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Abstract

The analysis of networks of ecological trophic transfers is a useful complement to simulation modeling in the quest for understanding
whole-ecosystem dynamics. Trophic networks can be studied in quantitative and systematic fashion at several levels. Indirect relationships
between any two individual taxa in an ecosystem, which often differ in either nature or magnitude from their direct influences, can be assayed
using techniques from linear algebra. The same mathematics can also be employed to ascertain where along the trophic continuum any
individual taxon is operating, or to map the web of connections into a virtual linear chain that summarizes trophodynamic performance by the
system. Backtracking algorithms with pruning have been written which identify pathways for the recycle of materials and energy within the
system. The pattern of such cycling often reveals modes of control or types of functions exhibited by various groups of taxa. The performance
of the system as a whole at processing material and energy can be quantified using information theory. In particular, the complexity of process
interactions can be parsed into separate terms that distinguish organized, efficient performance from the capacity for further development and
recovery from disturbance. Finally, the sensitivities of the information-theoretic system indices appear to identify the dynamical bottlenecks
in ecosystem functioning.
© 2004 Elsevier Ltd. All rights reserved.
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1. Why network analysis? trivial tasks of calibrating the model according to some set
of system observations and validating it against another in-
Ecologists have precious few tools at their disposal to rep- dependent set of data.
resent phenomena that transpire at the level of the whole- Unfortunately, grave problems, both practical and con-
ecosystem. Yet, they increasingly are being exhorted to ap-ceptual, beset such whole-ecosystem simulation modeling.
proach environmental problems at the level of the whole On a practical level, the results of the endeavor appear to
ecosystemNSF, 1999. To date, the most common tool for leave much to be desire&lieffer and Beets, 1994MVhich
guantifying systems-level events is simulation modeling. Be- is not to ignore some successful models consisting of one or
fore one can simulate an ecosystem, it is necessary first toa few processes, but as the number of interacting processes
identify the relevant taxa that comprise it. Thereupon, the in- increases, problems multiply disproportionatd¥e(t et al.,
vestigator must parse out the significant interactions among1981). Some argue that difficulties in calibrating and validat-
those taxa. It is only after these preliminaries that the actual ing simulation models arise from the propagation of errors
modeling commences, as the modeler then quantifies eachacross the nexus of interacting processes. Whence, more ac-
such interaction in algorithmic fashion. The aggregated for- curate and precise values for the model parameters should
mulae are then executed under an appropriate shell on somameliorate the problem. Others, however, are convinced that
suitable platform. Finally, there follow the arduous and non- interacting nonlinear processes inevitably lose their power
to predict Lorenz, 1963 Furthermore, prediction ability
* Tel.: +1 410 326 7266 fax: +1 410 326 7378. wanes as the interacting processes increase in number and/or
E-mail addressulan@cbl.umces.edu. nonlinearity Ulanowicz, 1979. Hence, in order to avoid
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pathologies that inevitably crop up in the behaviors of cou- -
pled process models, biologically unrealistic assumptions are
made out of mathematical convenience (to maintain stabil-
ity), thereby further impairing prediction ability.

It seems frustrating that nature thwarts attempts to model
ecosystems accurately, and thereby control them, but mod-

elers seldom draw the conclusion that the conceptual frame-
work that supports the simulation process is itself flawed.
After all, multi-process models work quite well for phys- n -

ical and chemical systems, and the modeling process is
built upon the selfsame assumptions that guide the larger
body of science—namely, closure, atomism, reversibility,
determinism and universalityDepew and Weber, 1994;
Ulanowicz, 1999. Why should matters go suddenly awry 2. Required information
with ecosystems? It happens that, for a while now, propo-
nents of “deep-ecology” have maintained that ecologyistruly A working definition of an ecological network is that it
different from other disciplinesNaess, 1988 that it forces ~ is a representation of the answers to two questions: (1) who
the investigator to alter profoundly his/her conceptions about €ats whom?, and (2) at what rate? As with simulation model-
how nature operates. Only recently have some of the fea-ing, preliminary to the first question it becomes necessary to
tures been articulated that distinguish ecological phenom- identify the significant taxa arodescomprising the ecosys-
ena from more fundamental physica| and chemical eventstem. For each of the taxa one then needs to know which of
(Ulanowicz, 1999. These matters are beyond the scope of the other nodes are present in its diet. Once this qualitative
this exposition, suffice it here to mention: (a) an inversion information is known for all taxa, the result can be repre-
in the magnitudes of characteristic lifetimes (and with it the sented in one of two ways: (a) one can present the system
direction of causality) as one passes from the individual or- graphically as a directed graph, or digraph. On the digraph
ganism to the ecosystem, and (b) the singular nature of andthe nodes are usually represented as boxes, and each trans-
crucial role played by aleatoric events over the histories of action is represented as an arrow that originates out of the
ecosystems. prey taxon and terminates (with an arrowhead) at the preda-

Leaving these intriguing academic issues aside, the verytor node Fig. 1); (b) the connection topology amongiodes
practical question arises, “If simulation modeling is less than can likewise be represented asex n squareadjacency ma-
satisfactory, what alternative approach might culminate in a trix, where a one in the entry for roinand columry means
deeper and more satisfactory understanding of whole ecosysthat an amount of material flows from predatdo prey;j.?
tems?” Almost a quarter century ago SCOR Working Group By contrast, a zero entry signifies that no palpable transfer
59 (Platt et al., 198)lsuggested that systems ecologists sim- occurs betweem andj (hence the notion of &inary net-
ply forego the latter stages of the modeling process altogetherWork). The advantage of using the matrix approach and asso-
They suggested that one concentrate instead on what can béiated linear algebra is that one may then deal with systems of
inferred from the identification and parsing tasks alone; that arbitrary dimension.
one pay more attention to processes (flows) than to objects Now, ecosystems are necessarily open, meaning that they
(stocks). This advice eventually was acted upon by a succes-exchange material and energy with their surroundings. These
sor working group (#73) that assembled an inchoate set oféxogenous transfers require that one emend both the graph-
analytical tools which collectively became known as “ecosys- ical and analytical representations. Without loss of general-
tem network analysis” (ENAWuIff et al., 1989. ity, one can assume that all inputs to a particular taxon be

An assumption underlying ENA has been that the config- lumped as a single entry. (If such is not the case, multiple
uration of processes represents the “anatomy” of the ecosystypes of inputs can be treated as will presently be discussed
tem; and that, as in medical practice, such anatomy will re- for exogenous outputs.) Actual physical inputs take the form
veal much about the history, current status and workings of Of primary production, immigration or inbound advection of
the ecosyster The remainder of this work will discuss how Mmaterial or energy. The lumped input is represented graph-
to create ecological flow networks and analyze them in sys- ically by an arrow that originates out of no visible taxon
tematic fashion. and terminates (with an arrowhead) into the actual receiving

node Fig. 2).
For reasons that will become obvious presently, it is use-
L It should be noted in passing that an independent school of investiga- ful to distinguish between two different types of exogenous

tions into the structure of “foodwebs” has evolved in parallel with ENA (e.g.,  qutputs: the first is the export of material or energy still useful
Yodzis, 1989; Cohen et al., 1990; Polis and Winemiller, J986odweb re-

search treats unweighted (binary) networks of trophic interactions, whereas

ENA addresses the [sometimes large] differences in the magnitudes of the 2 Several other investigators (e.§atten, 198Freverse the order of the
connections. subscripts. That is, flow is in the direction from coluijrio rowi.

Fig. 1. Adirected flow graph.
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Fig. 2. The trophic exchanges of energy (kcalg—1) in the Cone Spring ecosystefilly, 1968). Arrows not originating from a box represent exogenous
inputs. Arrows not terminating in a box portray exogenous outputs. Ground symbols represent dissipations.

to other ecosystems of comparable scale. Examples of suctor each taxoni,

exports are emigration, harvesting by humans, and advection " "

out of the system. Similar to the extern_a! inputs, these flqws X; + Z Tj = Z Ty + E; + R; 1)
can be represented as arrows that originate from the given =) —1

taxon but terminate in empty spadeid. 2). In addition to

useful exports, some energy may be dissipated into heat (res®"

piration) or some mate.riqll may be degraded into its lowest- X;+T;=T.+E +R;,

energy form (e.g., denitrification toJd\ The occurrence of

such dissipations is required by the second law of thermo- Where adot has been used to indicate summation over the full
dynamics for energy. With pictorial representatiofsi(m, range of an index. (Henceforth, the_ sigma convention will be
1971), the common conventionis to depict dissipation leaving used only when necessary for clarity.)

a compartment by the “ground symbol” of electrical circuit At any particular time, however, the inputs to each taxon

symbology Fig. 2. may not be balanced by its outputs. Some of the methods to
For an ecosystem oftaxa, the maximum number of flows ~ be discussed, such as the analysis of cycling (SeBjionthe
possible under the typology just describedis- 3n. When- information-theoretic indices (Secti@) do not require that

evern exceeds about 20, the number of actual transfers usu-components be balanced. The assessment of indirect effects

ally falls well below this limit. With systems having many (Section3) and the description of trophic levels (Sectin

compartments, the number of nonzero entries into the adja-can, however, yield spurious results whenever any taxon is

cency matrix usually is less than 15%m#. Hence, one is  Notin steady state.

