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Abstract

A set of “information theoretic” measures has been developed to quantify the degree of constraint inherent in the organization
of a multiagent system. Separate measures can be provided to quantify spatial organization, trophic organization and, more
generally, the overall structure of interactions. The additive character of these quantities allows them to be distributed in various
fashions among species and places in a way that allows one to assign an “Importance Index” to those taxa and places. In addition, a
measure to gauge the degree of adaptation of a species to a particular environment is proffered. The proposed measures allow one
to formulate the following hypotheses in quantitative fashion: (1) that any disturbance of an ecosystem at a location associated
with a high spatial Importance Index will exert a greater impact on the population dynamics than will a similar disturbance aimed
at a place where the values of these indexes are lower; (2) that any disturbance in an ecosystem affecting a particular species
with high individual Importance Indexes will cause a greater impact on the overall population dynamics than will a disturbance
aimed at a species with a lower values of these indexes; (3) that the ascendancy of evolving system has a propensity to increase.
The precise quantitative formulation of these hypothesis would permit them to be tested via multiagent simulation. Estimating
the probablities pertaining to these hypotheses presents a number of problems that merit discussion.
© 2003 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

We wish to introduce quantitative measures
of organization applicable to multiagent systems.
Computer scientists and sociologists have used
the term “agent-based modeling”, while ecologists
prefer “individual-based modeling” to describe this
modeling approach, however, both terms refer to
essentially similar approaches. The earliest review
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on individual-based models was byHuston et al.
(1988), and the subject has been reviewed a num-
ber of times thereafter (Hogeweg and Hesper, 1990;
Lomnicki, 1992; DeAngelis et al., 1994; Judson, 1994;
Uchmanski and Grimm, 1996; Grimm, 1999; Grimm
et al., 1999; Berec, 2002; Breckling, 2002). The mul-
tiagent modeling approach was reviewed in a series
of papers that appeared inSichman et al. (1998).

Organization is a fundamental concept that is
highly relevant to many disciplines. To an ecologist,
an economist or a sociologist the definitions of orga-
nization may appear to be different, but there is an
underlying common essence. Among the first to de-
scribe this essence wasSimon (1973), whose concept
of development derived from a theory of complex

0303-2647/03/$ – see front matter © 2003 Elsevier Science Ireland Ltd. All rights reserved.
doi:10.1016/S0303-2647(03)00003-0



40 S. Krivov et al. / BioSystems 69 (2003) 39–54

hierarchical systems. He saw the core of organi-
zational structures in administrative and economic
systems as framed around the notions of efficiency,
control, and personal contributions by the individ-
ual (Simon, 1952; Mintzberg, 1983). Although the
importance of the concept of organization has been
widely acknowledged by economists and social sci-
entists (Lomi and Larsen, 2001; Hannoun et al., 1998;
Prietula et al., 1998; Matutinovic, 2002), to the best
of our knowledge, a clear, formal theory of organiza-
tion, so crucial to the development of a generalized
systems science, remains largely wanting.

The problem of describing organization seems to
involve two types of questions—those qualitative and
others that are quantitative. Examples of the first kind
of questions are: What is organization? How is an
organized system different from one that is disorga-
nized? Questions of the second sort center around
how to measure organization? We begin with the most
general question of the first sort, namely, “What is
organization?”.

Since the work ofAshby (1962), system organiza-
tion has been understood as a dynamic equation that
binds the parameters of the system. Such an approach
is perfectly appropriate for those systems that can be
described in terms of differential equations, and it has
long been an implicit part of General Systems Theory.
While this definition captures the functional aspects
of organization, it ignores the structural aspects, and
these limitations have been discussed byKrivov et al.
(2002).

Recent studies in complexity have generated a va-
riety of models, such as Cellular Automata, Boolean
Networks, and Multiagent Systems, that address par-
ticular aspects of the behavior of complex systems.
These models have made significant contributions
to our understanding of the notionorganization. It
became apparent that very complex organization could
be generated by the interaction of uncomplicated ob-
jects under extremely simple behavioral rules. For ex-
ample,Reynolds (1987)demonstrated that patterns in
flocking birds would emerge if individuals were to fol-
low just two simple rules: (1) keep a close distance to
one’s two nearest neighbors, and (2) avoid obstacles.

Studies in complexity have lent new accents to our
understanding of organization. Organization has im-
plicitly become associated with the set of all unique
patterns contained in a system.Crutchfield (1994)

was among the first to explicitly define organization
as set of patterns, and formulated a program of study
of organization following this avenue. This work
goes under the rubric ofcomputational mechanics
(Crutchfield, 1994; Shalizi and Crutchfield, 2001;
Shalizi et al., 2003). Crutchfield’s approach is compu-
tational, algebraic, and stochastic, all at the same time
(Shalizi and Crutchfield, 2001). Computational me-
chanics, as it has developed to date, pertains only to
one-dimensional, stochastic processes that are mod-
eled by symbolic sequences. It remains unclear how
this theory might be extended to describe the organi-
zation of complex multiagent systems or networks.

Another formal approach based on an understand-
ing of organization as a set of patterns contained in a
system is called Logic Modeling of System Dynam-
ics (LMSD) (Krivov et al., 2002). LMSD is based
upon the premise that states of a system can be ade-
quately described asmodelsin the sense of predicate
logic (Ershov and Palutin, 1989; Suppes, 1969). Such
models provide semantics for the formulae from pred-
icate calculus—boolean expressions with variables.
Patterns are associated with local self-similarities in
the system. The existence of an isomorphism be-
tween two subsystems is formally equivalent a local
self-similarity between them. Krivov maintained that
patterns within a system may be described using
formulae containing free variables to provide a uni-
form description of those parts of the system that
are similar. LMSD is a powerful way to describe
patterns in systems and can be applied to arbitrarily
complex systems—such as ecologies and economies.
The notion of pattern that it provides, however, is
not stochastic. Furthermore, LMSD does not in itself
provide a direct means for quantifying organization.
Whence, the quantitative treatment of organization
developed in this present paper might be considered
a modest first step toward developing a stochastic
version of LMSD.

The other fundamental type of question pertaining
to organization are those describing its quantitative
measurement. Every purely quantitative aspect of or-
ganization is seen, however, to exhibit multiple facets.
Most quantitative studies of organization are focussed
upon trying to measure complexity,1 but there are other

1 See extensive bibliography on “complexity” athttp://www.fmb.
mmu.ac.uk/∼bruce/combib/.
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important aspects to organization that are too often
ignored.

