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Quantitative methods for ecological network analysis
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Abstract

The analysis of networks of ecological trophic transfers is a useful complement to simulation modeling in the quest for understanding
whole-ecosystem dynamics. Trophic networks can be studied in quantitative and systematic fashion at several levels. Indirect relationships
between any two individual taxa in an ecosystem, which often differ in either nature or magnitude from their direct influences, can be assayed
using techniques from linear algebra. The same mathematics can also be employed to ascertain where along the trophic continuum any
individual taxon is operating, or to map the web of connections into a virtual linear chain that summarizes trophodynamic performance by the
system. Backtracking algorithms with pruning have been written which identify pathways for the recycle of materials and energy within the
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ystem. The pattern of such cycling often reveals modes of control or types of functions exhibited by various groups of taxa. The pe
f the system as a whole at processing material and energy can be quantified using information theory. In particular, the complexity

nteractions can be parsed into separate terms that distinguish organized, efficient performance from the capacity for further devel
ecovery from disturbance. Finally, the sensitivities of the information-theoretic system indices appear to identify the dynamical b
n ecosystem functioning.
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. Why network analysis?

Ecologists have precious few tools at their disposal to rep-
esent phenomena that transpire at the level of the whole-
cosystem. Yet, they increasingly are being exhorted to ap-
roach environmental problems at the level of the whole
cosystem (NSF, 1999). To date, the most common tool for
uantifying systems-level events is simulation modeling. Be-

ore one can simulate an ecosystem, it is necessary first to
dentify the relevant taxa that comprise it. Thereupon, the in-
estigator must parse out the significant interactions among
hose taxa. It is only after these preliminaries that the actual
odeling commences, as the modeler then quantifies each

uch interaction in algorithmic fashion. The aggregated for-
ulae are then executed under an appropriate shell on some

uitable platform. Finally, there follow the arduous and non-
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trivial tasks of calibrating the model according to some
of system observations and validating it against anothe
dependent set of data.

Unfortunately, grave problems, both practical and c
ceptual, beset such whole-ecosystem simulation mode
On a practical level, the results of the endeavor appe
leave much to be desired (Sheffer and Beets, 1994). Which
is not to ignore some successful models consisting of o
a few processes, but as the number of interacting proc
increases, problems multiply disproportionately (Platt et al.
1981). Some argue that difficulties in calibrating and valid
ing simulation models arise from the propagation of er
across the nexus of interacting processes. Whence, mo
curate and precise values for the model parameters s
ameliorate the problem. Others, however, are convinced
interacting nonlinear processes inevitably lose their po
to predict (Lorenz, 1963). Furthermore, prediction abili
wanes as the interacting processes increase in number
nonlinearity (Ulanowicz, 1979). Hence, in order to avo
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pathologies that inevitably crop up in the behaviors of cou-
pled process models, biologically unrealistic assumptions are
made out of mathematical convenience (to maintain stabil-
ity), thereby further impairing prediction ability.

It seems frustrating that nature thwarts attempts to model
ecosystems accurately, and thereby control them, but mod-
elers seldom draw the conclusion that the conceptual frame-
work that supports the simulation process is itself flawed.
After all, multi-process models work quite well for phys-
ical and chemical systems, and the modeling process is
built upon the selfsame assumptions that guide the larger
body of science—namely, closure, atomism, reversibility,
determinism and universality (Depew and Weber, 1994;
Ulanowicz, 1999). Why should matters go suddenly awry
with ecosystems? It happens that, for a while now, propo-
nents of “deep-ecology” have maintained that ecology is truly
different from other disciplines (Naess, 1988); that it forces
the investigator to alter profoundly his/her conceptions about
how nature operates. Only recently have some of the fea-
tures been articulated that distinguish ecological phenom-
ena from more fundamental physical and chemical events
(Ulanowicz, 1999). These matters are beyond the scope of
this exposition, suffice it here to mention: (a) an inversion
in the magnitudes of characteristic lifetimes (and with it the
direction of causality) as one passes from the individual or-
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Fig. 1. A directed flow graph.

2. Required information

A working definition of an ecological network is that it
is a representation of the answers to two questions: (1) who
eats whom?, and (2) at what rate? As with simulation model-
ing, preliminary to the first question it becomes necessary to
identify the significant taxa ornodescomprising the ecosys-
tem. For each of the taxa one then needs to know which of
the other nodes are present in its diet. Once this qualitative
information is known for all taxa, the result can be repre-
sented in one of two ways: (a) one can present the system
graphically as a directed graph, or digraph. On the digraph
the nodes are usually represented as boxes, and each trans-
action is represented as an arrow that originates out of the
prey taxon and terminates (with an arrowhead) at the preda-
tor node (Fig. 1); (b) the connection topology amongnnodes
can likewise be represented as ann×nsquareadjacencyma-
trix, where a one in the entry for rowi and columnj means
that an amount of material flows from predatori to prey j.2

By contrast, a zero entry signifies that no palpable transfer
occurs betweeni and j (hence the notion of abinary net-
work). The advantage of using the matrix approach and asso-
ciated linear algebra is that one may then deal with systems of
arbitrary dimension.

Now, ecosystems are necessarily open, meaning that they
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anism to the ecosystem, and (b) the singular nature o
rucial role played by aleatoric events over the historie
cosystems.

