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a b s t r a c t

The construction of material and energy budgets within ecosystems has long been accom-

plished via manual calculation. Recently, optimization techniques have been adapted to

automate the procedure, but these methods require assumptions that may not square with

biological reality. Two algorithms are developed to construct ecosystem budgets under min-

imal inference. Although the methods do not recapitulate the model used to generate the

input data, analysis reveals that the results do not differ statistically from networks that

were constructed manually.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The recent demand by management for mitigation strategies
that encompass whole ecosystems has fueled a search for
new quantitative whole-system methods. Heretofore, ecosys-
tems science developed around various methods for modeling
and simulating ecosystems processes; however, simulation
modeling becomes fraught with problems associated with sta-
bility and prediction whenever multiple coupled processes are
involved (Platt et al., 1981). Ecological network analysis (ENA)
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Campbell Building, 4041 Durban, South Africa. Tel.: +27 31 2601605.

E-mail addresses: ulan@cbl.umces.edu (R.E. Ulanowicz), scharler@ukzn.ac.za (U.M. Scharler).

has evolved as a complementary alternative to simulation
modeling for the study of individual ecosystem components,
groups of components, or the quantification of attributes of
the system as a whole (Wulff et al., 1989; Higashi and Burns,
1991; Fath and Patten, 1999; Ulanowicz, 2004; Jørgensen and
Fath, 2006).

ENA requires that one first quantify the stock of each
ecosystem component (or node) as well as the various
exchanges among those nodes. That is, one must identify and
quantify a network that answers the questions, “Who eats
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whom?” and “By how much?” Furthermore, most (but not all)
ENA methods require the balance of medium around each
node. The analysis packages themselves are often available
online (Ulanowicz, 2002; Christensen and Pauly, 1992; NOAA,
2004; Allesina and Bondavalli, 2004; Fath and Borrett, 2006),
so that the major task facing most ENA investigators is the
accumulation of the necessary data.

Ideally, ENA should rely on field data to quantify each and
every stock and transfer comprising the particular community
under study. As this is a virtual impossibility, even for sys-
tems of modest complexity, the investigator is forced to create
networks based on partial data. The rest of the values must
be inferred via the assumption that, over a sufficient inter-
val, outputs should balance inputs around each compartment
(Polovina, 1985; Ulanowicz, 1989; Hart et al., 1997). Usually, the
available information consists of: (1) the population densities
expressed in terms of some chosen material element (e.g., car-
bon, nitrogen, phosphorus) or the amount of bound energy in
each node; (2) information on the topology of transfers (who
eats whom); and (3) some quantitative knowledge about the
physiological requirements of each species. With such infor-
mation, it usually becomes possible to create a fully balanced
network.

One usually begins with the density of a population and
some estimate of its consumption per unit density. The
product of these yields the approximate demand that the com-
partment makes on all its possible sources. If, in addition, one
also has information on the losses via respiration and excre-
tion per unit of stock, then one may subtract those losses from
the total demand to estimate the potential secondary pro-
duction of that population, i.e., how much input that species
is capable of providing to all its predators. Finally, one uses
the known prey–predator connections (feeding topology) to
match up the rates of availability (supplies) with the various
demands.

This apportionment of sources to supplies is known as bal-
ancing the network, and it originally was accomplished either
by trial and error or with the help of a spreadsheet. Today
there are algorithms that can handle this task (Polovina, 1985;
Christensen and Pauly, 1992; Vezina and Platt, 1988). Most of
these methods are variational in nature. That is, some goal
function, such as deviation from suggested parameters, is
minimized subject to the constraints that inputs and outputs
must balance around each node. There are, however, draw-
backs to optimization techniques: (1) the object function is
often chosen for mathematical convenience, rather than to
satisfy biological reality, and the particular choice could bias
the results arbitrarily. (2) Furthermore, solutions to optimiza-
tion problems very often lie on a “vertex of the constraint
polyhedron” (Cheung, 1985), which is a mathematician’s way
of saying that one or more of the known exchanges are forced
to zero in the solution. (3) Finally, optimization routines often
are computationally demanding.