It is intuitively obvious that certain purely struc-
tural aspects of a system can impact the character
of its dynamics. For networks one such aspect is the
connectivity, which is defined as the average num-
ber of connection per node.Kauffman (1991, 1993)
related the connectivity of boolean networks to their
overall dynamics and demonstrated that only within
a certain limited range of connectivities can a system
exhibit self-organized behavior. One important aspect
of flow networks is the number of distinct functional
roles that exist within a given network.Zorach and
Ulanowicz (2003)demonstrated that real ecosystems
are confined to a narrow window of parameter space,
with connectivities falling between 1 and 3.25 and
the number of distinct functional roles between 2 and
5. Randomly generated networks, by contrast, often
lie far outside this window.

One of the most essential aspects of organization is
the coherence of the elements or the mutual constraints
that hold the system together. Under the rubric of
Network Analysis, Ulanowicz (1980, 1986, 1997),
Hirata and Ulanowicz (1984), Ulanowicz and Norden
(1990) has developed a set of information theoretic
measures to quantify the degree of constraint inherent
in the organization of any ecological or economic sys-
tem. These measures can be generalized and extended
so as to pertain to multiagent systems. To achieve
this, we represent a multiagent system as a statistical
ensemble. FollowingUlanowicz (1980, 1986), we
use an analog of the information-theoretic index, Av-
erage Mutual Information (AMI), to quantify spatial
and structural correlations within multiagent models
of ecological systems. We also define an index of
adaptation to be the correlation between the internal
demands of agents and the subsequent processes that
satisfy these demands. We also discuss the possible
application of these indexes in quantitative studies of
ecosystems dynamics.

2. Information theoretic measures of trophic
networks organization

The introduction of “information” theory to ecol-
ogy can be traced back toMacArthur (1955). Margalef
(1968), who considered the dynamic processes in an

ecosystem to be a channel, that projects information
into the future. It wasRutledge et al. (1976)who first
used the AMI as an intermediate in their derivation
of a measure to quantify the redundancy of ecologi-
cal networks.Ulanowicz (1986, 1997)later used the
AMI to quantify the degree of constraint inherent in
trophic flow networks and for formulating the theory
of “ascendency”. These later works will be reviewed
briefly in this section.

2.1. Quantifying constraints

We begin by considering two sets of events{Ai}
and{Bj}, which presumably occur in some statistical
ensemble. At the moment we are not concerned with
the character of these events. The question that we
want to ask is how does one quantify the magnitude
of overall constraint between these two sets of events?
The sets may be tightly correlated or could be totally
uncorrelated. Our objective is to quantify the transi-
tion from a very loosely coupled, highly indetermi-
nate collection of events into one in which events are
more constrained. We begin, as didBoltzmann (1872)
who anticipated information theory, by quantifying
the indeterminacy, hj, of eventBj,

hj = −k logP(Bj)

where P(Bj) is the marginal probability that event
Bj will happen, andk is a scalar constant. Roughly
speaking,hj is correlated with how surprised the ob-
server will be whenBj occurs. IfBj is almost certain
to happen,P(Bj) will be a fraction near 1, andhj will
be quite small. Conversely, ifBj happens only rarely,
P(Bj) will be a fraction very near zero, andhj will
become a large positive number. In the latter instance
the observer is very surprised to encounterBj.

Constraint removes indeterminacy. Therefore, the
indeterminacy of a system with constraints should be
less than what it would be in unconstrained circum-
stances. Suppose, for example, that an a priori event
Ai exerts some constraint upon whether or notBj

subsequently occurs. The probability thatBj will hap-
pen in the wake ofAi is by definition the conditional
probability,P(Bj |Ai), so that the (presumably smaller)
indeterminacy ofBj under the influence ofAi (call it
gj,i), will be measured by the Boltzmann formula as

gj,i = −k logP(Bj|Ai)
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It follows that one may use the decrease in inde-
terminacy,hj − gj,i, as one measure2 of the intensity
of the constraint thatAi exerts uponBj. Call this
constrainthij , where

hij = hj − gj,i = [−k logP(Bj)] − [−k logP(Bj|Ai)]

= k log

[
P(Bj|Ai)

P(Bj)

]

We note here for future reference that the constraint
that Ai exerts uponBj is formally equal to the con-
straint thatBj exerts onAi. Using Bayes’ theorem we
see that

hij = k log

[
P(Bj|Ai)

P(Bj)

]
= k log

[
P(Bj,Ai)

P(Ai)P(Bj)

]

= k log

[
P(Ai|Bj)

P(Ai)

]
= hji

Hence, one may speak of themutual constraint that
Ai andBj exert on each other.

One may use this measure of constraint between
any arbitrary pair of eventsAi and Bj to calculate
the amount of constraint inherent in the system as a
whole: one simply weights the mutual constraint of
each pair of events by the associated joint probability,
P(Ai,Bj) that the two will co-occur and then sums
over all possible pairs. This yields the expression for
the expectation value of the mutual constraint, or the
average mutual constraint(AMC), as

AMC({Ai}, {Bj})= k
∑
i

∑
j

P(Ai, Bj) ·

log

[
P(Ai, Bj)

P(Ai)P(Bj)

]
(1)

Here notations{Ai} and{Bj} describe, respectively
the set ofall Ai and that ofall Bj. We intentionally
use the same dummy indexes in the right and left hand
sites of equation. If we deal with complete sets of
events, then AMC becomes the familiar AMI function.
Since we do not assume the completeness of the sets
of events considered, however, it is more appropriate
to use the new term AMC.

2 We assumed thathj > gj,i. In those case where this assumption
does not work we may need to consider|hj − gj,i| instead of
hj − gj,i.

The following idea, then, constitutes the cornerstone
of our theoretical constructions:

AMC({Ai}, {Bj})quantifies the strength of coupling

between two sets of events {Ai} and {Bj}.
If a system is totally random, i.e.P(Ai, Bj) =

P(Ai)P(Bj), then AMC({Ai}, {Bj}) = 0. In any non-
random system, AMC({Ai}, {Bj}) > 0. Depending on
how we select the two sets of events,{Ai} and{Bj},
AMC could be used to quantify various aspects of sys-
tem organization. If events{Ai} and{Bj} happen to
be related to spatial movement, then AMC measures
the correlation between spatial events and provides an
index of spatial organization. If the events{Ai} and
{Bj} pertain to trophic interactions, AMC provides an
index of trophic organization. A particularly fecund
use of the expression arises when it is applied to de-
scribe the strength of coupling between the demands
of an organism and the processes that satisfy those
demands.

