropy production
finds application in the physical realm (Paltridge 1975, 2001, this volume)
as well as the biological (Swenson 1989; Kleidon and Fraedrich, this volume;
Toniazzo et al., this volume).

The extrapolation from the physical realm to the biological is not without
its difficulties, however. While physical constraints, such as conservation of
energy and mass, clearly apply, there seems to be a tacit consensus that
internal constraints play a proportionately larger role in biological behaviors
than they do among physical processes. Some look for a way around this by re-
formatting the laws of thermodynamics in unitary fashion (Hatsopoulos and
Keenan 1965; Kestin 1976). To capture biological directions, Schneider and
Kay (1994) proposed a corollary to the unitary formulation, whereby living
systems always act to degrade existing gradients in exergy (energy available
for work) at the maximal rate possible (see also Schneider and Sagan 2004).
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For yet others, such reformulations do not incorporate sufficiently the
informational constraints inherent in the processes that support life. Thus,
Kauffman (1995) calls for a “Fourth Law of Thermodynamics” to fill the void.
The utility of variational principles or goal functions as providing direction
for the development of living systems was the subject of a recent symposium
(Mueller and Leupelt 1998). The emerging consensus was that no single prin-
ciple or goal function seems capable of adequately explaining the life process
at all scales. Rather, each principle serves in its turn as an “orientor” that
helps to guide, but not fully determine, the unfolding of living systems (Bossel
1998).

5.2 Constraint Among Biotic Processes

These limitations and inadequacies notwithstanding, a more effective quan-
tification of the constraints intrinsic to biological systems appears desireable.
It was, after all, Schroedinger’s emphasis upon what he called “negentropy”
that invigorated the search for ways by which biological constraints can be
encoded in matter and which culminated in the discovery of DNA. “Negen-
tropy”, however, has been a difficult notion to quantify, and the limitations
inherent in entropy as a state variable have circumscribed its possible role in
the description of biotic processes.

Bearing these difficulties in mind, Ulanowicz (1980, 1986) made the de-
cision to play down somewhat the energetic aspects of biology in order to
highlight the role that emerging constraints play in organic development. He
sought to develop a phenomenology of biological constraint by attempting
to quantify the hidden agencies that channel biotic transfers along certain
pathways. He remained confident that biotic constraints could be quantified,
even in the absence of explicit knowledge about their constituent mechanisms
– just as in thermodynamics it is possible to measure state variables without
any concrete knowledge about microscopic details.

The system of interest for Ulanowicz was the flow network that depicts
the transfers of material or energy between all pairs of predators and prey. He
denotes the transfer of material or energy from prey (or donor) i to predator
(or receptor) j as Tij , where i and j range over all components of an n-
member ecosystem. The total activity of the system is taken to be simply the
sum of all system processes, T.. =

∑

i,j

Tij , or what is called the “total system

throughput” (A dot as a subscript is taken to mean summation over that
particular index).

The constraints inherent in the flow network are assumed to arise in con-
nection with the increase in the influence of autocatalytic feedbacks as the
ecosystem develops (Ulanowicz 1986). Such unspecified constraints serve to
channel flow ever more narrowly along those pathways that most effectively
participate in the autocatalytic processes. Alternatively, constraints may be
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regarded as anything that causes certain flow events to occur more frequently
than others. With frequency thus in mind, one supposes that constraint is
somehow connected with the joint probability that a quantum of medium is
constrained both to leave i and enter j. This probability may be estimated
by the frequency (Tij/T..). One then notes that the less constrained proba-
bility that a quantum merely leaves i for an unspecified destination can be
acquired by summing the joint probability over all possible destinations. Such
frequency becomes (Ti./T..). Similarly, the unconstrained probability that a
quantum enters j is estimated by (T.j/T..). Finally, one reckons the probabil-
ity that a quantum could make its way by pure chance from i to j, without
any constraint, as the product of the latter two frequencies, or (Ti.T.j/T 2

..).
When Tribus and McIrvine (1971) defined information as “anything that

causes a change in probability assignment”, they essentially were equating
information with constraint. Information theory, then, could provide the for-
mat for how one might quantify constraint. Strangely, however, information
theory does not address information (constraint) directly. Rather it starts
with a measure of the rareness of an event, as first postulated by Boltzmann
(1872) to be −k log p, where p is the normalized probability (0 ≤ p ≤ 1) of
the given event happening, and k is a scalar constant that imparts dimensions
to the measure. One notices how for rare events (p ≈ 0), Boltzmann’s mea-
sure is very large; whilst for very common events (p ≈ 1), it is vanishingly
small.