dealing mostly with sparse matrices. Another stratagem is to define separate vectors to rep-
The second query, “atwhatrate?”, requires the investigator resent instantaneous storag& and loss ) of biomass,

to quantify each palpable exchange. Quantification usually is respectively. Then the artificial balance becomes

interms ofasilngle conservative medium. That_medium may Xi+Gi+T; =T, +L;+E +R:.

be energy, or it could be any one of the chemical elements,

suchas C, N, P, S, etc. ENA usually allows only one medium Ideally, one determines of the magnitude of each rate of trans-

per network (although some investigators allow several (e.g., fer from measurements made in the field. For some flows

Hannon et al., 199). In systems where the dynamics of that characterize the activity of the system, such as the pri-

several elements appear to be significant, the practice is tomary productions, this is usually feasible and is highly recom-

represent each medium by its own network, and the analysismended. Because of the large number of transfers occurring

of multiple parallel networks is covered in Secti@nTill in most systems, however, it is usually unfeasible to reckon

then, all systems will be quantified using a single medium. the magnitudes of all flows directly. It becomes necessary,
Having chosen a suitable medium, the investigator can therefore, to estimate the magnitudes of some rates by indi-

proceed with the quantification of the flows. For this purpose, rect means. One helpful device for estimating unknown flows

the rate of the internal transfer from donor (prey) taxoo is to assume the balance of inputs and outputs around each
recipient (predator) taxgwill be represented &k;. The rate taxon.

of exogenous input to taxdrwill be denoted byX;; the rate The estimation of a balanced flow network is an art form
of loss of useful medium from taxarto the outside world  that cannot readily be formalized in all cases. There are
will be signified byE;; and the dissipation fromwill be R;. If some useful guides for the novice, howevgianowicz et al.,

bookkeeping is kept over a sufficiently long interval, medium 1997). Itis ironical, for example, that a methodology that so
is likely to be balanced around each compartment. That is, emphasizes processes over objects, should use as its starting
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point some measure of the biomass or density of each taxonnates when the list of flows to be incremented becomes empty.
Because it is so much more difficult to measure metabolic This process, which resembles “mold-filling” will match the
rates in the field than it is to estimate the sizes of each popu-aggregate demands with the availabilities insofar as possi-
lation, the common procedure has become the assessment dile. Final balancing is then achieved via thkesina and
the stock density of a taxon (in terms of the chosen medium) Bondavalli (2003)equilibration routine.
so that that stock can be multiplied by an appropriate tabu-  Comparisons of networks balanced using MATBLD with
lated metabolic quotient to obtain the desired rate. For ex- those starting with the same data and using MATLOD reveal
ample, if one should measure a microzooplankton density of that results differ by statistically insignificant amounts. Per-
150 mg C nv2 and discover from published reports that the haps more interestingly, either method yields results that do
average consumption rate by these organisms is 160% penot differ from published networks to any statistically sig-
diem, then the total consumption (demand) by these organ-nificant degreelylanowicz and Scharler, in preparatjoiff
isms could be roughly estimated as 87,600mgCgr?. true, once one obtains field estimates of population densities
Similarly, one would search for physiological quotients to and a predator—prey topology, one should be able to find in
quantify the losses due to respiration, excretion and naturalthe literature appropriate physiological quotients needed to
mortality. By difference, one is able to arrive at the net pro- invoke either MATBLD or MATLOD to create a complete,
ductivity available for consumption by predators. Balancing balanced, quantified network of exchanges.
the network thereafter becomes a task of matching up the es-
timated demands to the corresponding availabilities over all
indicated predator—prey interactions. 3. Indirect effects
There exist several widely-used optimization routines that
have been written to create such a balanced network automat- By following the methods just outlined, an estimate of
ically (Polovina, 1985; Christensen and Pauly, 1992; Vezina the complete trophic flow structure can be achieved for most
and Platt, 1988; Kavanagh et al., 200%he problem with ecosystems. Many, however, might question what could pos-
optimization algorithms, however, is that they tend to yield sibly be accomplished with such a network? This is a legit-
solutions that lie on one of the vertices of the constraint poly- imate question, considering how most graphical representa-
hedron. That is the mathematician’s way of saying that the tions of networks of even moderate dimension (say 30—40
solution almost always zeroes out one or more of the flows nodes) resemble tangled “spaghetti diagrams”, and their cor-
known to pass into or out of each taxon. Some balancing al- responding matrices fill screens and printouts with a welter
gorithm that allows all the known exchanges to remain in the of numbers. Indeed, what sense can be made of these con-
eventual apportionment is to be preferred. Because such arstructs?
algorithm would involve fewer inferences than are implicit Fortunately, through the systematic application of linear
in an optimization routine, the result is referred to as a least- algebra, a full picture of all the indirect trophic effects and
inference distribution. the overall trophic structure can be realized. To see how this
Recently, two potential least-inference schemes have beens done, it is helpful to turn to matrix notation. One begins
implemented Ulanowicz and Scharler, in preparatjoithe by defining a matrix of dietary proportionsG[.2 The el-
first of these, MATBLD, begins by assigning a flow magni- ements of 5] are obtained from the elements of the flow
tude to each link in joint proportion to the availability of the matrix, [T], and the input vector,X), by normalizing the
given prey and the demand by the corresponding predator.inter-compartmental exchanges using the total input to the
If the matrix of flows were fully connected, this joint appor- receiving compartmen,
tionment would directly yield a balanced network. Ecosys- T
tem networks are usually sparsely connected; however, andg;; = —
it becomes necessary to inflate these joint proportions by a (T.;+ X))
constant factor to yield a magnitude for the total system ac- That is, the elemerg; represents that fraction whi¢ttom-
tivity that is commensurate with the aggregated demands of prises of the total intake by Reading down columjof [G],
all components. Even after such adjustment, the network isone encounters the respective percentages that each dietary
still not balanced, and one must invoke an equilibrating rou- jtemi constitutes of the full intake biy
tine, such as the donor-controlled (inherently stable) balanc-  The matrix [5] and its algebraic powers have very didactic
ing scheme ofllesina and Bondavalli (2003) meanings as regards trophic functioning. For example, in the
A second alternative, called MATLOD, “loads” the net- very Simp|e network |rF|g 3, the six non-zero values d'fj
work matrix by incrementing the set of all designated flows
by some uniform very small amount. After each flow has been
incremented, the routine checks to see whether the availabil- 3 The convention here will be to denote square or rectangular matrices as
ity of the prey has been exhausted or the total demand 0fcapital Iet_ters contained Within_square bra(_:k(_ets, €@, [[Al, etc. Column
the predator has been satisfied. If either of these checks is\('ectors wil be denoted by capital etters within parentheses, suck) as (
. ; - E). The superscript “T” after any matrix or vector signifies its transpose.
true, that particular flow is removed from the list of those Thatis, [5]7 is a matrix formed by transposing the rows and columns of
that will receive additional increments. Matrix loading termi-  matrix [G]. Similarly, (E)" is the row-vector transpose of column vectB. (

()
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prompts the question of whether the infinite series,

1] +[G] +[G1? + [GP +[G]* + - --

H

converges to a finite limit? (The matrix][{=[G]°} is the

1 4
T /'J__ identity matrix. It consists of ones along its diagonal and
\ 3

zeroes elsewhereSimon and Hawkins (1949ere able to
show that the normalizations (2) guarantee that the series of

T matrices converges to the finite limit,
Fig. 3. A simple hypothetical network of four components. [N+ [Gl+[GP+[GER+[G)*+-- > [I-G] !
Thislimit, [ =[I — G] 1, is called the Leontief structure ma-
give rise to a corresponding six elements in the mats [ trix. Thei—th component of provides the fraction of the
total inputtqg that came fronmhover all pathways of all lengths
0 g12 g13 g4 per unit of final demand. Final demands play a key role in
0 g23 g24 economic theory, and the discovery of tigatrix enabled

[G] = economists to estimate the productions in various economic

sectors that were necessary in order to satisfy any vector of fi-
nal demands. The formulation df[by Leontief (1951)won

for him the 1973 Nobel Prize in Economics for what even-
tually became known as “input—output” (1/0) theory. About
the same time that Leontief received his pridannon (1973)

o O

0 0 g3
0 O 0 0

Multiplying the matrix [G] by itself gives the following result:

0 0 gi2g23 (812824 + 813834) was introducing Leontief's methods into ecology.
) 00 0 823834 Although final demands are central to economic planning,
[G]° = 00 o 0 their homologs in ecology take the form of respiratory losses.
0 0 0 0 Of course, respiration is important in ecology, but it is the in-

termediate transfers among system components that interests
ecologists even more. That is, ecologists are more eager to
know how much of what eventually arrives at j was the re-
sult of a particular activity? Szyrmer and Ulanowicz (1987)
showed how the intermediate transfers could be reckoned via
a convenient transformation of thg natrix. Szyrmer called

his result the “total dependency matrixD], where the ele-
ments of the D] matrix could be calculated frong] and the
original flows as