2.2. Trophic networks and ascendency theory

Each node of a trophic network represents a par-
ticular taxonomic species, and the links between the
nodes depict the feeding relations among the taxa.
The nodes of a trophic network are often referred
to as compartments. The feeding relations usually
are assumed to consist of flows among the com-
partments of biomass, carbon, or energy. Both the
topology of a trophic network and the intensities of
its flows are essential factors in the dynamics of eco-
systems.

Quantifying the intensive process of the develop-
ment of an ecosystem is a somewhat indirect process.
The object here is to quantify the transition from a
very loosely coupled, highly indeterminate collection
of exchanges to one in which exchanges are more con-
strained along fewer specific pathways. If we focus
upon trophic exchanges, a convenient interpretation
of Ai is “a quantum of medium leaves compartment
i” and of Bj, “a quantum enters compartmentj”.
Thus, we defineTij as the amount of some conserva-
tive medium that flows fromi to j in a given interval
of time. The total amount of flow transpiring in the
system is then reckoned by summing over bothi and
j, i.e. T = ∑

i,jTij . The joint probability that flow
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will both leavei and enterj is therefore estimated by
the quotientTij /T, and the marginal probabilities that
flow either leavesi or entersj become the normalized
sums ofTij over the appropriate index:

P(Ai) ∼
∑

jTij

T

and

P(Bj) ∼
∑

iTij

T

In terms of these measurable exchanges, the estimated
AMC takes the form

AMC = k
∑
i

∑
j

(
Tij

T

)
log

[
TijT(∑

kTik
) (∑

lTlj
)
]

(2)

It is important to note that this expression is scale
invariant. Should we change the units of time, the
values of the flows will change, but the value of
expression for AMC will remain the same.

As for the scalar factor that gives the ascendency
its dimensions, it is most convenient to identify the
scalar constant,k, with the total amount of flow,
T. Accordingly,

A =
∑
i

∑
j

Tij log

[
TijT(∑

kTik
) (∑

lTlj
)
]

≥ 0 (3)

This ascendencyis a measure derived from net-
works of trophic interactions. It refers to the combined
effects of mutualism occurring among the networks
of transfers. In the absence of major destructive influ-
ences, mutualism (or strict positive feedback) causes
the magnitudes of its constituent processes to grow
and eventually to dominate those of non-participating
processes. The value ofA is a homogeneous func-
tion of the time scale in exactly the same way as do
the values of the flows. For example, if the units of
flow are changed from kg/s to kg/min, the numerical
values of flow will increase 60 times, as will those
for A.

Ascendency provides an integrative assessment of
both the (topological) complexity of trophic orga-
nization and the intensity of interactions within the
system. The ascendency has been suggested as an
index of the development process (Ulanowicz, 1980,

1997), i.e. the development of a system could be asso-
ciated with an increase in ascendency. It now appears
that the range of applications of the principle of in-
creasing ascendency to various ecosystem behaviors
has been expanding.Ulanowicz and Baird (1999),
for example, have demonstrated that the familiar
Liebig’s Law of the Minimum (which holds that the
growth of an organism is limited by that element
which is available in least proportion to the respective
amount required by that organism) can be deduced
analytically from the ascendency hypothesis. Ascen-
dency theory provides a direct connection between
the diversity of ecologicalprocessesand system per-
sistence (Ulanowicz, 2000a,b). In addition, one of the
latest hot issues in Complexity Theory is how pro-
cesses constituting some self-organizing systems are
arrayed statistically according to power-laws, rather
than according to the more well-behaved exponential
distributions. Ulanowicz and Wolff (1991)studied
the occurrence of power-law distributions in ecosys-
tems over a decade ago by applying the ascendency
measure to a catalog of ecological networks. It has
also been suggested that ascendency can be extended
to incorporate spatial and temporal dimensions and,
therefore, could be used as index of organization
in space and time (Pahl-Wostl, 1992; Ulanowicz,
2000b).

Many complex networks that occur in nature share
certain statistical features.Milo et al. (2002), for ex-
ample, found that ostensibly distinct objects, such
as networks of gene transcription, neuronal synap-
tic connections, ecological feeding relations, and the
World Wide Web all appear to exhibit similar mo-
tifs. The topological properties of cellular networks
share surprising similarities with networks of so-
cial interactions.Oltvai and Barabasi (2002)have
hypothesized that certain universal organizing prin-
ciples may apply to all networks, from cells to the
World Wide Web. Such observations and specula-
tions suggest that results deriving from the study
of trophic networks could possibly be extended to,
or reinterpreted in context of, other kinds of natu-
ral networks. In fact, this paper emerged from an
effort to reinterpret the ideas reviewed in this sec-
tion in the context of multiagent systems; and, as
the endeavor unfolded, the specific requirements of
the task affected the subsequent evolution of our
discourse.
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3. The multiagent system as a statistical
ensemble

AMC can be used to quantify spatial, causal, and/or
structural constraints. Before we do that, however, we
need to cast the ecosystem as a statistical ensemble. In
this section we will try to represent ecological inter-
actions and other ecological happenings as stochastic
events, which occur in space and time with certain
probabilities. The notations we develop in this section
are synthetic to a degree. Insofar as we talk about
the properties of agents and their interactions, our
notations resemble those employed in LMSD (Krivov
et al., 2002). Furthermore, inasmuch as we need to
sum up and multiply the probabilities of related events,
we have found an indexing system similar to the one
used in tensor analysis to be most convenient. Unfor-
tunately, experience has shown that mathematically
rigorous notations can often obscure critical ideas. We
developed our notations, therefore, under the objective
of maximizing the clarity with which the correlations
of events in multiagent systems can be described. We
acknowledge; however, that, from standpoint of pure
mathematics, the chosen formalism is neither rigorous,
nor complete.