Because (1) and (2) can introduce unwanted (and often
unknown) bias into the final result, the question arises
whether there exist methods that require as little mathe-
matical inference as possible. By obviating the complexities
associated with optimization techniques, it is possible that
both fidelity to nature and computational efficiency could be
improved. Two such potential methods are considered below,

Fig. 1 – The topology of the exchanges of energy within the
Cone Spring Ecosystem (Tilly, 1968). Arrows not originating
from a box represent exogenous inputs. Arrows not
terminating in a box portray exogenous outputs. Ground
symbols depict dissipations.

but it is helpful first to describe a very simple network example
with which to test and illustrate each method.

2. The Cone Spring example

One of the iconic examples from the early days of network
analysis is the very simple five-component budget for energy
flow in the ecosystem of Cone Spring, Iowa (Tilly, 1968). For
illustrative purposes, only the four-component detritus sub-
web need be considered. This consists of (1) bacteria, (2)
detritivores (small animals that eat detritus and attached bac-
teria) and (3) carnivores (animals that prey on detritivores), as
well as a pool of (4) non-living detritus that supports all of the
foregoing. The topology of the transfers of energy among the
four components is depicted in Fig. 1.

The stocks of bound energy and the associated physiolog-
ical ratios for the detrital sub-graph are all given in Table 1.

There are 14 flows depicted in Fig. 1. Eleven of the ratios
among these flows are specified in Table 1. In addition, the
flows around each of the four components must balance (any
three of which are linearly independent). Hence, the system is
determinate (14 unknowns and 14 independent constraints)

Table 1 – Stocks of energy (kcal m−2) and physiological
constants (y−1) for the detrital-based community in the
Cone Spring Ecosystem (Fig. 1)

Stocks (U) C/U I/U E/U R/U

Bacteria 116.3 44.64 0.00 2.19 28.09
Detritivores 60.0 39.73 0.00 0.00 30.23
Carnivores 17.0 21.76 0.00 0.00 11.94
Detritus 357.4 32.13 26.63 2.41 8.70

U: Stock, C: consumption, I: external input, E: export, R: dissipation
(respiration).
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Fig. 2 – The magnitudes of the trophic exchanges of energy
(kcal m−2 y−1) in the Cone Spring Ecosystem (Tilly, 1968).
The numbers inside each box represent the stocks of
energy in kcal m−2.

and may be solved exactly to yield the exchanges shown in
Fig. 2.

It is convenient to use a determinate set of data as the
benchmark with which to illustrate the balancing of the
network, because then any discrepancies can be attributed
exclusively to inaccuracies in the balancing algorithm and not
to ambiguities in the flow structure or to defects in the original
data.

It is always helpful to run an initial check on the overall
balance of the system. That is, the external inputs should
roughly balance the external outputs,

∑n

i=1Ii =
∑n

i=1(Ei + Ri),
where Ii is the external input to compartment i, Ei is the
export from that compartment, and Ri is its rate of dissipation.
Here the overall balance is perfect, but if imbalance should be
severe (say, >10–20%), then it would behoove the investigator
to recheck the data. The methods to be described will work,
even when the overall imbalance is large, but results obviously
will be more satisfactory if one starts with a system that is
balanced overall.

Before implementing a compartmental balancing tech-
nique, it is necessary first to check the given data for
consistency. One begins by summing up the overall internal
demands, D, as

D =
n∑

i=1

(Ci − Ii),

where Ci is the consumption by compartment i, and Ii the
external input to compartment i originating outside the sys-
tem, e.g., migration, litter import, or energy from the sun. The
accumulated available supplies, S, that constitute medium
(e.g., carbon) that is available for internal consumption, are
summed as

S =
n∑

i=1

(Ci − Ei − Ri),

Table 2 – Internal demands (Dj) and internal
availabilities (Si) (kcal m−2 y−1) for each member of the
detrital-based community in the Cone Spring Ecosystem

Dj (Dj/D) Si (Si/S)