The reader’s attention is drawn to the fact that each of the
non-zero elements ofd]? corresponds to the collection of
pathways of length 2 that connaawith j. For example, the
1-3 element of§]? reveals how much gets to 3 from 1 over
the two step pathway 4+ 2— 3. The 1-4 element is com-
prised of two terms, signifying there are two pathways of
length 2 connecting 1 with 4. The first term reports the frac-
tion of what reaches 4 from 1 over the pathway-12 — 4,

while the second term gives the corresponding fractional in- Z"+2Tik
put to 4 that traveled via the route-1 3— 4. dij = (sij — 8i)) szk”;lT ,
Multiplying [ G]2 by [G] once more yields the matrix]2, 1 Lam=0"1m]

whereéj are the elements of the identity matribg; are the
exogenous inputs 0 Tj (n+1) represent useable exports from

0 0 0 g12623g54 i to other systems of comparable scale, dng2) are the

[G]® = 000 0 ) dissipative losses frofn Another way of looking at element
0 0O 0 dj is that it answers the question, “What fraction of the total
0 0 O 0 diet of j passes throughalong its way tg?” Viewed in this

way, thejth column of P] can be interpreted as the “indirect
As can be seen, there is a single non-zero elemerGt [ diet” of j, that is, the respective amounts by whjatepends
corresponding to the only three step pathway in the graph, upon the activity of each element in the ecosystem. Because
1—2— 3— 4. The sequence of powers dB][truncates  medium can visit multiple compartments on its way,tthe
with [G]* =[0], as there are no pathways >3 in the network. elements of columpsum to>1, and the sum is indicative of
The reader is encouraged to experiment with other simple the effective trophic position gf*
graphs to ascertain that the elements ofititte power of [G]
contain contributions from each and every pathway in the
graggcgfui)éa’ggéfggzﬂts @] have been normalized such defined b)F_inn (1976)s the average number of transfers an arbitrary quan-
tum of medium makes while traversing the system. It can be calculated sim-

that eaclyj < 1, itis probable that the elements in the higher py by dividing the sum of all system inputs by the total system throughput,
powers of [5] will grow progressively smaller. This, inturn, i.e., APL=(Tee/Tge).

4 Another useful index of system status is the average path length, APL,
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The matrix of indirect diets is sometimes useful for tion coefficients of the primary producers to the Gulf Kil-
differentiating trophic roles. For example, in the Chesapeake lifish (Fundulus grandis and two Needlefish Strongy-

mesohaline ecosystem, Striped Bads(one saxatilli and lura marina and S. notata yielded the following results:
Bluefish Pomotatus saltatrixare both pisciverous predators

and one would expect them to compete heavily with each Control AT

other. Baird and Ulanowicz (1989%alculated the indirect

diets, D], of all major compartments of the Chesapeake Gulf Killifish 0.147E—02 0.670E-03 (—54%)
system, revealing (among others) the following indirect Needlefish 0.338E03 0.140E-03 (—59%)

dependencies:

One concludes that the impact of the thermal effluent was

Striped Bass on Zooplankton (%) 85  to decrement the overall efficiency of the ecosystem at pro-

Bluefish on Zooplankton (%) 28 ducing top carnivores by some 55-60%.

Striped Bass on Polychaetes (%) 81 One frequent criticism of 1/O methods is that thgy perFain
. only to steady-state or temporally-averaged configurations.

Bluefish on Polychaetes (%) 4B

There have been several efforts to extend 1/O theory to non-
steady-state systeniatis et al. (1979)reated the imbalance
The results indicated how the Striped Bass were ultimately as another category of flow, whildatis and Patten (1981)
highly dependent on pelagic production, whereas Bluefish normalized the flows by the storages of the source compart-
owed their activity more to benthic secondary production.  ments and inflated the diagonal elements to reflect the relative
Of course, normalizingT] down its columns is but one  storage times. This author prefers to treat temporal dynamics
way to proceed. One could have as readily normalized the by applying information-theoretic methods to time series of

rows of [T] to obtain a matrix of host coefficients:], network snapshots (see Sectibhelow).
T Another deficiency of conventional input—output analysis
fij l is that it deals only with positive flows of medium. Although

(Ti. + Ei + Ri) contributions and dependencies are key features of ecosys-
That is,fjj is the fraction of the total activity of that flows tem dynamics, ecologists are also interested in the negative
directly to elemeng. The corresponding output structure effects of predation and how these might propagate through-
matrix, [2]= (I — FT)~1, was formulated by the economist out the system. Ideally, one wishes to follow simultaneously
Augustinovic (1970}o estimate the activity of each secfor  both the positive and negative impacts of trophic exchanges.
that is generated by a unit of primary inputité\s with final Fortunately, the linear algebra of /O analysis lends itself to
demands, primary inputs are of substantial interest to ecolo-evaluating the net trophic impact (+ ef) of any one species
gists, but at times they might prefer to know the intermediate upon any otherllanowicz and Puccia, 1990For starters,
contributions of all the compartments. That is, how much of one notes as how; quantifies the positive impact of prey

what leaves eventually flows as input t§? Accordingly, i upon predatoj. The corresponding;, however, seems to
Szyrmer defined the total contribution matrig]] with the underestimate the negative impact thaas upon, because
elements it has been normalized by the total output frgmather than
T, just the_ predatory losses thiasustains. Accordinglyfj is
cij = (oji — fji) <> normalized as
0ii T T

One may regard the elements of the total contribution f;} = W
matrix as the efficiencies with which medium flows from m=170m
any one Compartment to any given other. In particu|ar’ where the indexnis summed Only over the subset of IIVlng
one might want to use as an indicator of overall ecosys- membersil <n) of the n ecosystem components. One can
tem efficiency how much primary production makes its then define the net direct effect thdtas upor) as
way through the ecosystem and finally reaches the upper
trophic components. For exampldlanowicz (1984)com-
pared networks of trophic exchanges in two tidal marsh where—1 < gj <15
ecosystems near the Crystal River nuclear power plant on In almost all instances, the series consisting of the pow-
the west coast of Florida. One network was adjacent to the ers of [Q] converges, just as the powers @][converge in
thermal outfall from the plantAT~6°C), and the sec- conventional I/O analysis:
ond, virtually identical marsh (control), was distant from 2 3 4 1
any thermal influence. Calculation of the total contribu- [N+l + [0 + eI + [0 +--- — [1 = 0]

*

gij = 8ij — fji>

- 6 Fath and Patten (1998 tainf as normalized by thiotal flow through
51n generaldj # cjj, as they are the answers to slightly different ques- i, which makes the elements of the@][matrix (on average) more positive.
tions. At steady-statel; =c;j, however. See also Fath and Borret (in review).
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(In rare [usually degenerate] instances the mattix Q]
can be singular, and no convergence obtains). The over- /
L)

&)
all net matrix of total impacts M], then = | —Q]~1 —[I]. 2
For any connected graph, the matriM][will possess the
full complement of? non-zero components. This jumble of
impacts would become overwhelming (e Millebrand and = =
Shurin, in prespwithout some systematic way of presenting
the results. The original algorithm for indirect trophic influ-
ences is called IMPACTS, and it allows the user to focus
upon a particular compartment by ranking the impacts the
given species has on other system components, along with Fig. 4. A hypothetical trophic network. Units are arbitrary.
the impacts that other species exert on the compartment in
question.
Earlier, when he first addressed tempora| Changes in eco_Of linear algebra developed for /O analysis make both tasks
logical networksPatten (1982aurmised atendency forneg-  Possible.
ative, competitive direct interactions to become positive indi- N the previous section, it was mentioned how the sums
rect accommodations or cooperatiéath and Patten (1998)  of the columns of the structure matrix§[ were related to
demonstrated how the elementsidffare usually more posi-  the number of trophic transfers that medium had incurred
tive than the direct effectsq)]. As noted above, the way Fath ~ along its way to the target compartment. Although this sum
and Patten normalize thei®] matrix makes the elements of  iS generally not an integetevine (1980)suggested that it
their version of M] more positive than the ones defined here. be regarded as the average or effective trophic level at which
These differences notwithstanding, it is easy to cite instancesthat particular taxon is feeding. A simple demonstration of
of negative direct interactions becoming positive indirect in- the intuitive appeal of this definition appearshig. 4. In
fluences, even under the more conservative assumptions usethis hypothetical example, compartments 1, 2 and 3 are con-
above Bondavalli and Ulanowicz, 1999 nected in chain-like fashion. Compartment 4, however, re-
ceives only 5 of its 50 units of total activity at the fourth
trophic level. It receives 30% of its sustenance at the third
4. Trophic considerations level and 60% at the second. Its effective trophic level be-
comes (0.6< 2)+(0.3x 3)+(0.1x 4)=2.5. It is left as an