3.1. Agents

We shall assume that our universe of discourse
consists of agents of various types: plants, animals,
human, enterprises, etc., and that all can be treated
as agents. We will use the lettersa, b, c, d with in-
dexes (or without) as the unique names for agents.
Further, we assume that the agents we deal with are
divided into categoriesC1, . . . , Cn, which may also
have specific names. The notationCi(a) will imply
that agenta belongs to categoryCi.

3.2. Time and space

We will assume that the space of our ecosystem
is organized as a two dimensional grid ofsites. Each
site has its own characteristic dimensions and can
host a certain number of agents. The sites are indexed
by x, y. The numbers of agents that a site can host
depend on the categories of the agents. We assume
that time is discrete, that is, it is a linear sequence
of intervals, each of a certain characteristic duration.

The length of the time intervals corresponds to the
characteristic length ofeventsthat take place in the
ecosystem. Since many processes in ecosystems ex-
hibit a periodic character, we will assume that time
can be divided into phases (such as hours of the day).
Furthermore, we will use as subscripts the letterst,
t1, t2 to denote the time-phases. We will assume that
all time phases consist of an equal number of atomic
time-intervals. We will call the duration of the to-
tal cycle interval thetotal period. The description of
events in our ecosystem will be considered in terms
of specific discrete partitions of time and space. The
values of the probabilities of events will depend upon
the properties of the partitions we employ. All the
while, we acknowledge that different partitions of time
and space are possible and could be used for other
purposes.

3.3. Events

We will consider three kinds of events:

(a) The natural demands of agents.
(b) The processes and interactions between the agents.

Some of these interactions can lead to satisfactions
of agents’ demands.

(c) Spatial events.

These three types of events were chosen to corre-
spond to the types of organization being considered.
The notation for events is chosen so as to facilitate
immediate recognition of which events are involved
in the given probabilistic computations.

3.4. Natural demands of agents

We assume thatsomecategories of agents have
certain sets of demands and that these demands differ
from category to category. We denoteQi = {Qd

i } as
the set of demands that agents of categoryi can have.
This can include demands for food, water, rest, mat-
ing, etc. The upper indexd enumerates the demands
that categoryi can have. The number of demands dif-
fers from a category to category. The notationQd

i,t(a)

will imply that agenta has demandQd
i at time-phase

t. The expressionQd
i,t(a) is an atomic Boolean for-

mula which can be either true or false, depending
upon the particular values ofa, and the indexesd,
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i, and t. For instance,Qd
i,t(a) is false for any agent

a that does not belong to categoryCi. As is often
done, we will associate the probabilities of events
with their relative frequencies. Probabilities of events
are measured over a long interval of time which must
include at least a few total periods. We will assume
that the probabilityP(Qd

i,t(a)) is the ratio between

the number of time-intervals for whichQd
i,t(a) is true

to the total number of time-intervals in time-phaset
that fall within the interval of measurement. Issues
relating to the counting of probabilities in multiagent
systems will be discussed inSection 8.

3.5. Processes

We assume that agents always participate in various
processes. The processes are divided into two large
categories—interactionsandnon-transitive processes.
We assume that for each agent of categoryi and for
each demandQd

i there exists an interaction that leads
to the satisfaction of that demand. If this happens to
be the interaction of an agenta of categoryi with an
agentb of categoryj, we will denote the interaction
asRd

i,j(a,b). Often a particular demand (for example,
the consumption of food) can only be satisfied via in-
teractions with agents from several categories. In such
cases, we have to consider the full set of interactions
Rd
i (a, ) = {Rd

i,j(a, b)}j,b. Certain demands (such as
sexual demands) can be satisfied only via interactions
with agents of the same category. We assume that there
exists an indexing of agent interactions of the form
given above that is consistent with the indexing of
demands. Whenever interactions happen in space and
time, we can attach indexes to denote the temporal
and spatial locations of those events as well. The nota-
tion that will be used for this purpose isRd

i,j,t,x,y(a,b).
We will not differentiate the non-interactive processes
and use symbolRi(a) to denote any non-interactive
process for agents of categoryCi. To accommodate
spatial and temporal information we will use symbol
Ri,t,x,y(a).

We further relate the probabilities of processes
with their relative frequencies. As we did earlier,
we assume the probabilityP(Rd

i,j,t,x,y(a,b)) will be
the ratio between the number of time-intervals for
which Rd

i,j,t,x,y(a,b) is true to the total number of
time-intervals in time-phaset that fall into the interval
of measurement.

3.6. Spatial events

We will consider four kinds of spatial events: (1)
Ai,t,x,y(a) will indicate that an agenta of categoryi
hasarrived at location (x,y) during time phaset; (2)
Di,t,x,y(a) will denote that an agenta of categoryi
hasdepartedfrom location (x,y) during time phaset;
(3) Pi,t,x,y(a) will signify that an agenta of categoryi
has remainedstationarywithin the location (x,y) dur-
ing time phaset; and (4)Abi,t,x,y(a) will mean that
an agenta of categoryi has beenabsentin location
(x,y) during time-phaset. A generic indexing of all
the three categories will be required to be able to treat
spatial events. We will use notationSk

i,t,x,y, where in-
dex k takes on the values 1, 2, 3, 4 corresponding to
spatial events of the first, second, third and the fourth
kinds, respectively. The calculations of probabilities
for spatial events are based on the same assumptions
as in the case of demands and processes.

3.7. Complex and atomic events

It should be noted that events constitute sets, and
hence set theoretical operations are defined on the
events. The following notations will be important:

Rd
i, ,t,x,y(a) =

⋃
j,b

Rd
i,j,t,x,y(a, b),

Rd
,j,t,x,y(b) =

⋃
i,a

Rd
i,j,t,x,y(a, b)

It should be noted here, however, that a degree of
subjectivity is inherent in these definitions. The mod-
eler must describe the set of all possible demands and
interactions that an agent of speciesCi can exhibit.
Also the modeler has the freedom to consider or not
to consider certain actions. Thus, the entire picture
will depend on the initial identifications made by the
modeler.

4. Quantifying spatial organization

In Sections 4–6we use AMC for quantifying spatial,
structural, and behavioral correlations in multiagent
models of ecological systems. For abbreviation, we
introduce the functionC(X,Y) on the set of all events.