Bacteria 5205.0 (0.52) 1675.0 (0.17)
Detritivores 2384.0 (0.24) 570.0 (0.06)
Carnivores 370.0 (0.04) 167.0 (0.02)
Detritus 1967.0 (0.20) 7514.0 (0.75)

Totals 9926.0 (1.00) 9926.0 (1.00)

Corresponding fractions of total demands [Dj/D] or availabilities
[Si/S] follow in parentheses.

where Ci is the consumption, Ri the respiration, and Ei the
material export by compartment i to the outside of the sys-
tem. With a system in overall balance, the aggregate demands
equal the total available supplies. If the overall balance is
only approximate, however, one takes the geometric mean
between them, G(= √

DS), to be the metric of total internal
system activity.

It is also necessary to check whether sufficient potential
supplies are available to meet the demand by each component.
That is, for each node i, one checks whether

∑
j

(Cj − Ej − Rj) ≥ (Ci − Ii), (1)

where j is summed over all prey (sources) available to taxon
i. If any taxon fails this test, then the data pertaining to
it as predator and those associated with all its prey need
to be re-examined. In the determinate case of Cone Spring,
D = G = S = 9926 kcal m−2 y−1, and all inequalities (1) are satis-
fied. For reference in what follows, Table 2 lists the internal
demands and availabilities for each compartment of the Cone
Spring network.

3. Joint apportionment (MATBLD)

Having outlined how to estimate the demands and availabil-
ities proper to each compartment, attention now turns to
possible least inference schemes for apportioning the avail-
abilities among the demands according to the given topology.
Perhaps the simplest scheme would be to assign availabilities
according to respective demands. That is, the amount of the
internal activity that flows from i to j might be jointly pro-
portional to the product of the fraction of all supplies proper
to prey i times the fraction of community demand made by
predator j([Dj/D] × [Si/S]). In fact, if D = S = G, and if each com-
partment contributes to all the others (i.e., all possible flows i,
j are nonzero), then the suite of flows,

Tij =
(

Dj

D

)(
Sj

S

)
G, (2)

would exactly balance the network. Of course, ecosystems
are virtually never so densely connected, so that many Tij are
observed to be zero. Whenever flows are missing, the sum of
all the nonzero Tij as calculated by (2) will fall short of the total
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Fig. 3 – The Cone Spring detrital community as in Fig. 2,
only with internal flows as estimated by joint distribution,
MATBLD.

estimated internal transfers. It becomes necessary to “inflate”
them by the ratio of the original G (9926) to the summed Tij

(6583 in this instance) to yield an inflation factor (=1.508). Once
the Tij have been inflated by this ratio, the system can be bal-
anced, and the ensuing G is 9920 kcal m−2 y−1, which is about
the same as the original the value (Fig. 3).

It is immediately apparent that these estimated flows do
not balance around each compartment. (The surpluses in
compartments 1 and 2 roughly balance the deficits in 3 and
4.) The entire system can be made to balance, however, using
the dynamical assumption of linear donor-control (Ulanowicz,
1989). It is well known that a system wherein each flow out of
an arbitrary compartment is proportional to the current stock
of that compartment will remain inherently stable (positive
semi-definite). That is, starting with a system of all positive
flows, the dynamics will never drive any flow negative. Now,
the balanced steady-state endpoint of the linear donor-control
dynamics can be calculated via matrix operations. Allesina
and Bondavalli (2003) noted how, when the direction of each
flow is reversed, a balance also can be struck in the opposite
direction. Importantly, they discovered that the statistical reli-
ability of a balance consisting of the average of those cast in
both directions is greater than can be achieved by equilibrat-
ing the system in either direction alone. Accordingly, Fig. 4
depicts the results of balancing the network using the method
of Allesina and Bondavalli.