The concept of “trophic level” arose from the very sim- exercise for the reader to calculate t& matrix and the
plistic image of an ecosystem as a trophic chain or pyramid. structure matrix, §| for this network. The sums of the first
That is, energy is fixed by autotrophs or primary producers three columns of the resultingj[are 1.0, 2.0 and 3.0, respec-
at the first level, and some (but not all) of those resources tively, whereas the fourth column sumsto 2.5. The calculation
are transmitted to the herbivores at the second level. Furtheris quite general and applies to even the most complicated flow
transfer occurs to carnivores at the third trophic level and to topologies, regardless of the number and position of cycles in
top carnivores at the fourth. There is occasional mention of the systemChristian and Luczkovich (199€pmbined this
tertiary carnivores, but hardly ever any reference to anything notion of effective trophic level with the trophic impact anal-
beyond the fifth level. It was originally thought that losses of Ysis just discussed to help establish the direction of causality
energy and material at each transfer limited trophic chains to (bottom-up versus top-down) at work in aquatic vegetation
less than five members, but that causal inference turned outcosystems in St. Mark's Refuge, Florida.
to be problematicalimm and Lawton, 19%7 The obverse task of apportioning the activities of species

In any event, nature is almost never so simple as the chaininto virtual integer trophic levels requires somewhat more
or pyramid just described, and considering the full mani- complicated manipulationsdJ{anowicz and Kemp, 1979
fold combinations of circumstances soon becomes impracti- One begins by noting that the fractions by which each com-
cal (Hillebrand and Shurin, in pres®One must either devise ~ partment feeds directly from primary sources are
a systematic way of applying the trophic level concept to Toi
complicated webs or abandon the notion altogether. While goi = Z”iT
some species do behave as obligate autotrophs or herbivores, m=07"mi
many heterotrophs feed at multiple levels, and no simple one-which elements can be arrayed as a row vector, call it
for-one mapping of taxa to integer trophic levels appears to (L1)" =(go)". That is, the elements of this row vector re-
be feasible Cousins (1985)for example, points out that a  veal the fraction of the activity of each taxon that consists
hawk can feed at five different trophic levels. Thus, one must of primary production (assuming for the moment that all ex-
either emend the notion of trophic level to apply to the con- ogenous inputs correspond to primary production. The more
tinuum of trophic positions in complicated networks, or else general case will be covered in a footnote below). To calcu-
one might seek some way of mapping the actual web into anlate the amounts by which each taxon feeds as a herbivore,
abstract chain of integer trophic levels. It happens the tools one simply multiplies ] by (L1)" on the left to generate

200 — 1

81["— >
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the row vector )" = (L1)"[G]. Similarly, the fractions by
which each compartment acts as a carnivore (the third level)
become (3)" = (L) "[G]. By induction, one may calculate
the fractions at thenth trophic level asl(m) " = (L1)T[G] 1.
If there are no cycles in the network, the sequence of row vec-
tors, L1)7, (L2)7, (L3)T, . .. will truncate (become all zeroes)
inn— 1 or fewer steps (becaus@][™ ! will become a matrix
of zeroes, once no pathways of length- 1 exist). Therefore,
when cycling is absent, one may define a Lindeman trophic
transformation matrix [], such that théth row of [L] is (L;)".
Reading down thgth column of L] reveals the fraction by
which thejth taxon feeds at each corresponding trophic level.
Reading across thigh row provides the composition of that
virtual trophic level.

The simplistic network irFig. 4, for example, yields the
Lindeman trophic transformation matrix,

1 0 0 O
0 1 0 Q6
0 0 1 Q3
0 0 0 01

[L] =

Reading down the columns, one sees as how the first three

compartments act entirely at their respective trophic levels,
whereas compartment 4 is partitioned as described above
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Fig. 5. The Lindeman Spine of the networkfig. 4.

trophic levels. This follows by treating.] as a conventional
transform in linear algebra. Thus, one defines the canonical
input$, (¥) (Greek upper case “psi”) as

(¥) = [LI(X).

In similar fashion, the useful exportE) and dissipations,
(R) map as

(Y) = [L](E),
and
(P) = [L](R).

(Y) and @) (Greek upper caseypsilori and “rho”) are the
“canonical”’ exports and respirations, respectively.

It should then follow that the matrix of flowd| would
transform as

[6] = [LIITI[L]".

Reading across the rows, one encounters those fractions that

the activity of component 4 contributes to the throughflows
of the second, third and fourth virtual trophic levels.

At this point, the reader might interject that almost all
trophic networks contain cycles. This is a valid observation;
however,Pimm (1982)observed how cycles strictly among
living, feeding taxa are relatively rare and usually are small
in magnitude. Put in other words, almost all cycles in ecosys-
tems contain at least one non-living compartment. If, then,
one orders the ecosystem’s components so that all living com-
partments (sanl of them) appear first, then thre x nl sub-
matrix of transfers among the living compartments should
contain a very small number of cycles having very insignif-
icant activities. It will be described in the next section how
cycles can be removed from networks without altering the
balance around any of the members of the cycle. If all of
these cycles are small in magnitude (which is almost always

the case), then the cycles among the living components can

be removed without changing the x nl submatrix to any

significant degree. Because there are no longer any cyclesa

among the firshl taxa, one can now define ahx nl Linde-
man trophic transformation matrix for the living components
as just describedflanowicz, 1995.”

Having devised a scheme to apportion the activities of
all the original compartments among a set of integer trophic
levels, it now becomes possible to apportion the individual
flows along a chain of transfers linking the aggregated, integer

7 It should be noted here havigashi et al. (19918lectnotto remove the
cycles from the networks they treat, with the result that their trophic chains
do not truncate at some leveh<but continue on indefinitely.

There is a problem, however, in thafl [is not orthonormal,

so that the transformed matrix of flows9], is not diagonal

in form. All is not lost, however, becaus®] possesses a
peculiar form of symmetry that allows one to abstract from it
a surrogate diagonal matrixz]. [ £] has as itdth diagonal
element the sum of thigh row of [@] and zeroes elsewhere,
i.e., &i = Xk, and&jj =0 otherwise. Then homologous to
equation(1), one can balance around each integer “trophic
level”, A,

Uy + & = §p+1) + va + pa-

For example, the Lindeman matrik][shown above for the
simple network inFig. 4 transforms that network into the
equivalent straight-chain iRig. 5.

Again, the canonical transformation works in straightfor-
ward manner whenever there are no cycles in the entire net-
work. As mentioned earlier, there are almost always signifi-
cant cycles in the network as a whole, but almost all involve
t least one non-living compartment. Thus, arranging the n
compartments so that tmbliving species appear first allows
one to remove all of the insignificant cycles comprised of
only living predators. One may then treat the reviged nl
acyclic submatrix to create am x nl Lindeman matrix, [['],
for the living species alone. To create a Lindeman transfor-
mation of the entire systenfrig. 6), one begins withl['] as

8 The reader will recall that only those componentsXjfthat represent
primary production are employed in the definition &l.[As a result, all
the primary production figures will map into the first component by, (
while any inputs that occur at higher trophic levels will be apportioned to
the remaining components of}.
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Hence, wherWhipple and Patten (1993yrite about activ-
ities at very high trophic levels, one has to ask if anything
other than a few molecules remain to carry out those activi-
ties after so many transfers. As for changes in the canonical
chain over time, it appears that environmental perturbations
usually act to shorten the length of the chain and diminish

0 disproportionately the flows at higher levels.
Bernard Patten and associates have also developed an
environ theory of ecosystemPdtten, 1978, 1982k atten
—————————————————— 000..0 | and Auble, 1981; Fath and Patten, 1999; Fath and Borrett,
(n—nl) i in review). An environ constitutes the entire antecedent or
0 000 0 subsequent history of the material currently residing in a

LL 111 ...1

|17 nl —Pld— (n-nl) —:I

Fig. 6. The partitioned expansion of tHe] matrix.

compartment. An input environ is a quantitative description
of where the current biomass has resided since it entered the
system and the pathways along which it flowed to arrive at
the node in question. Similarly, an output environ describes
which other nodes will receive the material in question and
the routes it will take to get there. Any given network can
be decomposed into a suite of input and output environs.
Environs are useful for scoping out the possible causes
and effects of any changes in a particular population, in
light of the observation that indirect effects are often more
significant than direct interactions.

A useful survey of 1/0 and trophic methods of network
analysis can be found idigashi and Burns (1991)

the principal submatrix within an expandecd n matrix, [L],
occupying rows 1 throughl and columns 1 throughl. The
remainder of the matrix is filled out with zeroes, save for the
last [n — nl] elements of the last row, which are all set equal
to one.

After transformation byl[], thenl x nl submatrix creates
what is called a “Lindeman Spine” of chain-like flows. The
remainder of the matrix serves to aggregate all the non-living
compartments into a single detrital pool, in such away that all
of the flows connecting the detrital pool with the Lindeman g Cycling in ecosystems
Spine balance. As an example of the results, the Lindeman
Spine and associated detrital pool corresponding to the net-
work in Fig. 2is shown inFig. 7. A peculiarity inFig. 7is
that the Lindeman Spine is broken between levels | and II.