C(X, Y) = P(X, Y) log

[
P(X, Y)

P(X)P(Y)

]
(4)
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We invoke the convention that summation is being
carried out over all distinct indexes appearing on the
left hand side, while non-distinct indexes remain fixed.
The following illustrates this convention and the above
abbreviation:

AMC({Ai,l}, {Bj,l}) = k
∑
i,j

C(Ai,l, Bj,l) (5)

The repeated indexl is fixed both in right and left side
of expression (5). Distinct indexes are used as summa-
tion indexes on the right and as indexes for elements
of the set on the left site of the expression. They are
intentionally left the same on both sides of expression.
When we use this convention, the expression from
AMC follows immediately from the notations on left
hand side of the expression.

We now consider correlations between the spatial
eventsSk

i,t,x,y. To begin, consider the coupling of the
set of all spatial events pertaining to agents of species
Ci that happened at site (x,y) at timet:

SCi(t, x, y)= AMC({Sd
i,t,x,y(a)}, {Sk

i,t,x,y(b)})

= k
∑

d,k,a,b

C(Sd
i,t,x,y(a), S

k
i,t,x,y(b)) (6)

This value represents the correlation between the
arrival, staying put, departure and absence from the
site (x,y) of the agents of speciesCi at time t. The
intuitive interpretation of AMI suggests that, if these
events are correlated, then the behavior of speciesCi

is organized, and the value of SCi(t,x,y) will be high.
We may illustrate this by an example. Assume thatCi

consists ofN birds. In the first case, we assume that the
motion of the birds is entirely random. In this case all
correlation coefficientsC(Sd

i,t,x,y(a), S
k
i,t,x,y(b))will be

0 and thus SCi(t,x,y) is also 0 for allt, x, y. In the
second case we can assume that birds move as an ideal
flock; that is, they enter, stay, and depart from each
location simultaneously. In the latter case we have

P(Sd
i,t,x,y(a), S

k
i,t,x,y(b))

= P(Sd
i,t,x,y(a)|Sk

i,t,x,y(b))P(S
k
i,t,x,y(b))

and

P(Sd
i,t,x,y(a)|Sk

i,t,x,y(b)) =
{

1 if d = k

0 otherwise

This justifies writing

SCi(t, x, y)= k
∑

d,k,a,b

P(Sd
i,t,x,y(a), S

k
i,t,x,y(b)) ·

log

[
P(Sd

i,t,x,y(a), S
k
i,t,x,y(b))

P(Sd
i,t,x,y(a))P(S

k
i,t,x,y(b))

]

= k
∑
d,a,b

P(Sd
i,t,x,y(a)) log

[
1

P(Sd
i,t,x,y(a))

]

= −kN
∑
d,a

P(Sd
i,t,x,y(a)) log[P(Sd

i,t,x,y(a))]

= kN
∑
a

Hi(t, x, y, a)

whereHi(t,x,y,a) is the Shannon entropy that quan-
tifies the uncertainty associated with the presence of
agenta at locationx, y during time-phaset. Thus, in
the example of ideal flocking, the index SCi(t,x,y) is a
positive number, which (in case of ideal organization)
will grow in proportion to the size of the organization
N. The bigger the size of the flock, the larger its index.
These observations justify our choice of SCi(t,x,y) as
our index of spatial organization. The reader is invited
to prove that, when the population is divided into two
completely independent ideal flocksF1 andF2, with
sizesN1 andN2, respectively, then the flocking move-
ment index will be

SCi(t, x, y)

= kN1

∑
a∈F1

Hi(t, x, y, a) + kN2

∑
a∈F2

Hi(t, x, y, a)

The next index measures the same spatial organiza-
tion as it pertains to the whole community, rather than
just to a single species:

SC(t, x, y)= AMC({Sd
j,t,x,y(a)}, {Sk

i,t,x,y(b)})
= k

∑
i,j,d,k,a,b

C(Sd
j,t,x,y(a), S

k
i,t,x,y(b)) (7)

Spatial organization SC is a function of site (x,y)
and time-phaset. At some sites SC(t,x,y) will attain
a high value, at other sites it will have low value.
It is intuitively obvious that the points of high SC
will indicate some kind of crossroads in an ecosystem.
That may be feeding, resting, and mating sites, i.e.
sites with great significance for the functioning of the
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ecosystem. If we are considering plant populations,
then large values of SC will possibly indicate sites
with higher degrees of patchiness. It remains possible
that SC(t,x,y) will yield high values on some sites
other than those wherein feeding, resting, mating or
sites of high patchiness occur. In fact, we anticipate
the existence of such sites; and, if they occur, then they
must be considered as important for the functioning of
the ecosystem as the sites where the aforementioned
processes occur. The expression for SC(t,x,y) could
be expressed in the form

SC(t, x, y) =
∑
i

SCSi(t, x, y)

where

SCSi(t, x, y) = k
∑
j,d,k

C(Sd
j,t,x,y, S

k
i,t,x,y)

The last expression represents that the part of the
magnitude of SC(t,x,y) that is associated with the
speciesCi. Hence, the overall value of spatial organi-
zation will be composed of values contributed by dif-
ferent species. The value〈SCSi(t, x, y)〉—the average
of SCSi(t,x,y) over all sites and all time-phases tells
how well the spatial movement or location of species
Ci is organized in relation to other species. The in-
tuitive interpretation of AMC suggests that species
of animals and plants with a higher degree of spatial
adaptation, and which are well connected to various
spatial events, will have relatively higher values of
〈SCi(t, x, y)〉.

The interesting question to consider is whether
SC(t,x,y) depends on the spatial and temporal scales?
That is, does it depend on the duration of the time
intervals and the size of the sites? In general, multia-
gent systems are not scale invariant. Each interaction
pattern has its own characteristic spatial and temporal
dimensions. Change the scale and the pattern is no
longer observed. The question of whether the system
is organized or not always depends on the spatial
and temporal scales. Since SC(t,x,y) is our chosen
measure of organization, we will presume that this
value will always depend on the sizes of temporal
and spatial grids.

We expect that the magnitude of SC(t,x,y) tends
to zero whenever spatial and temporal scales become
either too large or too small. We anticipate the exis-
tence of characteristic dimensions of space and time

for which SC(t,x,y) will be maximal. Such dimen-
sions, we will call as the characteristic scales of orga-
nization.

5. Quantifying structural organization

The network of interactions between species is
defined by the set of relationsRd

i,j. Indexd represents
the type of interaction. These types could be concrete
instances of well-known classes of interactions, such
as predation, competition, symbiosis, etc.