Because the constraints that act to channel flows act to make certain
things happen more frequently in a particular way, one expects that, on aver-
age, the probability of such constrained events would be greater than those of
corresponding unconstrained events. The rarer (unconstrained or unguided)
circumstance that a quantum leaves i and accidentally makes its way to j
can be quantified by applying the Bolzmann formula to the last probabil-
ity defined above, i.e., -k log (Ti. T.j/T 2

..).. The more frequent condition that
a quantum is constrained both to leave i and enter j would give rise under
Boltzmann’s assumption to −k log(Tij/T..). Subtracting the latter quantity
from the former and combining the logarithms yields a measure of the infor-
mation inherent in the hidden constraints that channel the flow from i to j,
i.e., k log(Tij T../Ti. T.j).

Finally, to quantify the average constraint at work in the system as a
whole, one weights each such pair-wise measure by the corresponding joint
probability of constrained flow from i to j and then sums over all combina-
tions of i and j (Abramson 1963). That is,

AMC = k
∑

i,j

(
Tij

T..

)
log
(
TijT..

Ti.T.j

)
(5.1)

where AMC is the “average mutual constraint” (known in information theory
as the average mutual information.)
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Fig. 5.1. a The most equivocal distribution of 96 units of transfer among four
system components. b A more constrained distribution of the same total flow. c The
maximally constrained pattern of 96 units of transfer involving all four components

To illustrate how an increase in AMC actually tracks augmented con-
straint, the reader is referred to the three hypothetical configurations shown
in Fig. 5.1. In configuration (a) where medium from any one compartment
will next flow is maximally indeterminate. AMC is identically zero. The pos-
sibilities in network (b) are somewhat more constrained. Flow exiting any
compartment can proceed to only two other compartments, and the AMC
rises accordingly. Finally, flow in schema (c) is maximally constrained, and
the AMC assumes its maximal value for a network of dimension 4.

One notes in the formula for AMC that the scalar constant, k, has been
retained. Tribus and McIrvine (1971) suggested that k be used to impart
physical dimensions to an otherwise dimensionless information measure. Ac-
cordingly, the measure of constraint can be scaled by the total activity of
exchange (T..) to yield a “quasi-power” function called the system ascen-
dency A, where

A =
∑

i,j

Tij log
(
TijT..

Ti.T.j

)
(5.2)

In his seminal paper, “The strategy of ecosystem development”, Eugene
Odum (1969) identified 24 attributes that characterize more mature ecosys-
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tems. These can be grouped into categories labeled species richness, dietary
specificity, recycling and containment. All other things being equal, a rise in
any of these four attributes also serves to augment the system ascendency
(Ulanowicz 1986). It follows as a phenomenological principle that “in the
absence of major perturbations, ecosystems have a propensity to increase in
ascendency.”

5.3 Quantifying Constraint in Fluid Flow

It is well and good that ecologists now have at their disposal a convenient
measure of the level of constraint inherent in an ecosystem, seeing as how
constraint appears to be a prominent aspect of living systems that hereto-
fore had been insufficiently incorporated into conventional thermodynamic
measures. The question of greater interest to the reader, however, is what
relevance, if any, does this measure have to the disciplines of fluid flow, me-
teorology and climatology? (In the event a connection can be made, it would
constitute an unusual “man bites dog” example of a concept first developed
in the biotic sciences and then applied to the purely physical realm.)

To demonstrate the utility of ascendency to fluid mechanics, one begins
with an arbitrary flow field of interest that is finite, continuous and can be
divided into a countable number of finite elements that cover the field entirely
and are contiguous with each other. Without loss of generality, it may be
assumed that the flow field is rectangular and is divided by a rectilinear
grid. The flow field can be one, two or three dimensional, for it is easily
demonstrated that only a single index is necessary to uniquely identify any
element in any finite spatial domain. For example, if the flow field is two-
dimensional, one may divide the field into m rows of n cells each and number
the cells consecutively 1,2,3,. . .m, m+1, m+2,. . . , (mn − 2), (mn − 1),mn.
A similar scheme can be used to enumerate a three-dimensional field. Again,
without loss of generality, further consideration will be limited to a two-
dimensional (m× n) flow field.