Given the scarcity of some chemical elements in the bio-
sphere, and the refractory nature of atomic units, it is in-
o evitable that the same material be used repeatedly by many bi-
As aresult, levels I, 1ll, and IV are due purely to detritivory. ¢ species. Such necessity can be said to drive the trophic ex-

The advantage of transforming into “canonical trophic -hanges themselves. Within a given locality, chances are that
chains,” is that the results often allow one to observe reg- 1o same medium will be used more than once by the same
ularities across disparate ecosystems or, conversely, changeg;otic species. This is called “recycling” or more often simply
in the same ecosystem at different times. Regarding COM-«cycling” of medium. If the chemical element in question is
parisons among ecosystems, one often encounters canonicalcarce and is necessary to many biotic agents, the probability
trophic chains that exceed 5 levels, ostensibly contradicting ¢ its reuse (cycling) by the same compartments increases.
the dictum byPimm and Lawton (197hat trophic chains do The appearance of the words “scarcity” and “necessity” in

not exceed five steps. Cl_oser consideration, however, revealgy o previous paragraph implies that cycling in ecosystems is
that the amounts of medium that the system transfers beyond,jicative of controls being exercised upon biotic species and

the Sth level are miniscule, so that any effective measure of ., cesses. If a chemical element is both scarce and necessary,
trophic length will hardly be affected by the higher levels. herq s an increased likelihood that the loops it makes will

take on an autocatalytic nature that rewards each participant

300 255 forits role in keeping the scarce medium in circulation. It fol-
t lows that one of the key features of interest in an ecosystem
8yt oy [ama |y [e) oy should be the pattern and magnitudes of the trophic path-
T 4as L T - ways by which medium is recycled. The last statement dis-
sssr\ 2003 02 2537 1680 639 o tinguishes two different aspects of the task of understanding
) ) cycling in ecosystems. The first is qualitative—one needs to
35,0 p | 197 know the topology of pathways over which medium is re-
T\ cycled. The second is quantitative—one seeks to gain some
3109 860 idea of how much material is cycled over each route.

Over the course of ecosystem research, it was the quantita-

Fig. 7. The canonical representation of the Cone Spring netvifgk 2). tive issue that was first address@dium (1969had identified
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the amount of cycling as one of his 24 criteria for “mature” or Table 1

developed ecosystenBatten et al. (197&ndFinn (1976) The order of the nodes in a “depth-first” search

therefore, employed the I/O analysis that had just been in- Level Compartment

troduced into ecology by{annon (1973)o quantify that n 11] 12] 13] [n]

amount. Finn’s reasoning was straightforward: In the Leon- - : : ; :

tief structure matrix,§|, each diagonal element relates to the . . ; : '
o . " ; (1] (2] (3] (]

probability that a quantum of medium visits the designated i 2] 3] n]

compartment more than once. Finn suggested that to quantifyo [1 [2] [3] e [nl

the degree of recycling in the given network, each diagonal
element should be multiplied by the total activity (through-
put) of that particular taxon, and that all such products should
be summed over all taxa. In time, this sum became known as
the “Finn cycling index” (FCI).

Szyrmer and Ulanowicz (198;7vhile reworking Leon-
tief’s scheme, noted as how the diagonal elements of both
the total dependency matrixX], and the total contribution
matrix, [C], are identical; and that they, rather than the diag-
onals of [§, represent more accurately the probability that
a given quantum leaves a particular taxon and returns to it.
They recommended that the diagonal elements of eitBler [
or [D] replace the diagonal elements & [n Finn’s calcu-
lations. Han (1997)independently recapitulated Szyrmer’s

in a network. One approach is to perform a depth-first search
with backtracking lateti and Deo, 1976

In backtracking algorithms, one orders the nodes in some
convenient way (described below) and imagines the same
order of n nodes to be repeated at n levels a3ahle 1
(Ulanowicz, 1988. One begins at a given node in the zeroeth
level (designated as the pivot element) and searches from left
to right among nodes in the next level until an existing flow
connection is found. One then jumps to the chosen node in the
nextlevel and proceeds searching (left to right) the level above
it in an attempt to move higher. As one progresses to higher
levels, the last node visited in each previous level is stored in
cluatons Frahlesinaand Usnoni G0iied e ¥ SR S TPy, S
out how all previous calculations ignore some of the com- node has not already appeared in the current pathway (to con-

pound f[:ygllntg tdh_at 'S mh;ahregtfm thel of:-(:!ag?sal tetr_ms. They tfine the searchto simple cycles). One ascendsto as high alevel
presented a tedious method for caicuating the entire amount, ¢ possible until interrupted by one of two circumstances: (1)
involved in cycling. Fortunately, their time-consuming algo-

ith db db ) h 4 that th if a link exists to the pivot element in the next level, then a
Ir:ICIm C(;u € sparet ’d tehcaus? C(Tmparlsotnsfs ovl\_/e ba %imple directed cycle has been identified. Its description is

under-represented the actual amount ot cycling by an .o, from the current pathway, and the search continues; (2)
amount that did not vary much from 14% in all the cases ex-

ined. Th lat dificati fEinn's ind tiall if one is searching from nodein level m and all possibilities
amined. These fater modifications orFnn's INdex eSSentially 1, 1o e1m + 1 have been exhausted (i.e., one can move no fur-
were fine-tunings of the original index, which continues to

b tul estimate. wh el dified ther to the right), then one backtracks (whence the name) to
e_?husle utes |mzt:)1|e, W etrr: ;}F’F’L‘?p”‘?‘ %y ”?Oﬂ']'et t d t the node in the current pathway at tine-€ 1)th level and be-
| € etlrgeli %r]o gm V}” et Ilnntmt ex '? at! oestn gins searching theth level starting with thek(+ 1)th node.
Zgﬁg‘vicrjc( 1982) fgrveeggms{:aasr?o?/vzz ?]Oxnpgftﬂ‘:‘gﬁlgm'When further backtracking becomes impossible, all cycles
. ' assing through the pivot element have been identified. The
an ecosystem could increase the FCI (see ®siff and Passing '9 PV v ! 5

Ul icz 1989, H ted that the i d tpivotelement may be eliminated from further consideration,
anowicz, 3 He suggested that the increased amoun thereby decreasing the dimension of the subsequent search.

OI cycllr:g wast atho?%otstaftlc resznse (f)f the ?COSySt.e rr;hto For example, in order to apply the backtracking algorithm
E.ress. m?ﬂpi e? eh' OI retlatme |un:thorr;]s orag(ta ;n €to the Cone Spring networkF{g. 2), it helps to consider
lomass of higher frophic level taxa, and the NoMEostatic re-, compartments in the order 2, 3, 4, 5, 1. The following

sponse of the system was tq pr?Ve”t insofar as possmle'th nemonic array below may help to keep track of the order
loss of the resource by cycling it among the lower trophic of operations:

taxa.
Akey elementin Ulanowicz'sxegesis of why the Finnin-

dex increases with stress was his detailed knowledge of how-€Vvel Compartment
the pattern of the pat'hways of.recycle had changed. (Longer,4 2 3 4 5 1
slower cycles involving the higher taxa had been replaced

.3 2 4 5 1
by shorter, faster cycles among lower components.) That is,
he relied upon the qualitative, topological aspect of cycling 2 2 3 4 5 1
(Ulanowicz, 1983. In order to elucidate the topology of cy- 1 2 3 4 5 1
cling, one begins with the task of how to find all the simple g 2 3 4 5 1

cycles in a network. Simple cycles are those in which no ele-
ment is repeated more than once. Any compound cycle can be

viewed as a superposition of simple cycles. It is surprisingly =~ One begins with pivot element 2 in level 0 and searches
easy to write a short algorithm to find all the simple cycles level 1 from left to right, following the instructions in the text
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above. The order of the significant operation in the search cycles, one rearranges the order of the nodes to place first

and the current pathways they generate are as follows: those having the greatest number of cycle arcs. Furthermore,

those nodes without any associated cycle arcs can be elimi-
Operation Current pathway hated from consideration, thereby lowering the dimension of

the search. When this backtracking method is applied to the
Begin at pivot element 2 reordered (and abbreviated) nodes inthe nl sub matrix
Advance to level 1 2.3 (Fig. 6), it quickly locates the few simple cycles.