The same logical sequence that led to the quan-
tification of the structural organization of trophic
networks in the section titledTrophic Networks and
Ascendency Theorycan be invoked again to formulate
a measure for the structural organization of networks
of interactions.

The AMI for structural organization with one fixed
indexd is

STCd(t, x, y)= AMC({Rd
i, ,t,x,y(a)}, {Rd

,j,t,x,y(b)})
= k

∑
i,j,a,b

C(Rd
i, ,t,x,y(a), R

d
,j,t,x,y(b))

(8)

This is a reformulation ofEq. (2)for trophic networks.
Here

Rd
i, ,t,x,y(a) =

⋃
j,b

Rd
i,j,t,x,y(a, b),

Rd
,j,t,x,y(b) =

⋃
i,a

Rd
i,j,t,x,y(a, b) (9)

which are analogous to setsAi andBj. The measure
STCd (t,x,y) can be used whenever we want to focus
our attention on the interactions of only a certain
kind—for instance, interactions associated with the
consumption of food.

If we desire to consider more than one type of
interaction, the total AMC for the whole structural
organization becomes

STC(t, x, y)= AMC({Rd
i, ,t,x,y(a)}, {Rk

,j,t,x,y(b)})
= k

∑
d,k,i,j,a,b

C(Rd
i, ,t,x,y(a), R

k
,j,t,x,y(b))

(10)
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This expression can be rewritten in the form

STC(t, x, y) =
∑
i

STCSi(t, x, y)

where

STCSi(t, x, y)

= 1

2
k

∑
d,k,j,a,b

C(Rd
i, ,t,x,y(a), R

k
,j,t,x,y(b))

+ 1

2
k

∑
d,k,j,a,b

C(Rd
j, ,t,x,y(a), R

k
,i,t,x,y(b))

The last expression represents that part of
the value of STC(t,x,y) that is associated with
the speciesCi. The value 〈STCSi(t, x, y)〉, the
average of STCSi(t,x,y) over all sites and all
time-phases, tells how well the speciesCi is con-
nected to other species. The intuitive interpretation
of AMC suggests that species of animals and plants
with stronger connections with only certain other
species will have relatively higher value of〈STCSi
(t, x, y)〉.

6. The combined measures of structural, spatial,
and temporal organization

The combined measure of structural and spatial
organization at the site CC(t,x,y) can be estimated in
terms of the following AMC:

AMC({Rd
i, ,t,x,y(a)} ∪ {Sk

i,t,x,y(a)},
{Rn

,j,t,x,y(b)} ∪ {Sl
j,t,x,y(b)})

CC(t, x, y)= k
∑

i,j,d,n,a,b

C(Rd
i, ,t,x,y(a), R

n
,j,t,x,y(b))

+ k
∑

i,j,d,l,a,b

C(Rd
i, ,t,x,y(a), S

l
j,t,x,y(b))

+ k
∑

i,j,k,n,a,b

C(Sk
i,t,x,y(a), R

n
,j,t,x,y(b))

+ k
∑

i,j,k,l,a,b

C(Sk
i,t,x,y(a), S

l
j,t,x,y(b))

This expression can be rewritten in the following form,
illustrating the additive character of our measure of

organization:

CC(t, x, y)= STC(t, x, y)

+ k
∑

i,j,d,l,a,b

C(Rd
i, ,t,x,y(a), S

l
j,t,x,y(b))

+ k
∑

i,j,n,k,a,b

C(Sk
i,t,x,y(a), R

n
,j,t,x,y(b))

+ SC(t, x, y) (11)

As was done above, this expression can be written in
the form

CC(t, x, y) =
∑
i

CCSi(t, x, y)

The expression CCSi(t,x,y) represents that part of
value of CC(t,x,y) that is associated with speciesCi.
Thus, the overall combined value of importance will be
composed of values contributed by different species.
The average value〈CCSi(t, x, y)〉 reveals how much
speciesCi contributes to the total organization of the
ecosystem.

The combined measure of total structural, spatial,
and temporal organization at site TC(t,x,y) can be
estimated as

TC(t, x, y)= AMC({Rd
i, ,t1,x,y(a)} ∪ {Sk

i,t1,x,y(a)},
{Rn

,j,t2,x,y(b)} ∪ {Sl
j,t2,x,y(b)})

Here, we consider the correlations of events that can
possibly happen at different time phases. This measure
has an additive character similar to CC(t,x,y). In fact,
if F is the total set of time phases, then

TC(t, x, y) =
∑
t∈F

CC(t, x, y) + ∆

where∆ represents a complicated term that involves
only temporal correlations.

7. The index of adaptation

We define the adaptationF(i, t) of speciesCi as the
ability of the members of that species to satisfy their
natural needs in the given environment at timet. It is
important to underline the difference between adapta-
tion and adaptability. High adaptation of an agent to
given environment may be accompanied by low adapt-
ability (ability of system to adapt to new environment)
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and vise versa.Conrad’s Adaptability (1983) pro-
vided a formal treatment of adaptability, however his
entire exposition was cast in the framework of Marko-
vian processes, which are not commonly invoked in
ecosystem modeling. The subtleties of the relationship
between adaptation and adaptability were discussed in
Ulanowicz (2002)in the context of trophic networks.
Here we will focus on the operational measure of adap-
tation, which may be applicable to multiagent systems.