4. Construction by reverse mold-filling
(MATLOD)

Comparison of Fig. 4 with Fig. 3 reveals that some constraints
beyond simple joint dispersal are at work in the Cone Spring
Ecosystem. But one is left to wonder whether joint apportion-
ment is really the method of least inference? Here it is useful
to recall that early networks were balanced by trial and error
using spreadsheet calculations. Might this approach be mim-

Fig. 4 – The Cone Spring detrital community of Fig. 3 after
balancing by the method of Allesina and Bondavalli (2003).

icked in algorithmic fashion? To do so, one begins with the
assumption that no distinction whatsoever exists among all
possible flows. That is, one begins to add some small uniform
amount, ı, to all allowed flows in some arbitrary sequence.
Each time ı is added to a flow, it is also subtracted from the
availability of its donor and the demand by its recipient. This
process is iterated until one of two conditions occurs for a
particular flow:

(1) The addition of ı to that flow exhausts the availability of
its donor, or

(2) The addition of ı to the flow in question satiates all remain-
ing demand by the receptor.

Whenever either condition (1) or (2) is encountered, the
particular flow in question is deleted from the sequence of
flows during all subsequent iterations. Uniform additions to
flows continue until no flows remain in the sequence. At that
point, availabilities will have been matched with demands to
the fullest extent possible under the uniform apportionment
scheme. The availabilities and demands that remain at ter-
mination will represent the remaining imbalances among the
compartments.

This “loading” method bears some resemblance to what
happens when a fluid is poured into a concave mold. The ini-
tial fluid runs down to the deepest and narrowest segment
of the mold. The fluid level continues to rise until the lip
of that segment is reached, whereupon the additional fluid
begins to spill out over a larger area of the mold. This contin-
ues until the mold is filled. Just prior to the endpoint the fluid is
being applied over the whole area of the mold. The algorithm
just described strongly resembles the mold-filling process in
reverse.

Loading the Cone Spring topology matrix via the reverse
mold-filling algorithm, results in the values shown in Fig. 5.

As happened with MATBLD, the direct output of MATLOD
does not balance around each node. There is a significant
deficit around the bacteria and a commensurate surplus for
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Fig. 5 – The Cone Spring detrital community (Fig. 2) that
results when internal flows are estimated using the reverse
mold-filling algorithm, MATLOD.

Fig. 6 – The Cone Spring detrital community created by
MATLOD (Fig. 5) after application of the balancing method
of Allesina and Bondavalli (2003).

the detritus. Again, the system must be brought into balanced
by the Allesina–Bondavalli algorithm (Fig. 6).

5. Applications to diverse ecosystems

When the original estimates of flows in the Cone Spring detri-
tal system (Fig. 2) are compared with the results generated
by MATBLD and MATLOD (Figs. 4 and 6), it becomes obvious
that constraints are at work in the actual system to apportion
activities in ways that diverge from the patterns of simple joint
or uniform distributions. Knowing such differences can assist
an investigator in identifying and articulating the active agen-
cies that influence trophic patterns in ecosystems (see Section
6 below).

The starting data are not precise, however. They them-
selves are (sometimes rough) estimates and usually bear the
unavoidable systematic or arbitrary biases of those who put
the network together. The larger question arises, therefore,
as to whether the outputs from MATBLD and MATLOD are
any poorer representations of reality than the constructs
achieved through ad hoc or variational schemes? To explore
this issue requires that one examine the differences between
the networks that currently populate the literature and their
counterparts as would result from the application of the algo-
rithms proposed here.

Accordingly, the two methods described above were
applied to 25 published networks of trophic exchanges that
had been estimated either “by hand” or with the aid of opti-
mization routines. That is, the availabilities (Si) and demands
(Dj) of each compartment in every chosen network were calcu-
lated using the reported topology of each network. Similarly,
the physiological rate parameters (consumption, respiration,
production, and egestion) were calculated from the given data.
Doing so provided the data required to start both the joint and
even fill methods for matching supplies with demand. The
resulting flows were compared with those given in the original
networks.

The flows between compartments generated by both MAT-
BLD and MATLOD were correlated with the flows given in the
literature. The intercept of the correlation was constrained to
be zero, because the object of the exercise was to examine
how well the correlations correspond to a 1:1 line. In general,
the chosen networks were a mixture of many small flows and
markedly fewer large ones. The likelihood therefore existed
that the few large flows might dominate the correlations,
resulting in unrealistically high R values (Table 3). Therefore,
the data were log-transformed to examine the correlation in
the absence of such bias.