Removing anisolatedcycle from its supporting network

Report cycle 1 2-3-2 is a straightforward task. One simply traces around the cycle
Advance to level 2 2-3-4 in question and locates the link with the smallest magnitude
Report cycle 2 2-3-4-2 (D — Ain Fig. 8a). One then subtracts that least magnitude
Advance to level 3 2_3.4.5 from the magnitudes of each link in the cycle. This effectively

partitions the original cycle (e.g., A B—C—D—Ain
Report cycle 3 2-3-4-5-2 Fig. 8a) into a pathway fragment of unidirectional flows
Backtrack to level 2 2-3-4 (Fig. 8) and a cycle of the same length in which each link
Backtrack to level 1 2-3 has the magnitude of the smallest arc in the original cycle
Backtrack to level O 2 (Fig. &). i ) e

If one now applies the methods for cycle identification

Advance to level 1 24 that have been described up to this point to the emtiken
Report cycle 4 2-4-2 network of trophic flows (i.e., including those involving the
Advance to level 2 2-4-5 non-living members), the user encounters a significant com-
Report cycle 5 2.4 5.2 plication. In most whole-system networks the number of sim-

ple cycles far outhnumbers the number of flows comprising the

Backtrack to level 1 2-4 network. This implies that several cycles must share the same
Backtrack to level 0 2 smallest link, and one can therefore group cycles sharing the
Further backtracking impossible - same smallest link. Each such grouping is calledaus It

is also likely that all the nodes and cycles belonging to given

It accidentally happens that all cycles contain node 2, so NeXus are controlled by their common smallest link. Remov-
that searches starting from the remaining four pivot elementsing the smallest link by subtracting it, asfig. 8, from any
uncover no further cycles. If the first pivot element in this particular cycle of the nexus would be quite arbitrary. Rather,
example had been component 1, time would have been wastegome rational method for apportioning the magnitude of the
searching for cycles containing the plants (there are none). tSmallestlink oveall the cycles of a nexus seems preferable.
is obvious that the order of the pivot elements can influence  The possibilities for apportioning the least flow are infi-
the time it takes to complete the full search. nite. One could, for example, divide the magnitude of the

The program just described works fine on systems of small smallest link by the number of cycles in the nexus and uni-
dimension (say <10 or so), but when it was applied to more formly subtract that amount from each of the member cy-
realistic networks of 20 or more, the algorithm would not Cles. There is no heuristic reason for pursuing such equi-
terminate, because it became caught up in a combinatoric partitioning, however. A more reasonable division might be
exponential search. It drastically increases the run time if the t0 apportion the least flow according to the fraction of the
algorithm gets caught up searching from a pivot element, if aggregate activity of the nexus that is comprised by the re-
that node participates in no cycles whatsoever. One seeksSPective activity of each simple cycle. Perhaps an even more
therefore, some way of identifying and eliminating from the rational apportionment (and the one implemented) is to use
search those nodes that do not engage in cycling. It would bethe [F] matrix to calculate the probability that a quantum
of further help if one could at the same time identify those Of medium anywhere in a simple cycle will complete that
nodes that are more likely than others to participate in cy- particular pathway back to its starting point. (That probabil-
cling. Fortunately, one can address both of these tasks byl iS simply the product of all thé; comprising the cycle
doing a preliminary depth-first search to count the numbers pathway). One then attributes the least link to each cycle in
of cycle arcs incident to each nodénuth, 1973. (A cycle proportion to its contribution to the sum of all such proba-
arc with respect to a given node is any connection from a bilities associated with that nexus (William Silvert, personal
descendent node to one of that descendant's ancestors.) Thi§ommunication).
initial screening will take at most® steps, and usually much Having thus removed all cycles from the starting network,

fewer? Before commencing the backtracking to find simple ©One is left with an acyclic residual of once-through flows (a
tree in the language of graph theory). It should be noted that

9 The simplest algorithm in the worst case requires on the order of none of the inputs, exports or dissipations in the system have

Inodes+ |edges calculations Tarjan, 1972 Because ecological networks ~ D€€N altered by the cycle extraction process. (Inputs are al-
are sparse, that number can be considered practically linear. ways paired with identical outputs in the subtraction process.)
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Fig. 8. (a) Hypothetical network consisting of one simple cycle. (b) Single-pass flows through the network. (c) Cycling within the network. Bpte(tijat (c).

The aggregated network of cycled medium can be calculatedflow separated out into two non-overlapping graphs. One
either by accumulating the cycles that have been removed,grouping contained only pelagic species (those that move
or by taking the difference between the starting network and passively with water currents), while the other was com-
the residual once all have cycles have been strippigd Sa prised of benthic (bottom-dwelling) compartments and nek-
shows the residual, acyclic network from the Cone Spring ex- tonic (actively moving through the water) species. Thus were
ample Fig. 2) andFig. 9, the complementary web of purely  two separate domains of control in estuaries identified, and
cyclical flows. such bifurcation seems to characterize many other estuaries
It is true that this decomposition of a graph into its cyclic (Allesina et al., in revielw What was also quite revealing

and acyclic counterparts is purely an abstract exercise. Itwas that none of the filter-feeding compartments, either on
seems, however, not to be wanting in practical vaBesrd the bottom or among the fishes, participated in any recycling.
and Ulanowicz (1989for example, extracted the cyclesfrom  Rather their apparent “function” is to transfer resources from
a 36-compartment network of trophic exchanges in the meso-the pelagic realm into the benthic-nektonic domain. (N.b., it
haline Chesapeake Bay ecosystem to discover that the cycleds maintained by some ecologists that it makes no sense to

speak of the “function” of a species in the context of its par-

ticular community.) Similarly of interest, two compartments
TS of pelagic microbes, normally associated with the “microbial
loop” in open oceanic waters, participated in no recycling
in the Chesapeake system. They serve rather to shunt carbon
(whichis fixed by excessive plant growth in Chesapeake Bay)
out of the ecosystem.

3
Detriti-

11184,

Plants

2003 3109
635

6. Whole-system status

The foregoing methods have focused upon particular sys-
tem components, or subsystem aggregates, but the questions
that are asked in ecosystem analysis and management quite
often concern how the system is performing as a whole? In
fact, granting agencies increasingly are requiring that projects
consider ecological problems in the context of the whole
ecosystemNSF, 1999. To facilitate such whole-system eval-
uations, several indices of an ad hoc nature have been devel-
oped (e.g., the popular and useful index of biotic integrity
[IBI] of Karr et al., 198%. It would be preferable, however,
if ecosystem assessment could proceed on more solid theo-
retical foundations. The question naturally arises, therefore,
whether some attribute of ecosystem networks might provide
an appropriate and useful indicator of system performance.

Of historical note in this regard was the widespread search
Fig. 9. (a) The residual throughflow in the Cone Spring ecosysfégnab). during the 1960s for some connection between system diver-
The aggregate cycled flows in the same system. sity and stability Woodwell and Smith, 199 The whole

(a) 203

(b)
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issue was initiated biylacArthur (1955) who applied Shan-

333

and coherently the flows are connected and a residual that

non’s information measure to the flows in an ecosystem net- measures the disorder and freedom that remains. Rutledge et

work as,
ey (%Y tog (T
" k;(T.)'Og(T..)’

whereH is the diversity of flows in the network,is a scalar
constant, and  signifies the sum dfj; over all combinations
i andj.

Shortly thereafter, the consensus arose that the same inde
could be applied instead to the more accessible stocks of

biomass as,

B; B;
D= —k — | log | —
2 (3) ) (B> ’
whereD is the information-theoretic biodiversitf; is the
biomass of compartmentandB, is the sum of all thes;.

al. focused upohi. as a more appropriate measure of ecosys-
tem maturity (in the sense @dum (1969)than MacArthur’s
ambiguous index.

Ulanowicz (1980)suggested that Rutledge’s focus upon
H¢ was perhaps misplaced. In particular, he was impressed by
Atlan’s (1974)demonstration that the AMI is a useful index
of the organization inherent in a system. Ulanowicz proposed

;[Jwat AMI, instead ofH, is more indicative of the develop-

mental status of an ecosystem, because AMI measures the
average amount of constraint exerted upon an arbitrary quan-
tum of currency in passing from any one compartment to
the next Ulanowicz, 1997; Latham and Scully, 2002MI,
however, has no physical dimensions. That is, given a partic-
ular value for the AMI, an investigator cannot tell whether the
index pertains to a microbial community in a Petri dish or to
an ecological assemblage on the Serengeti Plaibus and

The subsequent discussions on diversity and stability cen-jc|rvine (1971)had commented on the scalar ambiguity of
tered around this biomass diversity. Unfortunately, the enter- jnformation indices and suggested that the constaritisu-

prise met a rather ignominious end whday (1972)demon-

ally set equal to one) be used to impart physical dimensions

strated that a higher biodiversity in linear dynamical systems (o the information index. Accordingly, Ulanowicz det T

was more likely to result in instability than in the reverse.

(the total system throughput) and called the result the system

Thereafter, ecologists by the droves quickly abandoned thenetwork ascendend§, A, where

notion that information theory might be useful in ecosys-
tems analys — a prejudice which remains prevalent among

ecologists today. As a result, little interest was shown when

Rutledge et al. (1976&)turned to MacArthur’s original in-
tuition to focus upon the diversity of flows, and applied a

Bayesian emendation of Shannon’s information measure to

MacArthur's index of flow diversity so as to articulate the
latter attribute more precisely.