The needs of agents, as well as interactions which
lead to satisfaction of those needs, are events that occur
in space and time. They occur with certain frequencies,
and it is possible to associate probabilities with the re-
lated demands and satisfactions. We want to describe
the strength of causal coupling between the demands
Qd

i,t(a) and the interactionsRd
i, ,t+∆(a) that satisfy

them. An underscore () as a subscript should be under-
stood in the same way as inEq. (9), i.e. we are allowing
interactions with agents of any species that satisfy the
demandd. It follows from our previous discussion of
AMC that to describe the strength of coupling between
the sets of events{Qd

i,t(a)} and{Rd
i, ,t(a)}, we should

use the expression AMC({Qd
i,t(a)}, {Rd

i, ,t(a)}).
We can now provide a quantitative expression for

our definition of adaptation, namely:

Fi(a, t)= AMC({Qd
i,t,(a)}, {Rd

i, ,t,(a)})
= k

∑
d

C(Qd
i,t,(a), R

d
i, ,t,(a)) (12)

This measure of adaptation reflects the ability of
agents to satisfy their needs; however, it also quanti-
fies the diversity and unpredictability of those needs.
Consider the hypothetical case wherein agents are
able to satisfy their needs instantly. In this case,
P(Rd

i, ,t(a)|Qd
i,t(a)) = 1; so that

Fi(a, t) = −k
∑
d

P(Qd
i,t(a)) · log(Qd

i,t(a))

From this expression we see that the richer the set
of needs that the agent must satisfy, the higher the
required index of adaptation. That is, more highly
developed species with manifold needs have a higher
index of adaptation. This is a major point in which
our index of adaptation contrasts with the prevailing
concept of fitness. The term “fitness” has a long his-
tory (Iseda, 1996), having been introduced by Herbert

Spencer in 1864. The fitness concept, however, re-
mained a vague, unquantified notion until the 1930s.
Fisher (1930)was among the first to connect the term
to reproductive success, but it wasWaddington (1939)
who proposed to measure the “fitness” of an organism
according to the number of offspring it leaves. This
has now become the common meaning of the term.
An individual of a higher species, such as a human be-
ing that produces one or no offspring over its lifetime
would be assigned a very low index of fitness. There-
fore, the term “fitness” does not reflect evolutionary
status of a species. By way of contrast, the index of
adaptation we are proposing differentiates between
primitive and higher species, assigning a higher adap-
tation level to species with manifold demands.

In this treatment we have assumed that all demands
need to be satisfied in the near-term. It is not a com-
plicated task, however, to incorporate both immedi-
ate and long-term demands (those that do not need to
be satisfied immediately), and the reader is invited to
modify expression (12) so as to incorporate long-term
demands into the index of adaptation.

The average adaptation ofall species can be taken as
the sum of the adaptation of each species weighted by
the population/biomass fraction of the entire ecosys-
tem constituted by that species. Although the adap-
tation measure does not provide complete account
of agent capacities, the significance of such measure
should not be underestimated. The availability of a
numerical estimate for adaptation in the context of a
multiagent simulation will be the key to quantifying
the processes of evolution in a specific ecosystem.

8. Estimating the probabilities

In this section, we consider briefly the problem of
estimating the probabilities of various events occurring
in multiagent systems. We discuss the issue in rather
general terms, not always seeking to tie it to the partic-
ular indexes of organization that we have introduced
here. Although the concept of probability has a precise
mathematical meaning (Kolmogorov, 1956), its appli-
cation to real, physical systems is not free from certain
ambiguities. To begin with, we will revisit the notion
of probability as it pertains to the physical sciences,
noting several issues associated with the concept. We
will then consider various approaches for calculating
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probabilities as they pertain to multiagent systems. It
turns out there are several alternative avenues to es-
timating such probabilities, and each of them tacitly
involves a lack of organization of some kind—either
spatial, temporal, or behavioral. We proceed to show
that the restrictions of this sort are inherent in the con-
cept of probability itself. We then formulate aprinci-
ple of incompleteness for the probabilistic measures
of organization, which constitutes the central idea in
this section.

Properly speaking, a probability of an event’s hap-
pening can be defined only if that occurrence is a
possible outcome of some repeatable, self-similar
observation. “By the ‘probability’ of a particular out-
come of an observation we mean our most likely
estimate of the fraction of a number of repeated ob-
servations that will yield that particular outcome”
(Feynman et al., 1963) For example, the probabil-
ity that a molecule of an ideal gas has a velocityv

in the rangev1 < v < v2 would be the fraction of
molecules which have their velocities in this range:
P(v1 < v < v2) = N(v1 < v < v2)/N. It is not nec-
essary to actually make all the observations. What is
important is our ability to estimate the number of ob-
servations which yield the outcome in which we are
interested.

The problem arising here is how can we think of
a set of identical observations in the context of real
physical systems? The resolution is to find some
self-similarity or homogeneity in the system we are
considering. If our hypothetical repeated observation
is taken to be the measurement of the speed of all
molecules in the ensemble, such observation can be
considered self-similar if and only if all the molecules
are identical. This example leads us to an important
conclusion: “Any assumption involving the homo-
geneity of a system also implies a certain lack of orga-
nization at that level.” For example, when we assume
that all molecules are identical, it becomes impossi-
ble to imagine a unique spatial behavior or a unique
location in a certain framework as it might pertain
to a selected molecule. While the assumption of ho-
mogeneity is perfectly appropriate for the molecules
of a natural gas, it would usually be an unwarranted
simplification if applied to the agents in a multiagent
system. For instance, if we assume all the agents of
a categoryCi are identical, and the differences be-
tween them are random, then we are unable to assume

any unique pattern of spatial behavior. Territorial or
flocking behavior would become inconceivable.

Any method leading to the estimation of probabili-
ties in multiagent systems will necessarily be based on
some well-defined source of homogeneity in the sys-
tem. We, therefore, consider four options concerning
which type of homogeneity is assumed and proceed
to point out the strengths and the weaknesses of each
choice as follows.

• Time: We can assume that the system is homoge-
neous intime. If we assume that all instants of time
instances are equivalent, we can use the frequency
of an event as the measure of its probability. For ex-
ample, the probability,Pi,x,y(a), that an agenta in
categoryi remainsstationarywithin location (x,y)
is estimated to be the fraction of the units of time
that the agent remainsstationarywithin this loca-
tion, divided by the total interval of time consid-
ered. In similar manner, we can calculate the prob-
abilities of interactions. Such probabilities must be
associated with a large interval of time over which
observations are made. It becomes meaningless to
consider such things as the probability of an event
A happening at a particular momentt1. As a conse-
quence, causal correlations likeC(At1,Bt2) would
fail to have meaning. Furthermore, we would not be
able to identify any patterns of periodic behavior,
such as periodic migrations. Thus, we conclude that
the assumption of the equivalence of all instants of
time prevents us from quantifying any organization
imposed by casual links. We note in passing that
some shortcomings of this approach may be cured if
we attach to each instant of time a window of width
2d and calculate the probabilities using only those
instants of time that fall in the range [t − d, t + d].
This would allow us to associate events with ap-
proximate moments of time, which may be useful
in some situations.