Leaving these intriguing academic issues aside, the
ractical question arises, “If simulation modeling is less
atisfactory, what alternative approach might culminate
eeper and more satisfactory understanding of whole ec

ems?” Almost a quarter century ago SCOR Working Gr
9 (Platt et al., 1981) suggested that systems ecologists s
ly forego the latter stages of the modeling process altoge
hey suggested that one concentrate instead on what c

nferred from the identification and parsing tasks alone;
ne pay more attention to processes (flows) than to ob
stocks). This advice eventually was acted upon by a su
or working group (#73) that assembled an inchoate s
nalytical tools which collectively became known as “eco

em network analysis” (ENA) (Wulff et al., 1989).
An assumption underlying ENA has been that the co

ration of processes represents the “anatomy” of the ec
em; and that, as in medical practice, such anatomy wi
eal much about the history, current status and working
he ecosystem.1 The remainder of this work will discuss ho
o create ecological flow networks and analyze them in
ematic fashion.

1 It should be noted in passing that an independent school of inve
ions into the structure of “foodwebs” has evolved in parallel with ENA (
odzis, 1989; Cohen et al., 1990; Polis and Winemiller, 1995). Foodweb re
earch treats unweighted (binary) networks of trophic interactions, wh
NA addresses the [sometimes large] differences in the magnitudes
onnections.
xchange material and energy with their surroundings. T
xogenous transfers require that one emend both the g

cal and analytical representations. Without loss of gen
ty, one can assume that all inputs to a particular taxo
umped as a single entry. (If such is not the case, mul
ypes of inputs can be treated as will presently be discu
or exogenous outputs.) Actual physical inputs take the
f primary production, immigration or inbound advection
aterial or energy. The lumped input is represented gr

cally by an arrow that originates out of no visible tax
nd terminates (with an arrowhead) into the actual rece
ode (Fig. 2).

For reasons that will become obvious presently, it is
ul to distinguish between two different types of exogen
utputs: the first is the export of material or energy still us

2 Several other investigators (e.g.,Patten, 1985) reverse the order of th
ubscripts. That is, flow is in the direction from columnj to row i.
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Fig. 2. The trophic exchanges of energy (kcal m−2 y−1) in the Cone Spring ecosystem (Tilly, 1968). Arrows not originating from a box represent exogenous
inputs. Arrows not terminating in a box portray exogenous outputs. Ground symbols represent dissipations.

to other ecosystems of comparable scale. Examples of such
exports are emigration, harvesting by humans, and advection
out of the system. Similar to the external inputs, these flows
can be represented as arrows that originate from the given
taxon but terminate in empty space (Fig. 2). In addition to
useful exports, some energy may be dissipated into heat (res-
piration) or some material may be degraded into its lowest-
energy form (e.g., denitrification to N2). The occurrence of
such dissipations is required by the second law of thermo-
dynamics for energy. With pictorial representations (Odum,
1971), the common convention is to depict dissipation leaving
a compartment by the “ground symbol” of electrical circuit
symbology (Fig. 2).

For an ecosystem ofn taxa, the maximum number of flows
possible under the typology just described isn2 + 3n. When-
evern exceeds about 20, the number of actual transfers usu-
ally falls well below this limit. With systems having many
compartments, the number of nonzero entries into the adja-
cency matrix usually is less than 15% ofn2. Hence, one is
dealing mostly with sparse matrices.

The second query, “at what rate?”, requires the investigator
to quantify each palpable exchange. Quantification usually is
in terms of a single conservative medium. That medium may
be energy, or it could be any one of the chemical elements,
such as C, N, P, S, etc. ENA usually allows only one medium
p e.g.,
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for each taxon,i,

Xi +
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j=1

Tji =
n∑

k=1

Tik + Ei + Ri (1)

or

Xi + T.i = Ti. + Ei + Ri,

where a dot has been used to indicate summation over the full
range of an index. (Henceforth, the sigma convention will be
used only when necessary for clarity.)

At any particular time, however, the inputs to each taxon
may not be balanced by its outputs. Some of the methods to
be discussed, such as the analysis of cycling (Section5) or the
information-theoretic indices (Section6) do not require that
components be balanced. The assessment of indirect effects
(Section3) and the description of trophic levels (Section4)
can, however, yield spurious results whenever any taxon is
not in steady state.

Another stratagem is to define separate vectors to rep-
resent instantaneous storages (G) and loss (L) of biomass,
respectively. Then the artificial balance becomes

Xi + Gi + T.i = Ti. + Li + Ei + Ri.

Ideally, one determines of the magnitude of each rate of trans-
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er network (although some investigators allow several (
annon et al., 1991)). In systems where the dynamics
everal elements appear to be significant, the practice
epresent each medium by its own network, and the ana
f multiple parallel networks is covered in Section7. Till

hen, all systems will be quantified using a single mediu
Having chosen a suitable medium, the investigator

roceed with the quantification of the flows. For this purp
he rate of the internal transfer from donor (prey) taxoni to
ecipient (predator) taxonj will be represented asTij . The rate
f exogenous input to taxoni will be denoted byXi ; the rate
f loss of useful medium from taxoni to the outside worl
ill be signified byEi ; and the dissipation fromi will beRi . If
ookkeeping is kept over a sufficiently long interval, med

s likely to be balanced around each compartment. Th
er from measurements made in the field. For some fl
hat characterize the activity of the system, such as the
ary productions, this is usually feasible and is highly rec
ended. Because of the large number of transfers occu

n most systems, however, it is usually unfeasible to rec
he magnitudes of all flows directly. It becomes neces
herefore, to estimate the magnitudes of some rates by
ect means. One helpful device for estimating unknown fl
s to assume the balance of inputs and outputs around
axon.