By and large, the trophic exchanges generated by MAT-
LOD resulted in better correlations with the published data,
although both methods were rather effective in reproducing
the original flows. Networks consisting of a comparatively
high number of exchanges all correlated very well. Only 4 net-
works generated using MATBLD and 2 using MATLOD resulted
in Rs smaller than 0.8. Both methods reproduced larger trans-
fers better than smaller flows.

Both MATBLD and MATLOD balance the flows after gen-
erating them, so that inflows equal outflows for each
compartment. The balancing routine changes the flows to
some extent in order to achieve balancing (see Allesina and
Bondavalli, 2003). To test whether the correlation results were
in part due to the balancing of the networks, the original
published flow values were correlated to unbalanced flows
generated by MATBLD and MATLOD. The correlation coeffi-
cients showed hardly any change for most flows, especially
for those flows generated by MATLOD (Table 3). Unbalanced
MATLOD generated flows actually showed higher overall cor-
relation coefficients with original flows than did balanced
MATLOD generated flows. The correlation coefficients of
unbalanced MATBLD generated flows and original (=untrans-
formed) published flows were in general slightly lower
compared to balanced MATBLD generated flows (Table 3).

A t-test was performed pairing the untransformed pub-
lished trophic exchanges with the corresponding flows
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Table 3 – Simple linear correlations of published trophic transfers with those generated by MATBLD or MATLOD

Ecosystem Published vs. balanced
MATBLD

Published vs. balanced
MATLOD

Published vs.
unbalanced MATBLD

Published vs.
unbalanced MATLOD

n References

Name (#compartments) Original log Original log Original log Original log

R R R R R R R R

Kromme estuary, South Africa (16) 0.98 0.71 0.99 0.88 0.97 0.68 0.99 0.94 44 Baird and Ulanowicz
(1993)

Kromme estuary, South Africa (25) 0.99 0.73 0.98 0.74 0.98 0.71 0.98 0.75 98 Scharler and Baird
(2005)

Swartkops estuary, South Africa (25) 1.00 0.79 0.99 0.78 0.99 0.77 0.99 0.78 104 Scharler and Baird
(2005)

Sundays estuary, South Africa (25) 0.99 0.86 0.98 0.85 0.98 0.84 0.98 0.85 99 Scharler and Baird
(2005)

Crystal River Creek, USA (21) 1.00 0.85 1.00 0.92 0.97 0.82 1.00 0.93 82 Homer and Kemp
(unpublished data)

Chesapeake Bay, USA (15) 0.98 0.87 0.99 0.91 0.96 0.92 0.99 0.95 47 Baird et al. (1991)
Chesapeake Bay, USA (36) 0.96 0.93 0.99 0.95 0.92 0.94 0.99 0.99 122 Baird and Ulanowicz

(1989)
Lower Chesapeake Bay, USA (34) 0.96 0.91 0.98 0.94 0.87 0.98 0.98 0.99 115 Hagy (2002)
Middle Chesapeake Bay, USA (34) 0.93 0.89 0.97 0.95 0.83 0.95 0.96 0.99 149 Hagy (2002)
Upper Chesapeake Bay, USA (34) 0.89 0.83 0.94 0.86 0.79 0.95 0.94 0.98 158 Hagy (2002)
Somme Estuary, France (9) 0.94 0.9 0.91 0.87 0.95 0.91 0.94 0.92 24 Rybarczyk et al. (2003)
Dublin Bay, Ireland (7) 0.96 0.88 0.99 0.91 0.97 0.88 0.99 0.91 12 Wilson and Parkes