Effectively, what Rutledge et al. did was to employ the
more recent notion of conditional probability to decompose
MacArthur’s index into two complementary terms. Tj(T.)
is the unconditional probability that a flow fronto j occurs,
then (Tj;/T;) is the conditional probability that the quantum
of flow proceeds to compartmeptgiven that it had issued
from component. That is,H can be decomposed as

H = AMI + H; 3

where
T;j T;T.
AMI =k — ) log [ =—
ZJ:(T> o(772):

and

He = —kZ (’) log (’ )
T T.T,

AMI is called theaverage mutual informatiomherent in
the flow structure, anHi is the residual (conditional) diver-
sity/freedom (inappropriately called tlvenditional entropy
in information theory). In other words, the overall complex-
ity of the flow structure, as measured by MacArthur’s index,

A=

T;;T.,

ZTileg (T- T ) ’
ij i.1.j

Ascendency thus combines the total activity, or power of
the systemT ), with the organization by which the compo-
nent processes are linked (AMD&tham and Scully, 2002
It gauges how well the system is performing at processing the
given medium. Initially, it had been thought that an ecosystem
would develop so as to maximize its ascendetigiowicz,
1980, but the variational nature of such a statement eventu-
ally was viewed as being overly mechanical and determin-
istic (Mueller and Leupelt, 1998 One now speaks simply
of a propensity for ecosystems to increase in ascendency
(Ulanowicz, 1997.

One may likewise scalkl; by T . to yield what is called
the system “overhead® (Ulanowicz and Norden, 1990as
&= - Z T;jlog

2
T
Py I.T,;

andH itself can also be scaled to produce what is termed the
system’s “development capacityC,

T..
C=-) Tjlog|=L). 4
2 yg (7) @
Accordingly, relationshig3), when scaled becomes
C=A+0. ®)

10 The alternative spelling “ascendency” is used here to distinguish the

can be resolved into a component that gauges how orderlyqguantitative measure from the conventional meaning of “ascendancy”.
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The decompositiorf5) implies that increasing ascendency the confines of a small rectangular domain tbiégnowicz
usually arises at the expense of the complementary overhead(2002) had earlier suggested demarcated a “window of vi-
@. One then naturally asks, what are the limits to how much tality”. In particular, the link densities all ranged between
increasing ascendency can displace system overhead? Sy<t.0 and about 3.0. The lower limit is obviously set by the
tems with a high preponderance of ascendency over overheadequirement that the network remain fully connected. (A
appear to be rigidly linked and almost mechanit#blling value below 1.0 would indicate that the graph consists of two
(1986)calls such systems “brittle” and vulnerable to collapse. or more disconnected subgraphs.) The upper limit of ca. 3
This makes itimportantto remember that the freedomto adapthad been noted earlier by several investigatd/agensberg

to novel perturbations is contained in the system overhead, et al., 1990; Pimm, 1982; Kauffman, 199-and Ulanow-

It then becomes obvious that a “healthy” ecosystem, or oneicz had formulated an information-theoretic homolog of the
with biotic “integrity”, requires adequate amounts ludth May-Wigner stability criterionlay, 1972 which indicated
attributes, ascendency and overhedfowicz, 2000a that stability should wane rapidly beyond a natural limit of

It happens that the balancing act between two mutually e®3) (~3.01) links per node. In the other dimension, the num-
exclusive properties such Asand®, cannot properly be de-  ber of roles varies between 2.0 and about 4.5. The lower
scribed in algorithmic fashion. The ensuing agonistic tradeoff limit expresses the requirement that all ecosystems exhibit a
is more reminiscent of a dialectic, i.e., a competition between minimum of two functions—production and decomposition
two mutually exclusive properties at one level, thatis resolved (Fiscus, 2002 As for the upper limit, it is widely accepted
via their mutual necessity at the next higher level. No one hasthat virtually all ecosystems are characterized by fewer than
yet succeeded at programming a dialectic, so it is unlikely five trophic links Pimm and Lawton, 19797 Igor Matuti-
that the corresponding ecosystem dynamic will yield readily novics (personal communication) indicates the same limit
to mechanical simulation. seems to hold for economic systems. A formal identifica-

Difficulties with simulation aside, knowing the relative tion of the actual boundary and the reasons behind that limit
values ofA and® can nonetheless indicate to the investiga- remain, however, unknown.
tor the status of an ecosystem. For example, one informa- Often, in order to ascertain the full status of a system,
tive property of flow networks is their degree of connectivity, it helps to decompos@ and @ further. For example, it is
sometimes expressed as the link-density, or how many linkssometimes useful to focus upon that part of the ascendency
on average flow into or out of a typical nodélanowicz and thatis generated by the internal workings of the system. To do
Wolff (1991) demonstrated that taking the base of the loga- this, one limits consideration to the “internal ascendengy,”,
rithms to the powerH/2), yields a convenient measure of the which is generated solely by the internal exchanges between
effective link-density. In particular, their measure converges the n system components,
to the appropriate intuitive value as the network in question
approaches being uniformly connected and equiponderant n T;T.

(i.e., a binary or topological network). Sensing significant Al = Z Tijlog (T T ) :

utility behind this convergenc&ersier et al. (2002)sed the i, j=1 e

calculation as a bridge between quantitative network analy-

sis and the more popular “food web analysis”, which treats The resulting fraction of the development capacity that is
only topological networks. For each and every index that had comprised by Athen becomes a putative index of the internal
been defined by investigators in food web analysis, Bersier developmentof the given ecosystem. This ratio has been used
was able to construct an information-theoretic homolog that t0 compare ecosystems that were similarly pargéalif and
converges more rap|d|y onthe property in question than doesulanOWiCZ, 1989, Baird et al., 1991, 2004, Christian et al.,
the original, ad hoc measure. 2003.

Zorach and U|anowicz (zooawere ab'e to ShOW that |t|S IikeWise helpfulto I’egard hOWthe OVerhead iS pal’ce|ed
the connection betweet; and link-density is even deeper. 0outamong the differenttypes of flows. There being four basic
They demonstrated that raising the base of the logarithm categories of flow in ecosystems (internal exchanges, exoge-
to the power K¢/2) yields precisely the weighted geomet- Nous inputs, useful outputs, and dissipations, as in Se2tion
ric mean of the link-density that one would calculate using above), the overhead thereby separates into four correspond-
conventional algebra. Arguing from dimensional considera- ing componentsiflanowicz and Norden, 1990
tions, they then inferred how raising the logarithmic base to

H H n n
the power AMI should correspondingly estimate the num oo ZZ 7, log ( ) ,
network.)
Zorach and Ulanowicz also remarked how, on a graph of " ng
the number of roles versus the link-density, all of their col- P = - 2; Tojlog ToT, )’
=

ber of trophic “roles” in the network. (That s, it corresponds
lection of 44 estimated ecosystem networks plotted inside

2
T

. ? s — £ T,.T,;

roughly to the effective number of trophic levels in the net- i=1j=1

work, or [looking backwards] to the “trophic depth” of the
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i n+l
1,.T. ,n+1

Z ’Tln—&—lIOg (

)

Z T;n+2l09 ( )

where R is commonly called the flow “redundancy”, be-
cause it is strongly tied to the effective multiplicity of par-
allel flows by which medium passes between any two arbi-
trary system component®; is the overhead due to imports,
while ®g and®p are the overheads from exports and dissi-
pations, respectively. Often, perturbations will drive up the
value of R/C Ulanowicz, 1984, indicating that an impacted

1n+2
I;.T. n+2

system tends to become more resistant to further perturba-97rp

tions (the LeChtelier—Braun Principle as applied to ecol-
ogy). Heymans (2003has used the internal overhead as a
measure of the potential for adaptation and resilience.

The reader may have noticed that the indices defined thus
far depend entirely upon the flow structure and take no ac-

count of the magnitudes of any stocks. Although it very well

may be that the dynamics of the system depend far more on

the configurations of flows within it than has been hereto-
fore recognized, there still likely remain situations when the
size of certain stocks will affect system dynamics. To con-

sider the possibility of such controls, it becomes necessary to

introduce the stock sizeB;, into the information-theoretic
calculus. One begins by recognizing that the apriori prob-
ability that a quantum of medium in transit had originated
from compartment is (Bj/B.). The corresponding probabil-
ity that a particle of flowing medium will entgris (Bj/B)).
Hence, the apriori joint probability that any quantum of flow-
ing medium is en route fromto j, becomeskH; Bj/B_Z). The
observed, or aposteriori frequency of such flow friotmj is
simply (Tj/T.)). According toKullback (1959) the average

difference between an the apriori and aposteriori distributions

takes the form

IB:Z<

i,j

L

)

T

T B?
T.BiB;)’

wherelg is called the Kullback—Leibler information.
Scalinglg by T, yields a biomass-inclusive form of the
ascendencydg (Ulanowicz and Abarca-Arenas, 19945,

T;; B2
AB_ZTuIOg< )

T.B;B;
iJ

If Ag is considered a surrogate for the status of a system,
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reveals that such sensitivity is twice the amount by which
the average turnover rate of medium in compartment p is
exceeded by the overall turnover rate/B)). Hence, the sys-
tem is putatively more sensitive to those components having
slower turnover rates of the medium in question. Further-
more, one could ask which prey resource, r, is most impor-
tant as a source of medium to predator p. That source should
be made apparent by taking the partial derivativgfvith
respect to each prey, r, of p (i.e., to ealp). BecauseAg

is a first-order homogeneous function in thg (Courant,
1936, one may immediately invoke Euler’s relation to write
the following simple result:

=|og( )

Examination of this formula leads to the intuitively satisfying

conclusion that the controlling resource is the one which is
being depleted of medium most quickly relative to its avail-
able stock (i.e., the one with the highest rafig,[By]).