The estimation of a balanced flow network is an art f
hat cannot readily be formalized in all cases. There
ome useful guides for the novice, however (Ulanowicz et al.
997). It is ironical, for example, that a methodology tha
mphasizes processes over objects, should use as its s
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point some measure of the biomass or density of each taxon.
Because it is so much more difficult to measure metabolic
rates in the field than it is to estimate the sizes of each popu-
lation, the common procedure has become the assessment of
the stock density of a taxon (in terms of the chosen medium)
so that that stock can be multiplied by an appropriate tabu-
lated metabolic quotient to obtain the desired rate. For ex-
ample, if one should measure a microzooplankton density of
150 mg C m−2 and discover from published reports that the
average consumption rate by these organisms is 160% per
diem, then the total consumption (demand) by these organ-
isms could be roughly estimated as 87,600 mg C m−2 y−1.
Similarly, one would search for physiological quotients to
quantify the losses due to respiration, excretion and natural
mortality. By difference, one is able to arrive at the net pro-
ductivity available for consumption by predators. Balancing
the network thereafter becomes a task of matching up the es-
timated demands to the corresponding availabilities over all
indicated predator–prey interactions.

There exist several widely-used optimization routines that
have been written to create such a balanced network automat-
ically (Polovina, 1985; Christensen and Pauly, 1992; Vezina
and Platt, 1988; Kavanagh et al., 2004). The problem with
optimization algorithms, however, is that they tend to yield
solutions that lie on one of the vertices of the constraint poly-
h t the
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nates when the list of flows to be incremented becomes empty.
This process, which resembles “mold-filling” will match the
aggregate demands with the availabilities insofar as possi-
ble. Final balancing is then achieved via theAllesina and
Bondavalli (2003)equilibration routine.

Comparisons of networks balanced using MATBLD with
those starting with the same data and using MATLOD reveal
that results differ by statistically insignificant amounts. Per-
haps more interestingly, either method yields results that do
not differ from published networks to any statistically sig-
nificant degree (Ulanowicz and Scharler, in preparation). If
true, once one obtains field estimates of population densities
and a predator–prey topology, one should be able to find in
the literature appropriate physiological quotients needed to
invoke either MATBLD or MATLOD to create a complete,
balanced, quantified network of exchanges.

3. Indirect effects

By following the methods just outlined, an estimate of
the complete trophic flow structure can be achieved for most
ecosystems. Many, however, might question what could pos-
sibly be accomplished with such a network? This is a legit-
imate question, considering how most graphical representa-
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edron. That is the mathematician’s way of saying tha
olution almost always zeroes out one or more of the fl
nown to pass into or out of each taxon. Some balancin
orithm that allows all the known exchanges to remain in
ventual apportionment is to be preferred. Because su
lgorithm would involve fewer inferences than are imp

n an optimization routine, the result is referred to as a le
nference distribution.

Recently, two potential least-inference schemes have
mplemented (Ulanowicz and Scharler, in preparation). The
rst of these, MATBLD, begins by assigning a flow mag
ude to each link in joint proportion to the availability of t
iven prey and the demand by the corresponding pred

f the matrix of flows were fully connected, this joint app
ionment would directly yield a balanced network. Ecos
em networks are usually sparsely connected; however
t becomes necessary to inflate these joint proportions
onstant factor to yield a magnitude for the total system
ivity that is commensurate with the aggregated deman
ll components. Even after such adjustment, the netwo
till not balanced, and one must invoke an equilibrating
ine, such as the donor-controlled (inherently stable) ba
ng scheme ofAllesina and Bondavalli (2003).

A second alternative, called MATLOD, “loads” the n
ork matrix by incrementing the set of all designated fl
y some uniform very small amount. After each flow has b

ncremented, the routine checks to see whether the ava
ty of the prey has been exhausted or the total deman
he predator has been satisfied. If either of these chec
rue, that particular flow is removed from the list of th
hat will receive additional increments. Matrix loading ter
ions of networks of even moderate dimension (say 30
odes) resemble tangled “spaghetti diagrams”, and thei
esponding matrices fill screens and printouts with a w
f numbers. Indeed, what sense can be made of these
tructs?

Fortunately, through the systematic application of lin
lgebra, a full picture of all the indirect trophic effects a

he overall trophic structure can be realized. To see how
s done, it is helpful to turn to matrix notation. One beg
y defining a matrix of dietary proportions, [G].3 The el-
ments of [G] are obtained from the elements of the fl
atrix, [T], and the input vector, (X), by normalizing the

nter-compartmental exchanges using the total input to
eceiving compartment,j,

ij = Tij

(T.j + Xj)
. (2)

hat is, the elementgij represents that fraction whichi com-
rises of the total intake byj. Reading down columnj of [G],
ne encounters the respective percentages that each

tem i constitutes of the full intake byj.
The matrix [G] and its algebraic powers have very dida

eanings as regards trophic functioning. For example, i
ery simple network inFig. 3, the six non-zero values ofTij

3 The convention here will be to denote square or rectangular matri
apital letters contained within square brackets, e.g., [G], [A], etc. Column
ectors will be denoted by capital letters within parentheses, such asX) or
E). The superscript “T” after any matrix or vector signifies its transp
hat is, [G]T is a matrix formed by transposing the rows and column
atrix [G]. Similarly, (E)T is the row-vector transpose of column vectorE).
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Fig. 3. A simple hypothetical network of four components.

give rise to a corresponding six elements in the matrix [G].