It is assumed that a quantitative description of a fluid flow field, v(x, y),
can be provided either by some analytical means or a numerical process, and
the values of v(x, y) at any location (x, y) (and at the boundaries) are avail-
able with sufficient precision. (The dynamical case, v(x, y, t) is considered
below.)

Under these premises, the translation of the physical flow field v(x, y) into
an abstract flow network of dimensions (mn×mn) becomes straightforward.
One begins by defining fij to be the total amount of fluid that passes from
cell i to cell j during a unit of time. Only positive flows will be considered;
that is, if a flow from i to j is calculated to be negative, then the absolute
magnitude of the transfer is added to fji, instead of to fij .

Attention is now focused upon an arbitrary element k within the flow
field. It exchanges fluid with elements (k-1) and (k+1) in the horizontal
direction and with (k − n) and (k + n) in the vertical. For the moment
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attention is further narrowed upon the vertical line that separates spatial
element k from element (k − 1). The amount of fluid passing this interface
can be calculated as

∫
k,(k−1) vxdy, where vx is the horizontal component of

the velocity, and k, (k−1) denotes a line integral over the vertical segment in
question. Whenever this integral is positive, the calculated amount is added
to the network element f(k−1),k. If it is negative, the amount is added to
fk,(k−1).

One can treat vertical transfers in similar manner: Over the horizon-
tal boundary separating k from (k − n), one calculates the line integral∫
(k−n),k vydx. As before, if the result is positive, the magnitude is added

to fk,(k−n); if it is negative, to f(k−n),k .
By applying the first method to the interface between k and k + 1 and

the second to that separating k from k + n, one accounts for all exchanges
involving element k. Obviously, one wishes to avoid any double counting of
transfers, which can be accomplished by iterating over all internal boundaries
(rather than the elements themselves), visiting each edge once and only once.
Should the external boundary conditions happen to be impermeable, that is
“no-flow”, then the conversion to a network description of the fluid flow field
is now complete. Whenever the boundary conditions are “wrap-around” (e.g.,
the right-hand side of element 2 n is assumed to abut the left-hand side of
element [n+ 1]), then the flows across these boundaries can be treated exactly
like the internal boundaries. For more general boundary conditions, it will
be necessary to increase the dimension of the flow matrix by at least one
to (mn + 1) to be able to accommodate the external world. Accounting for
boundary flows would then entail the calculation of elements like f3n,(mn+1) or
f(mn+1),(5n+1) , etc. The resulting flow matrix is likely to have high dimension
and to be very sparse. (By “sparse” is meant that most matrix entries are
zero.)

Having effected the conversion of a continuous (or approximately con-
tinuous) flow field into a discrete flow network, it is now but a formality
to calculate the information indices that describe the status of ecosystem
flow networks (Rutledge et al. 1976; Ulanowicz 1986; Ulanowicz and Norden
1990). As with the ecosystem trophic exchanges treated earlier, a dot is used
as shorthand for summation over a subscript index.

The diversity of the flow fieldH can be defined using the familiar Shannon
formula as

H = −
∑

i,j

(
fij

f..

)
log
(
fij

f..

)
(5.3)

This diversity, or complexity, encompasses both structured (constrained) and
stochastic elements. Using Bayesian information theory, it becomes possible
to parse out exactly how much of the calculated diversity can be character-
ized as structured from that which remains stochastic. As developed in the
previous section, the amount of H which constitutes coherent (constrained)
flow structure is assessed by the average mutual constraint as
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AMC =
∑

i,j

(
fij

f..

)
log
(
fijf..

fi.f.j

)
(5.4)

That is, AMC becomes an index of the organization inherent in the flow field.
Presumably, the AMC will also corrolate strongly with one or more of the
scalar metrics pertaining to the fluid flow correlation tensor.

The amount of H that does not appear as structured flow, (H −AMC),
represents the residual incoherency Φ:

Φ = −
∑

i,j

(
fij

f..