TrpB?
T.BrBp

B

7. Higher dimensional considerations

The sensitivity analyses just outlined would be far more
useful, if one could consider the simultaneous flow of sev-
eral media at once. Furthermore, the entire enterprise of net-
work analysis as described thus far pertains only to a single
snapshot of the system. Over time, actual dynamics could
be followed via a “motion picture” or a time-series of net-
work snapshots. One might also want to consider a collec-
tion of networks each of which pertains to a small segment
of the physical space occupied by the ecosystem. Although
generalizations of the analyses detailed in Sect®#sto
heterogeneities in time, space and media become problemat-
ical, similar extensions of the information-theoretic indices
present no such conceptual obstacles and hinge more on the
availability of sufficient data.

To extend the network approach to temporal changes, one
denotesTijk to be the flow of medium from taxointo taxon
j during time intervak. The temporal capacitgy, then fol-
lows from straightforward generalization ¢f) to become

()

There remains some ambiguity, however, as to what consti-
tutes the ascendency in the dynamical case. To clarify®pw
can be resolved into components, it is helpful to employ Venn

ijk

Z Tt]k IOg

i,k

then changes in it due to small increments in the biomass of diagrams Blachman, 196)L In two dimensions the situation

a particular component should reveal the sensitivity of the
whole system to the stock of that particular taxon. Taking the
partial derivative ofAg with respect tdy,

)

aAB_Z T. 1Tp+Tp.
3Bp ~\B. 2 By

was unambiguous.

The circle on the left ofig. 10represents the diversity
of the source flows (prey), while the one on the right, that of
the sinks (predators). Theirintersection, or overlap represents
the AMI. The non-overlapping remaining areas comprise the
conditional uncertaintyle.
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Fig. 10. Two-dimensional Venn diagram showing the AMI as the intersec-
tion of the uncertainties of sources and sinks. The conditional uncertainty,
Hc=Hc1+Hca.

The situation in three dimensiorsig. 11) becomes more
complex.

One seebig. 10repeated in the two adjacent upper circles.
The additional (lower) circle represents variation over time.
The juxtaposition of the three domains results in not one, but
four distinct regions of overfa— a central area where all
three domains overlap (AM) and three adjacent areas where
only one of the three possible pairs overlap in their tur) (
A2, A3). Ininformation theory, the innermost circular triangle
(AMI 3) represents the 3-D AMI. In terms of the fluxgg,
it can be calculated¥bramson, 1963; Pahl-Wostl, 19Pas:

T T2 T...
ik I P

AMI 3, then, represents the simultaneous coherence among
sources and sinks over time. Unlike with the 2-D AMI, there Aos = Z T} jkim 10Q

is no guarantee that AMIremain non-negative. AM| how-

ever, does not encompass all the coherency present in the

system. In particular, the “leafletsi{, A2, A3). that adjoin
AMI 3 represent bilateral coherencies that do not correlate
with the third remaining variable. To be more inclusive of all
coherencies in the systeahl-Wostl (19955uggested that

the appropriate measure be taken as the overlap of all bilat-

eral AMIs (i.e., the trefoil-like region AM+ 11+ A2 +A3).
Calling this conjunction AMt, one calculates its magnitude
in terms of theTjy as:

og< )

AM|T=§(§’Z’?) |
N
N

Fig. 11. The intersection of the three domains of sources sinks and time.
The central area of overlap (AMIrepresents the 3-D average mutual infor-
mation, but the three areas of bilateral overlap ., A3) also contribute to

the overall system organization.

2
TAT..

T;. Tk T jk
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It is guaranteed that AMI> 0. Scaling AMIr by T yields
the temporal ascendenéy,

(

The generalization of capacity and ascendency into 4 or more
dimensions proceeds by induction. Without loss of general-
ity, the 5-D transferTjjqm of flow from taxoni to taxonj
during time intervak at spatial locatioth involving medium

mis about as complicated as most ecological considerations
becomet! The overall 5-D ascendendio, then becomes

) |

Of course, the number of distinct intersections among the di-
mensions will increase binomially with the problem dimen-
sion. The ascendency in all cases, however, remains homo-
geneous in the flows. Thus, for example, the 5-D sensitivities
pqrst
T

become
= log .
.qgrst Tp.rst qu.st qur.t qurs.

The biomass-inclusive overall ascendendyg, takes the

e 5 ()

whereBikm is the biomass of taxonin terms of mediumm
at timek in spatial segmerit The corresponding sensitivity
coefficients become:

T2 T
A = Toolog | k"
T=2_Tilog T ToxT

i,k

4
Tijklm

( T jicim T ktm Tijim Tijlem Tiji.

A

o= Y Tijumlog

i, jk,lm

9Ao T4

0 qurst

T, jkim B>

T

Bikim Bj (6)
i,jk,,m ikim D jkim

0AoB -2 { T... _ } |:Tp.rst T.prst:| } (7)
oB prst B... 2|B prst B prst '
and
dA -~

OB — |Og < pgrstP.... ) ) (8)
anqrst Bprst qust T...

Forthose cases where data are available on multiple media,
Ulanowicz and Baird (199%)ave shown analytically that the
largest biomass sensitivity coefficierfi§ correspond to the
medium that is limiting in the sense @bn Liebig (1854)

Von Liebig's Law, however, gives no way of identifying the
most limiting source of that nutrient. That source is given by
the largest value o).

Ulanowicz and Baird (1999pplied(7) and(8) to parallel
networks of several media to provide a new and systematic
way of elucidating nutrient dynamics in ecosystems. They as-
sembled sufficient data to estimate the trophic exchanges of

11 gpace is considered as only a single dimension, because any 2-D or 3-D
partitioning of a finite domain of physical space always can be enumerated
by a single index [in the same fashion that multi-dimensional arrays are
enumerated by computer code].
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carbon, nitrogen and phosphorus (C, N, and P) in the ecosys-and cycle analysis methods and to calculate community
tem of the mesohaline reach of Chesapeake Bay over the fouinformation measures. It is still available for download-
seasons of a typical year (no spatial variation). They used theing at http://www.cbl.umces.edufulan/ntwk/network.html

4-D version of(7) to identify the limiting medium for each
taxon and found that N was limiting primary production dur-

A translation of NETWRK4 for the Windows platform
has been written by the NOAA Great Lakes Envi-

ing the summer season (as has been long-known). Duringronmental Research Lab and is available to the pub-
that same season, however, P was controlling bacterial pro-lic as EcoNetwrk http://www.glerl.noaa.gov/EcoNetwrk/

duction and secondary production by nekton (mobile fishes).

Applying (8) to their networks, the investigators were able to

EcoNetwrk will also include a number of Graphical
User Interfaces for input and output. Stefano Allesina

diagram (graphical) trees that depict the hierarchy of nutrient at the University of Parma has created a variation of

controls during each season.
Ulanowicz (2000balso calculatedop (6) across a simple
10 x 10 spatial grid of hypothetical migrating animal popu-

NETWRK, called WAND, that is compatible with Win-
dows ExcelM http://www.dsa.unipr.it~alle/ena/ (Allesina
and Bondavalli, 2004; Fath, 2004An optimization routine

lations to demonstrate how information theoretic measuresto construct balanced networks from incomplete data accord-
could be used in landscape ecology. He used cellular au-ing to the method oPolovina (1985)s available as ECO-

tomata to simulate several migration patterns and then pro-

PATH from http://www.ecopath.orge COPATH also imple-

ceeded to quantify the perturbation (or augmentation) that ments the trophic impact analysis and calculates the network
certain constraints exercised on the organization of the pat-ascendency and related information measures. Several ex-

terns.Kikawada (1998kxtended Ulanowicz’s spatial anal-

ysis to include simultaneous trophic interactions, and dis-

perimental algorithms to implement the multi-dimensional
information indices are currently in various stages of devel-

cussed several problems encountered in doing so. More genepment by the author and by Stefano Allesina.
erally, network sensitivity analysis can be regarded as a new

way to examine the network dynamics of various chemical
elements being distributed across the landscKpedyv and
Ulanowicz, 2003 The method can even be applied to pat-
terns of physical fluid flows to document the degree of orga-
nization inherent in the fluid dynamical fieldfanowicz and
Zickel, in pres}.

8. Concluding remarks

Some ecologists persist in believing that the creation of
trophic flow networks is otiose. They perceive the resulting
miasma of interconnections as far too complicated to afford
the investigator any penetrating insights into the workings of
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an ecosystem. Visual impressions can be unduly discourag-
ing; however, because linear algebra can be invoked to an-
alyze network patterns in systematic fashion and to abstractReferences
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