[G] =




0 g12 g13 g14

0 0 g23 g24

0 0 0 g34

0 0 0 0




Multiplying the matrix [G] by itself gives the following result:

[G]2 =




0 0 g12g23 (g12g24 + g13g34)

0 0 0 g23g34

0 0 0 0

0 0 0 0




The reader’s attention is drawn to the fact that each of the
non-zero elements of [G]2 corresponds to the collection of
pathways of length 2 that connecti with j. For example, the
1–3 element of [G]2 reveals how much gets to 3 from 1 over
the two step pathway 1→ 2→ 3. The 1–4 element is com-
prised of two terms, signifying there are two pathways of
length 2 connecting 1 with 4. The first term reports the frac-
tion of what reaches 4 from 1 over the pathway 1→ 2→ 4,
while the second term gives the corresponding fractional in-
put to 4 that traveled via the route 1→ 3→ 4.

[
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prompts the question of whether the infinite series,

[I] + [G] + [G]2 + [G]3 + [G]4 + · · ·
converges to a finite limit? (The matrix [I] {=[G]0} is the
identity matrix. It consists of ones along its diagonal and
zeroes elsewhere.)Simon and Hawkins (1949)were able to
show that the normalizations (2) guarantee that the series of
matrices converges to the finite limit,

[I] + [G] + [G]2 + [G]3 + [G]4 + · · · → [I − G]−1

This limit, [S] = [ I−G]−1, is called the Leontief structure ma-
trix. The i–jth component of [S] provides the fraction of the
total input toj that came fromi over all pathways of all lengths
per unit of final demand. Final demands play a key role in
economic theory, and the discovery of the [S] matrix enabled
economists to estimate the productions in various economic
sectors that were necessary in order to satisfy any vector of fi-
nal demands. The formulation of [S] by Leontief (1951)won
for him the 1973 Nobel Prize in Economics for what even-
tually became known as “input–output” (I/O) theory. About
the same time that Leontief received his prize,Hannon (1973)
was introducing Leontief’s methods into ecology.

Although final demands are central to economic planning,
their homologs in ecology take the form of respiratory losses.
Of course, respiration is important in ecology, but it is the in-
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Multiplying [G]2 by [G] once more yields the matrix [G]3,

G]3 =




0 0 0 g12g23g34

0 0 0 0

0 0 0 0

0 0 0 0


 .

s can be seen, there is a single non-zero element ofG]3,
orresponding to the only three step pathway in the gr
→ 2→ 3→ 4. The sequence of powers of [G] truncates
ith [G]4 = [0], as there are no pathways >3 in the netwo
The reader is encouraged to experiment with other si

raphs to ascertain that the elements of themth power of [G]
ontain contributions from each and every pathway in
raph of exactly lengthm.

Because the elements of [G] have been normalized su
hat eachgij ≤ 1, it is probable that the elements in the hig
owers of [G] will grow progressively smaller. This, in tur
ermediate transfers among system components that int
cologists even more. That is, ecologists are more eag
now how much of what eventually arrives at j was the
ult of a particular activityi?Szyrmer and Ulanowicz (198
howed how the intermediate transfers could be reckone
convenient transformation of the [S] matrix. Szyrmer calle
is result the “total dependency matrix”, [D], where the ele
ents of the [D] matrix could be calculated from [S] and the
riginal flows as

ij = (sij − δij)

( ∑n+2
k=1Tik

sii
∑n

m=0Tmj

)
,

hereδij are the elements of the identity matrix,T0j are the
xogenous inputs toj, Ti,(n+1) represent useable exports fr
to other systems of comparable scale, andTi,(n+2) are the
issipative losses fromi. Another way of looking at eleme
ij is that it answers the question, “What fraction of the t
iet of j passes throughi along its way toj?” Viewed in this
ay, thejth column of [D] can be interpreted as the “indire
iet” of j, that is, the respective amounts by whichj depend
pon the activity of each element in the ecosystem. Bec
edium can visit multiple compartments on its way toj, the
lements of columnj sum to≥1, and the sum is indicative

he effective trophic position ofj.4

4 Another useful index of system status is the average path length,
efined byFinn (1976)as the average number of transfers an arbitrary q

um of medium makes while traversing the system. It can be calculate
ly by dividing the sum of all system inputs by the total system throug

.e., APL = (T•• /T0• ).
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The matrix of indirect diets is sometimes useful for
differentiating trophic roles. For example, in the Chesapeake
mesohaline ecosystem, Striped Bass (Morone saxatillis) and
Bluefish (Pomotatus saltatrix) are both pisciverous predators
and one would expect them to compete heavily with each
other. Baird and Ulanowicz (1989)calculated the indirect
diets, [D], of all major compartments of the Chesapeake
system, revealing (among others) the following indirect
dependencies:

Striped Bass on Zooplankton (%) 65.8

Bluefish on Zooplankton (%) 28.7

Striped Bass on Polychaetes (%) 1.8

Bluefish on Polychaetes (%) 48.0

The results indicated how the Striped Bass were ultimately
highly dependent on pelagic production, whereas Bluefish
owed their activity more to benthic secondary production.

Of course, normalizing [T] down its columns is but one
way to proceed. One could have as readily normalized the
rows of [T] to obtain a matrix of host coefficients, [F],

fij = Tij

(Ti. + Ei + Ri)
.

T
d re
m ist
A r
t
d colo-
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c h of
w ,
S
e

c

tion
m om
a lar,
o sys-
t its
w pper
t
p arsh
e nt on
t the
t -
o om
a bu-

es-
t

tion coefficients of the primary producers to the Gulf Kil-
lifish (Fundulus grandis) and two Needlefish (Strongy-
lura marina and S. notata) yielded the following results:

Control �T

Gulf Killifish 0.147E−02 0.670E−03 (−54%)

Needlefish 0.338E−03 0.140E−03 (−59%)

One concludes that the impact of the thermal effluent was
to decrement the overall efficiency of the ecosystem at pro-
ducing top carnivores by some 55–60%.