(1998)
Dublin Bay, Ireland (15) 1.00 0.86 0.99 0.93 1.00 0.98 0.99 0.98 31 Foley (unpublished data)
Narragansett Bay, USA (32) 0.96 0.88 0.99 0.96 0.96 0.85 0.99 0.99 158 Monaco (1995)
St. Marks estuary, USA (51) 0.95 0.85 0.98 0.91 0.82 0.90 0.98 0.93 270 Baird et al. (1998)
Maspalomas lagoon, Spain (21) 0.86 0.69 0.91 0.80 0.75 0.99 0.93 1.00 55 Almunia et al. (1999)
Mondego estuary, Portugal (43) 0.99 0.91 1.00 0.84 0.99 0.96 1.00 0.96 348 Patrı́cio et al. (2004)
Everglades Graminoids dry, USA (66) 1.00 0.91 0.99 0.98 0.98 0.97 0.99 0.97 793 Ulanowicz et al. (2000)
Everglades Graminoids wet, USA (66) 0.99 0.93 0.97 0.91 0.98 0.97 0.97 0.97 793 Ulanowicz et al. (2000)
Florida Bay dry, USA (125) 0.96 0.88 0.99 0.90 0.82 0.98 0.99 0.98 1969 Ulanowicz et al. (1998)
Florida Bay wet, USA (125) 0.94 0.88 0.99 0.90 0.80 0.98 0.99 0.98 1938 Ulanowicz et al. (1998)
Cypress Wetlands dry, FL, USA (68) 0.94 0.89 0.94 0.89 0.89 0.97 0.94 0.97 554 Ulanowicz et al. (1997)
Cypress Wetlands wet, FL, USA (68) 0.95 0.92 0.98 0.94 0.89 0.98 0.98 0.98 545 Ulanowicz et al. (1997)
Mangrove estuary dry, FL, USA (94) 0.96 0.85 0.98 0.89 0.90 0.98 0.98 0.99 1339 Ulanowicz et al. (1999)
Mangrove estuary wet, FL, USA (94) 0.96 0.86 0.98 0.90 0.90 0.98 0.98 0.99 1340 Ulanowicz et al. (1999)

Original: Untransformed data; log: log-transformed data; n: number of transfers; intercept = 0.
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Table 4 – Paired t-test on untransformed published flows and their counterparts generated by MATBLD and MATLOD

Ecosystem Published vs. balanced MATBLD Published vs. balanced MATLOD

Name (#compartments) t d.f. p t d.f. p

Kromme estuary, South Africa (16) −0.548 43 0.59 0.095 43 0.93
Kromme estuary, South Africa (25) 0.104 97 0.92 0.367 97 0.72
Swartkops estuary, South Africa (25) 0.626 103 0.52 0.448 103 0.66
Sundays estuary, South Africa (25) 0.345 98 0.73 0.493 98 0.62
Crystal River Creek, Control, USA (21) 0.479 81 0.63 0.409 81 0.68
Chesapeake Bay, USA (15) 0.658 46 0.51 −0.194 46 0.85
Chesapeake Bay, USA (36) −0.101 121 0.92 −0.093 121 0.93
Lower Chesapeake Bay, USA (34) −0.206 114 0.84 −0.259 144 0.80
Middle Chesapeake Bay, USA (34) −0.409 148 0.68 −0.618 148 0.54
Upper Chesapeake Bay, USA (34) 0.196 157 0.85 0.255 157 0.80
Somme Estuary, France (9) 0.873 23 0.39 0.524 23 0.61
Dublin Bay 7 UB −0.248 11 0.81 −0.082 11 0.94
Dublin Bay, Ireland (7) −0.02 11 0.98 0.009 11 0.99
Dublin Bay 15 UB −0.219 30 0.83 −0.192 30 0.85
Dublin Bay, Ireland (15) −0.073 30 0.94 −0.073 30 0.94
Narragansett Bay, USA (32) 0.178 157 0.86 0.089 157 0.93
St. Marks estuary, USA (51) 0.385 269 0.70 0.007 157 0.99
Maspalomas coastal lagoon, Spain (21) 0.688 54 0.49 0.56 54 0.58
Mondego estuary, Portugal (43) 1.094 347 0.28 0.713 347 0.48
Everglades Graminoids, dry season, USA (66) −0.082 792 0.94 −0.092 792 0.93
Everglades Graminoids, wet season, USA (66) 0.042 792 0.97 −0.043 792 0.97
Florida Bay, dry season, USA (125) 1.584 1968 0.11 0.267 1968 0.79
Florida Bay, wet season, USA (125) 1.103 1937 0.27 0.261 1937 0.79
Cypress Wetlands, dry season, FL, USA (68) −0.079 553 0.94 −0.014 553 0.99
Cypress Wetlands, wet season, FL, USA (68) 0.153 544 0.88 0.138 544 0.89
Mangrove estuary, dry season, FL, USA (94) −0.356 1338 0.72 0.003 1338 1.00
Mangrove estuary, wet season, FL, USA (94) −0.352 1339 0.73 0.061 1339 0.95