)
log

(
f2

ij

fi.f.j

)

(5.5)

That is, Φ should be an index of how stochastic or turbulent the flow field
appears under the network representation. One notes that H ≥ 0, AMC ≥ 0,
and Φ ≥ 0.

The working hypothesis now being investigated by the authors is that
whenever a flow field undergoes a transition from laminar (highly organized)
to turbulent flow, AMC will decrease dramatically and Φ will abruptly in-
crease. Conversely, if an organized flow suddenly displaces a stochastic one
(as in the sudden appearance of Bernard or Langumir cells), AMC should
rise abruptly and Φ should fall correspondingly. A related example of how
AMC can be applied to a field of migratory animals is provided in Ulanowicz
(2000), who showed, for example, how the ascendency of a uniform rectilinear
migration field increased when a barrier was introduced into the middle of
the migrating animals. He also demonstrated how the ascendency of a field of
random migrations was negligible in comparison with one where migrations
were directed and distinct. Such differences almost certainly will appear in
analogous fluid flow fields.

The conversion of dynamical flow fields, v(x, y, t), into three-dimensional
flow networks is rather straightforward: Instead of considering the four lines
bounding the square grid, one treats the six sides of the cube that envelops
k. It remains, then, only to define the expanded information measures that
can be invoked to quantify the resulting 3-D network. As before, one defines
fijk as the transfer from spatial element i to neighboring element j during
time interval k. Again, the dot shorthand for index summation is employed.
Pahl-Wostl (1995) showed how several coherencies are aggregated within the
measure It which she calls the temporal information:

It =
∑

i,j,k

fijk log

(
f2

ijkf...

fij.fi.kf.jk

)

(5.6)

This index It can be decomposed into several components, each of which
quantifies a different aspect of coherency, such as when a system begins to
oscillate in response to a frequency in an imposed forcing function (Ulanowicz
1991).
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5.4 Identifying Flow Bottlenecks

Because the information measures just introduced appear to parallel the met-
rics associated with the conventional correlation tensor, one might understand
why the reader might want to question whether another set of seemingly re-
dundant measures is really necessary? It should be pointed out, therefore,
that the information calculus affords some very convenient mathematical
properties not shared by the more conventional measures. In particular, the
information format allows for the immediate calculation of a field of sensitiv-
ity indicators.

For example, above it was shown how scaling the AMC by the total
system throughput yields a function called the system “ascendency” A:

A = f..AMC (5.7)

or

A =
∑

i,j

(fij) log
(
fijf..

fi.f.j

)
(5.8)

It happens that the ascendency as it appears in (5.8) is an Euler function, so
that one can immediately write the sensitivity of the ascendency with respect
to any arbitrary flow, say fpq as

∂A

∂fpq
= log

(
fpqf..

fp.f.q

)
(5.9)

One can then search this matrix of sensitivities for local maxima, which
should indicate “hotspots’ where the flow field as a whole is most sensitive
to the particular transfer in question.

Ulanowicz and Baird (1999) used this formal scheme to appraise nutrient
transfers in ecosystems. They had estimated parallel networks for the seasonal
flows of carbon, nitrogen and phosphorus among the principal taxa of the
Chesapeake ecosystem. Using those networks, they applied the sensitivity
indices calculated from the last formula, to uncover the rate-limiting flows in
the system. After the fact, they were able to demonstrate analytically that
the maximal sensitivities indicated those elements that were rate-limiting
in the sense of Justus von Liebig (1854). By analogy, it becomes possible
to entertain the hypothesis that the maxima of the indicated sensitivities
provide a convenient way of identifying the “bottlenecks” or control points
in a fluid flow field.

5.5 Conclusion

One may hypothesize different levels of organization at the microscale, as
characterized by different values of ascendency, should result in differing



5 Using Ecology to Quantify Organization in Fluid Flows 65

macroscopic states of the fluid flow field with contrasting rates of entropy
production. Furthermore, the behavior of the ascendency index could pro-
vide additional insights about the organization of flow when MEP does not
apply (e.g., smaller scales, departures from steady state). Using the ecological
concept of ascendency could provide new and valuable contributions to the
microscopic analysis of fluid flows and might also find fecund application to
the related fields of meteorology and climatology.
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