One frequent criticism of I/O methods is that they pertain
only to steady-state or temporally-averaged configurations.
There have been several efforts to extend I/O theory to non-
steady-state systems.Matis et al. (1979)treated the imbalance
as another category of flow, whileMatis and Patten (1981)
normalized the flows by the storages of the source compart-
ments and inflated the diagonal elements to reflect the relative
storage times. This author prefers to treat temporal dynamics
by applying information-theoretic methods to time series of
network snapshots (see Section7 below).

Another deficiency of conventional input–output analysis
is that it deals only with positive flows of medium. Although
contributions and dependencies are key features of ecosys-
t ative
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hat is,fij is the fraction of the total activity ofi that flows
irectly to elementj. The corresponding output structu
atrix, [Σ] = (I−FT)−1, was formulated by the econom
ugustinovic (1970)to estimate the activity of each sectoj

hat is generated by a unit of primary input toi. As with final
emands, primary inputs are of substantial interest to e
ists, but at times they might prefer to know the intermed
ontributions of all the compartments. That is, how muc
hat leavesi eventually flows as input toj? Accordingly
zyrmer defined the total contribution matrix, [C], with the
lements5

ij = (σji − fji)

(
Ti.

σiiT.j

)
.

One may regard the elements of the total contribu
atrix as the efficiencies with which medium flows fr
ny one compartment to any given other. In particu
ne might want to use as an indicator of overall eco

em efficiency how much primary production makes
ay through the ecosystem and finally reaches the u

rophic components. For example,Ulanowicz (1984)com-
ared networks of trophic exchanges in two tidal m
cosystems near the Crystal River nuclear power pla

he west coast of Florida. One network was adjacent to
hermal outfall from the plant (�T≈ 6◦C), and the sec
nd, virtually identical marsh (control), was distant fr
ny thermal influence. Calculation of the total contri

5 In generaldij 
= cij , as they are the answers to slightly different qu
ions. At steady-state,dii =cii , however.
em dynamics, ecologists are also interested in the neg
ffects of predation and how these might propagate thro
ut the system. Ideally, one wishes to follow simultaneo
oth the positive and negative impacts of trophic exchan
ortunately, the linear algebra of I/O analysis lends itse
valuating the net trophic impact (+ or−) of any one specie
pon any other (Ulanowicz and Puccia, 1990). For starters
ne notes as howgij quantifies the positive impact of pr
upon predatorj. The correspondingfij , however, seems
nderestimate the negative impact thatj has uponi, becaus

t has been normalized by the total output fromi, rather than
ust the predatory losses thati sustains. Accordingly,fij is
ormalized as

∗
ij = Tij∑nl

m=1Tim

,

here the indexm is summed only over the subset of livi
embers (nl≤n) of then ecosystem components. One

hen define the net direct effect thati has uponj as

ij = gij − f ∗
ji,

here−1≤qij ≤ 1.6

In almost all instances, the series consisting of the p
rs of [Q] converges, just as the powers of [G] converge in
onventional I/O analysis:

I] + [Q] + [Q]2 + [Q]3 + [Q]4 + · · · → [I − Q]−1

6 Fath and Patten (1998)retainfij as normalized by thetotalflow through
, which makes the elements of their [Q] matrix (on average) more positiv
ee also Fath and Borret (in review).
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(In rare [usually degenerate] instances the matrix [I−Q]
can be singular, and no convergence obtains). The over-
all net matrix of total impacts, [M], then = [I−Q]−1 − [I].
For any connected graph, the matrix [M] will possess the
full complement ofn2 non-zero components. This jumble of
impacts would become overwhelming (e.g.,Hillebrand and
Shurin, in press) without some systematic way of presenting
the results. The original algorithm for indirect trophic influ-
ences is called IMPACTS, and it allows the user to focus
upon a particular compartment by ranking the impacts the
given species has on other system components, along with
the impacts that other species exert on the compartment in
question.

Earlier, when he first addressed temporal changes in eco-
logical networks,Patten (1982a)surmised a tendency for neg-
ative, competitive direct interactions to become positive indi-
rect accommodations or cooperation.Fath and Patten (1998)
demonstrated how the elements of [M] are usually more posi-
tive than the direct effects, [Q]. As noted above, the way Fath
and Patten normalize their [Q] matrix makes the elements of
their version of [M] more positive than the ones defined here.
These differences notwithstanding, it is easy to cite instances
of negative direct interactions becoming positive indirect in-
fluences, even under the more conservative assumptions used
above (Bondavalli and Ulanowicz, 1999).
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Fig. 4. A hypothetical trophic network. Units are arbitrary.

of linear algebra developed for I/O analysis make both tasks
possible.

In the previous section, it was mentioned how the sums
of the columns of the structure matrix, [S], were related to
the number of trophic transfers that medium had incurred
along its way to the target compartment. Although this sum
is generally not an integer,Levine (1980)suggested that it
be regarded as the average or effective trophic level at which
that particular taxon is feeding. A simple demonstration of
the intuitive appeal of this definition appears inFig. 4. In
this hypothetical example, compartments 1, 2 and 3 are con-
nected in chain-like fashion. Compartment 4, however, re-
ceives only 5 of its 50 units of total activity at the fourth
trophic level. It receives 30% of its sustenance at the third
level and 60% at the second. Its effective trophic level be-
comes (0.6× 2) + (0.3× 3) + (0.1× 4) = 2.5. It is left as an
exercise for the reader to calculate the [G] matrix and the
structure matrix, [S] for this network. The sums of the first
three columns of the resulting [S] are 1.0, 2.0 and 3.0, respec-
tively, whereas the fourth column sums to 2.5. The calculation
is quite general and applies to even the most complicated flow
topologies, regardless of the number and position of cycles in
the system.Christian and Luczkovich (1999)combined this
notion of effective trophic level with the trophic impact anal-
ysis just discussed to help establish the direction of causality
( tion
e