• Periodic time: We can divide time into periods, such
as 24 h, or 48 periods of half an hour each, and then
equate all periods that belong to the same classes.
This approach would allow us to quantify some as-
pects of temporal periodic organization and would
be natural for those systems where agents exhibit
periodic behavior that is essential to the problem
being considered. The scope of this approach is
limited, however, to only those patterns of periodic
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behavior that are synchronized to our fundamental
period of time. This approach also requires a con-
siderably longer interval of observation compared
with the first method. The indexes of organization
introduced in this paper were designed around this
particular approach, and it is probably the most
appropriate way to treat multiagent systems with
periodic time.

• Total fluxes: We can assume that all quanta of
biomass pertaining to speciesCi are equivalent.
Ulanowicz (1986, 1997)used this approach to
calculate his indexes of structural organization. It
potentially could be used to quantify the organi-
zation imposed by causal links. Considering what
was said above about ideal gases, however, the
method cannot be used to address any aspects of
spatial organization. Furthermore, this approach
seems appropriate only for trophic interactions.

• Spatially explicit fluxes: We can associate biomass
fluxes with both compartmentsCi and spatial
locations (x,y). This approach was explored by
Pahl-Wostl (1992). This approach is far more po-
tent than considering only total fluxes. It allows one
to quantify certain aspects of spatial organization,
but only those pertaining to the spatial organization
of separate species. From the foregoing discussion,
it is evident that it does not allow one to deal with
interspecies patterns of organization, such as flock-
ing, competition for space, etc. To deal with these
elements of organization we must consider each
agent as an individual.

The above four options do not constitute an ex-
haustive list of possible methods to estimate probabil-
ities in multiagent systems. They should be sufficient,
however, to demonstrate that fundamental restrictions
on the probabilistic measures of organization do ex-
ist. Accordingly, we elaborate the following principle
of incompleteness pertaining to probabilistic measures
of organization:“There is no probabilistic measure of
organization which can simultaneously and exhaus-
tively quantify all the aspects of structural, spatial,
and causal organizations in a system.”As should be
obvious, this restriction derives from the necessity to
make at least one assumption about self-similarity or
homogeneity existing in a system before one can make
any practical estimate of the probabilities of events in
that system.

9. Discussion

We have introduced indexes that quantify various
aspects of ecosystem organization. We have distin-
guished special indexes for spatial and structural
organization and for any combination thereof. Fi-
nally, there is the index that quantifies the adaptation
of a species. All the indexes of organization that we
have introduced (save adaptation) are summarized in
Table 1.

These definitions may raise certain theoretical con-
cerns. One such concern might be how these indexes
of organization depend upon spatial and temporal
scales. It is important to note that most of the at-
tributes associated with the organization of multiagent
systems are not scale invariant, and our indexes most
certainly depend upon spatial and temporal scales.
Since the notion of the organization of the system it-
self depends on the scales of time and space, it might
be illustrative to consider explicitly the dependence
of these expressions on time-space. We anticipate that
the magnitude ofeach indexwill tend towards zero
whenever spatial and temporal scales become either
too large or too small. We expect that for each index
there will be a magnitude that will characterize both
the temporal interval and the spatial grid-work for
which the indexwill be maximal. Such a magnitude
we call the characteristic scale of organization.

As long as the probabilities of events depend on
a characteristic dimensions of space and time, all at-
tributes of organization that depend on such probabil-
ities will also depend on scale. One way of obtaining
scale-invariant expressions is to work with probability
densities and with densities of AMC. The definition of
such densities would require extra caution, however,
for in general we are not able to resolve infinitely
small areas or infinitely small intervals of time via
traditional procedures.

The fact that there are many ways to partition an
ecosystem into taxa and to denote a set of interac-

Table 1
Indexes of organization as defined in the text

Organization type One species All species

Spatial SCi, SCSi SC
Structural STCSi STC
Spatio-structural CCSi CC
Spatio-structural–periodical TCSi TC
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tions between them raises another theoretical concern,
namely how the partitioning of the ecosystem into
species, or the selection of certain finite set of agents
interactions affects the defined indexes. How the no-
tion of organization depends upon the underlying
frame of reference (i.e. the language used to describe
the system) seems to be fundamental. We envisage
that such dependence will be essential; and, again, we
anticipate a “most appropriate” partition that captures
the most essential processes and produces the greatest
magnitudes in the measures of organization.

Can the indexes we have defined be put to any prac-
tical use? If they indeed reflect the degrees of organi-
zation, then the following three hypotheses could be
entertained.

Hypothesis 1. Any disturbance of an ecosystem at
a location associated with a high spatial Importance
Index SC(t,x,y), TC(t,x,y), CC(t,x,y) will exert a
greater impact on the population dynamics than will
a similar disturbance occurring at a place where the
values of these indexes are lower.

Hypothesis 2. Any disturbance in an ecosystem af-
fecting a particular speciesCi with high individual
Importance Indexes SCi, STCi, CCi will cause a
greater impact on the overall population dynamics
than will a disturbance impacting a species with a
lower value of that index.

Furthermore, the availability of a measure of adap-
tation should allow us to identify evolving systems as
those with an increase in average adaptation. Whence
the following surmise concerning system ascendency.

Hypothesis 3. The ascendency of an evolving system
has a propensity to increase.

The general character of the proposed hypotheses
suggests the necessity to test them under a wide range
of circumstances. It is possible that it may not be
feasible to test the hypotheses on actual data, at least
at this stage. The simulation of ecosystems behavior
in silico, however, affords the unique opportunity
to test the efficacy of our indexes by studying the
evolution and development of complex systems un-
der various “what if” scenarios. Through simulation
we can readily compare the dynamics of ecosystems

under disturbance with their counterparts that are free
from such perturbations. Moreover, while studying a
(multiagent) systemin silico, all the data about the
system in action necessary to calculate our indexes
can be made readily available.

Numerous funding agencies lately have devoted
significant resources to the development of ecological
indicators. By and large these initiatives all have been
of an ad-hoc nature—witness the popular IBI indexes.
By contrast, if the hypotheses just formulated should
survive scrutiny, a set of indexes that reveals the sta-
tus of the system at a fundamental dynamical level
would then be available for managerial applications.
The implications for using such indexes to achieve
more penetrating and relevant environmental impact
assessments to help in guiding management decisions
should be patent to all.
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