generated by MATBLD and MATLOD. The comparison revealed
no statistically significant differences (Table 4). Hence, it can
be concluded that both methods work at least as well at
matching supplies and demands as do the conventional ad
hoc or variational methods.

6. Discussion and conclusions

Comparison of the network generated by MATBLD (Fig. 4) with
the original flows (Fig. 2) reveals some significant differences.
Most notably, the throughput of carnivores (3) has decreased
by almost 50%, whereas its stock has almost quadrupled. The
retention time by the carnivores has thus lengthened drasti-
cally (from 16 days to 22 weeks). The detritivores now process
far more via the bacteria, which for their part recycle less
directly back to the detrital pool.

The network constructed using the reverse mold-filling
algorithm (Fig. 6) likewise differs from the original (Fig. 2).
In particular, one notes on Fig. 5 the equiponderance of
flows from the bacteria to the detritivores and detritus
(835 kcal m−2 y−1), as well as those from the detritivores to
the carnivores and detritus (284 kcal m−2 y−1). These unifor-
mities presumably result because the availabilities of the
donors involved all become exhausted at the same point
in the algorithm. As with the joint apportionment, reverse
mold-filling shunts more energy from bacteria to the detri-
tivores and recycles less from the bacteria back to the detritus
than occurred in the original network. Unlike the joint dis-
tribution algorithm, the mold-filling method did not dilate

the retention time of the carnivores to an unusual extent
(20 days).

Neither method of construction recapitulated the small
flow from bacteria to detritivores present in the original
system (Fig. 2). Presumably, this constriction in the actual
ecosystem is the result of constraints particular either to this
example or to this biotic process. The mold-filling, as might
have been expected, tended to even out flows over the suite of
internal transfers, whereas the joint apportionment generated
more disparities in the pattern of assignations. Unfortunately,
the more heterogeneous latter pattern did not compare well
to the original system.

Such discrepancies notwithstanding, the flows generated
by the two proposed algorithms compared well with the orig-
inal (published) flows. Because the published networks also
reflect explicit and tacit approximations, it becomes difficult to
say which of the two algorithms generates networks closer to
reality. Suffice it to conclude that the methods in both MATLOD
and MATBLD compare favorably with estimation techniques
now commonly in use.

It may be possible to shorten the computational time
required by the reverse mold-filling scheme by conducting
a conditional search between the remaining availabilities
and demands to locate exactly which constraint will next
be satisfied and by which amount. All flows could then be
adjusted simultaneously by that quantity. The conditional
search could then be iterated until no possible combinations
remain to be satisfied. Such an alternative algorithm will be
explored under future work. The assumption made under both
MATBLD and MATLOD – that all biomass in the system is
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available as food for consumers – also bears further exami-
nation. As currently implemented, the algorithms disregard
any strategies on the part of prey and plants to avoid being
consumed. Therefore, adding natural mortality rates to the
starting system information might improve the estimation
schemes.

Although the suggested algorithms did not reproduce all
flows in the Cone Spring test network well, several did match
closely. The attempts to recapitulate a collection of networks
that had been constructed ‘by hand’ generally produced good
agreement. It should be stressed once again that the two
methods employed here minimize the suppositions (explicit
or tacit) usually made in constructing networks. They produce
results that are as “untouched by human hands” as possible.
The facts that they are also simple and easy to use should go
a long way towards facilitating the construction of additional
quantitative trophic networks and thereby make the network
approach more attractive to use and easier to implement by
whole-system ecologists.

The software to calculate trophic exchanges with either
the MATBLD or MATLOD method can be requested from the
authors.
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