cies
i ore
c
O om-
p

g

w all it
( re-
v ists
o ex-
o ore
g lcu-
l ivore,
o te
. Trophic considerations

The concept of “trophic level” arose from the very s
listic image of an ecosystem as a trophic chain or pyra
hat is, energy is fixed by autotrophs or primary produ
t the first level, and some (but not all) of those resou
re transmitted to the herbivores at the second level. Fu

ransfer occurs to carnivores at the third trophic level an
op carnivores at the fourth. There is occasional mentio
ertiary carnivores, but hardly ever any reference to anyt
eyond the fifth level. It was originally thought that losse
nergy and material at each transfer limited trophic chai

ess than five members, but that causal inference turne
o be problematical (Pimm and Lawton, 1977).

In any event, nature is almost never so simple as the
r pyramid just described, and considering the full m

old combinations of circumstances soon becomes impr
al (Hillebrand and Shurin, in press). One must either devis
systematic way of applying the trophic level concep

omplicated webs or abandon the notion altogether. W
ome species do behave as obligate autotrophs or herb
any heterotrophs feed at multiple levels, and no simple

or-one mapping of taxa to integer trophic levels appea
e feasible.Cousins (1985), for example, points out that
awk can feed at five different trophic levels. Thus, one m
ither emend the notion of trophic level to apply to the c

inuum of trophic positions in complicated networks, or e
ne might seek some way of mapping the actual web in
bstract chain of integer trophic levels. It happens the
,

bottom-up versus top-down) at work in aquatic vegeta
cosystems in St. Mark’s Refuge, Florida.

The obverse task of apportioning the activities of spe
nto virtual integer trophic levels requires somewhat m
omplicated manipulations (Ulanowicz and Kemp, 1979).
ne begins by noting that the fractions by which each c
artment feeds directly from primary sources are

0i = T0i∑n
m=0Tmi

,

hich elements can be arrayed as a row vector, c
L1)T = (g0)T. That is, the elements of this row vector
eal the fraction of the activity of each taxon that cons
f primary production (assuming for the moment that all
genous inputs correspond to primary production. The m
eneral case will be covered in a footnote below). To ca

ate the amounts by which each taxon feeds as a herb
ne simply multiplies [G] by (L1)T on the left to genera
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the row vector (L2)T = (L1)T[G]. Similarly, the fractions by
which each compartment acts as a carnivore (the third level)
become (L3)T = (L2)T[G]. By induction, one may calculate
the fractions at themth trophic level as (Lm)T = (L1)T[G]m−1.
If there are no cycles in the network, the sequence of row vec-
tors, (L1)T, (L2)T, (L3)T, . . . will truncate (become all zeroes)
inn− 1 or fewer steps (because [G]m−1 will become a matrix
of zeroes, once no pathways of lengthm− 1 exist). Therefore,
when cycling is absent, one may define a Lindeman trophic
transformation matrix, [L], such that theith row of [L] is (Li)T.
Reading down thejth column of [L] reveals the fraction by
which thejth taxon feeds at each corresponding trophic level.
Reading across theith row provides the composition of that
virtual trophic level.

The simplistic network inFig. 4, for example, yields the
Lindeman trophic transformation matrix,

[L] =




1 0 0 0

0 1 0 0.6

0 0 1 0.3

0 0 0 0.1


 .

Reading down the columns, one sees as how the first three
compartments act entirely at their respective trophic levels,
whereas compartment 4 is partitioned as described above.
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Fig. 5. The Lindeman Spine of the network inFig. 4.

trophic levels. This follows by treating [L] as a conventional
transform in linear algebra. Thus, one defines the canonical
inputs8, (Ψ ) (Greek upper case “psi”) as

(Ψ ) = [L](X),

In similar fashion, the useful exports, (E), and dissipations,
(R) map as

(Y ) = [L](E),

and

(P) = [L](R).

(Y) and (P) (Greek upper case “ypsilon” and “rho”) are the
“canonical” exports and respirations, respectively.

It should then follow that the matrix of flows [T] would
transform as

[Θ] = [L][T ][L]T.

There is a problem, however, in that [L] is not orthonormal,
so that the transformed matrix of flows, [Θ], is not diagonal
in form. All is not lost, however, because [Θ] possesses a
peculiar form of symmetry that allows one to abstract from it
a surrogate diagonal matrix, [Ξ]. [Ξ] has as itsith diagonal
element the sum of theith row of [Θ] and zeroes elsewhere,
i.e., ξii =Σkθik, andξij = 0 otherwise. Then homologous to
e phic
l

Ψ
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eading across the rows, one encounters those fraction
he activity of component 4 contributes to the throughfl
f the second, third and fourth virtual trophic levels.

At this point, the reader might interject that almost
rophic networks contain cycles. This is a valid observa
owever,Pimm (1982)observed how cycles strictly amo

iving, feeding taxa are relatively rare and usually are s
n magnitude. Put in other words, almost all cycles in eco
ems contain at least one non-living compartment. If, t
ne orders the ecosystem’s components so that all living
artments (saynl of them) appear first, then thenl×nl sub-
atrix of transfers among the living compartments sh

ontain a very small number of cycles having very insig
cant activities. It will be described in the next section h
ycles can be removed from networks without altering
alance around any of the members of the cycle. If a

hese cycles are small in magnitude (which is almost alw
he case), then the cycles among the living component
e removed without changing thenl×nl submatrix to an
ignificant degree. Because there are no longer any c
mong the firstnl taxa, one can now define annl×nl Linde-
an trophic transformation matrix for the living compone
s just described (Ulanowicz, 1995).7

Having devised a scheme to apportion the activitie
ll the original compartments among a set of integer tro

evels, it now becomes possible to apportion the indivi
ows along a chain of transfers linking the aggregated, int

7 It should be noted here howHigashi et al. (1991)electnotto remove the
ycles from the networks they treat, with the result that their trophic c
o not truncate at some level <n, but continue on indefinitely.
quation(1), one can balance around each integer “tro
evel”, λ,

λ + ξλ = ξ(λ+1) + υλ + ρλ.

or example, the Lindeman matrix [L] shown above for th
imple network inFig. 4 transforms that network into th
quivalent straight-chain inFig. 5.

Again, the canonical transformation works in straight
ard manner whenever there are no cycles in the entire
ork. As mentioned earlier, there are almost always sig
ant cycles in the network as a whole, but almost all inv
t least one non-living compartment. Thus, arranging t
ompartments so that thenl living species appear first allow
ne to remove all of the insignificant cycles comprise
nly living predators. One may then treat the revisednl×nl
cyclic submatrix to create annl×nl Lindeman matrix, [L′],

or the living species alone. To create a Lindeman tran
ation of the entire system (Fig. 6), one begins with [L′] as

8 The reader will recall that only those components of (X) that represen
rimary production are employed in the definition of [L]. As a result, al

he primary production figures will map into the first component ofΨ ),
hile any inputs that occur at higher trophic levels will be apportione

he remaining components of (Ψ ).
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Fig. 6. The partitioned expansion of the [L′] matrix.

the principal submatrix within an expandedn×nmatrix, [L],
occupying rows 1 throughnl and columns 1 throughnl. The
remainder of the matrix is filled out with zeroes, save for the
last [n−nl] elements of the last row, which are all set equal
to one.

After transformation by [L], thenl×nl submatrix creates
what is called a “Lindeman Spine” of chain-like flows. The
remainder of the matrix serves to aggregate all the non-living
compartments into a single detrital pool, in such a way that all
of the flows connecting the detrital pool with the Lindeman
Spine balance. As an example of the results, the Lindeman
Spine and associated detrital pool corresponding to the net-
work in Fig. 2 is shown inFig. 7. A peculiarity inFig. 7 is
that the Lindeman Spine is broken between levels I and II.
As a result, levels II, III, and IV are due purely to detritivory.

The advantage of transforming into “canonical trophic
chains,” is that the results often allow one to observe reg-
ularities across disparate ecosystems or, conversely, change
in the same ecosystem at different times. Regarding com-
parisons among ecosystems, one often encounters canonica
trophic chains that exceed 5 levels, ostensibly contradicting
the dictum byPimm and Lawton (1977)that trophic chains do
not exceed five steps. Closer consideration, however, reveals
that the amounts of medium that the system transfers beyond
the 5th level are miniscule, so that any effective measure of
t els.

Hence, whenWhipple and Patten (1993)write about activ-
ities at very high trophic levels, one has to ask if anything
other than a few molecules remain to carry out those activi-
ties after so many transfers. As for changes in the canonical
chain over time, it appears that environmental perturbations
usually act to shorten the length of the chain and diminish
disproportionately the flows at higher levels.

Bernard Patten and associates have also developed an
environ theory of ecosystems (Patten, 1978, 1982b; Patten
and Auble, 1981; Fath and Patten, 1999; Fath and Borrett,
in review). An environ constitutes the entire antecedent or
subsequent history of the material currently residing in a
compartment. An input environ is a quantitative description
of where the current biomass has resided since it entered the
system and the pathways along which it flowed to arrive at
the node in question. Similarly, an output environ describes
which other nodes will receive the material in question and
the routes it will take to get there. Any given network can
be decomposed into a suite of input and output environs.
Environs are useful for scoping out the possible causes
and effects of any changes in a particular population, in
light of the observation that indirect effects are often more
significant than direct interactions.

A useful survey of I/O and trophic methods of network
analysis can be found inHigashi and Burns (1991).
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Fig. 7. The canonical representation of the Cone Spring network (Fig. 2).
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l

. Cycling in ecosystems

Given the scarcity of some chemical elements in the
phere, and the refractory nature of atomic units, it is
vitable that the same material be used repeatedly by ma
tic species. Such necessity can be said to drive the troph
hanges themselves. Within a given locality, chances ar
he same medium will be used more than once by the
iotic species. This is called “recycling” or more often sim
cycling” of medium. If the chemical element in question
carce and is necessary to many biotic agents, the proba
f its reuse (cycling) by the same compartments increas

The appearance of the words “scarcity” and “necessit
he previous paragraph implies that cycling in ecosystem
ndicative of controls being exercised upon biotic species
rocesses. If a chemical element is both scarce and nece

here is an increased likelihood that the loops it makes
ake on an autocatalytic nature that rewards each partic
or its role in keeping the scarce medium in circulation. It
ows that one of the key features of interest in an ecosy
hould be the pattern and magnitudes of the trophic p
ays by which medium is recycled. The last statement

inguishes two different aspects of the task of understan
ycling in ecosystems. The first is qualitative—one need
now the topology of pathways over which medium is
ycled. The second is quantitative—one seeks to gain
dea of how much material is cycled over each route.

Over the course of ecosystem research, it was the qua
ive issue that was first addressed.Odum (1969)had identified
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the amount of cycling as one of his 24 criteria for “mature” or
developed ecosystems.Patten et al. (1976)andFinn (1976),
therefore, employed the I/O analysis that had just been in-
troduced into ecology byHannon (1973)to quantify that
amount. Finn’s reasoning was straightforward: In the Leon-
tief structure matrix, [S], each diagonal element relates to the
probability that a quantum of medium visits the designated
compartment more than once. Finn suggested that to quantify
the degree of recycling in the given network, each diagonal
element should be multiplied by the total activity (through-
put) of that particular taxon, and that all such products should
be summed over all taxa. In time, this sum became known as
the “Finn cycling index” (FCI).

Szyrmer and Ulanowicz (1987), while reworking Leon-
tief’s scheme, noted as how the diagonal elements of both
the total dependency matrix, [D], and the total contribution
matrix, [C], are identical; and that they, rather than the diag-
onals of [S], represent more accurately the probability that
a given quantum leaves a particular taxon and returns to it.
They recommended that the diagonal elements of either [C]
or [D] replace the diagonal elements of [S] in Finn’s calcu-
lations.Han (1997)independently recapitulated Szyrmer’s
calculations. Finally,Allesina and Ulanowicz (2004)pointed
out how all previous calculations ignore some of the com-
pound cycling that is inherent in the off-diagonal terms. They
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Table 1
The order of the nodes in a “depth-first” search

Level Compartment

n [1] [2] [3] · · · [n]
...

...
...

...
...

2 [1] [2] [3] · · · [n]
1 [1] [2] [3] · · · [n]
0 [1] [2] [3] · · · [n]

in a network. One approach is to perform a depth-first search
with backtracking (Mateti and Deo, 1976).

In backtracking algorithms, one orders the nodes in some
convenient way (described below) and imagines the same
order of n nodes to be repeated at n levels as inTable 1
(Ulanowicz, 1986). One begins at a given node in the zeroeth
level (designated as the pivot element) and searches from left
to right among nodes in the next level until an existing flow
connection is found. One then jumps to the chosen node in the
next level and proceeds searching (left to right) the level above
it in an attempt to move higher. As one progresses to higher
levels, the last node visited in each previous level is stored in
a vector array which describes a current pathway. Before ad-
vancing to a higher level one checks to make sure that the new
node has not already appeared in the current pathway (to con-
fine the search to simple cycles). One ascends to as high a level
as possible until interrupted by one of two circumstances: (1)
if a link exists to the pivot element in the next level, then a
simple directed cycle has been identified. Its description is
read from the current pathway, and the search continues; (2)
if one is searching from nodek in level m and all possibilities
in levelm+ 1 have been exhausted (i.e., one can move no fur-
ther to the right), then one backtracks (whence the name) to
the node in the current pathway at the (m− 1)th level and be-
gins searching themth level starting with the (k+ 1)th node.
W cles
p . The
p tion,
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ches
l xt
resented a tedious method for calculating the entire am
nvolved in cycling. Fortunately, their time-consuming al
ithm could be spared, because comparisons showed th
CI under-represented the actual amount of cycling b
mount that did not vary much from 14% in all the cases
mined. These later modifications of Finn’s index essen
ere fine-tunings of the original index, which continue
e a useful estimate, when appropriately modified.

The larger problem with the Finn index is that it doe
lways track the developmental status of an ecosys
lanowicz (1984), for example, showed how perturbi
n ecosystem could increase the FCI (see alsoWulff and
lanowicz, 1989). He suggested that the increased am
f cycling was a homeostatic response of the ecosyste
tress. Impacts tended to free medium from storage i
iomass of higher trophic level taxa, and the homeostat
ponse of the system was to prevent insofar as possib
oss of the resource by cycling it among the lower trop
axa.

A key element in Ulanowicz’sexegesis of why the Finn in
ex increases with stress was his detailed knowledge o

he pattern of the pathways of recycle had changed. (Lo
lower cycles involving the higher taxa had been repl
y shorter, faster cycles among lower components.) Th
e relied upon the qualitative, topological aspect of cyc
Ulanowicz, 1983). In order to elucidate the topology of c
ling, one begins with the task of how to find all the sim
ycles in a network. Simple cycles are those in which no
ent is repeated more than once. Any compound cycle c

iewed as a superposition of simple cycles. It is surprisi
asy to write a short algorithm to find all the simple cyc
hen further backtracking becomes impossible, all cy
assing through the pivot element have been identified
ivot element may be eliminated from further considera

hereby decreasing the dimension of the subsequent se
For example, in order to apply the backtracking algori

o the Cone Spring network (Fig. 2), it helps to conside
he compartments in the order 2, 3, 4, 5, 1. The follow
nemonic array below may help to keep track of the o
f operations:

evel Compartment

2 3 4 5 1

2 3 4 5 1

2 3 4 5 1

2 3 4 5 1

2 3 4 5 1

One begins with pivot element 2 in level 0 and sear
evel 1 from left to right, following the instructions in the te
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above. The order of the significant operation in the search
and the current pathways they generate are as follows:

Operation Current pathway

Begin at pivot element 2

Advance to level 1 2–3

Report cycle 1 2–3–2

Advance to level 2 2–3–4

Report cycle 2 2–3–4–2

Advance to level 3 2–3–4–5

Report cycle 3 2–3–4–5–2

Backtrack to level 2 2–3–4

Backtrack to level 1 2–3

Backtrack to level 0 2

Advance to level 1 2–4

Report cycle 4 2–4–2

Advance to level 2 2–4–5

Report cycle 5 2–4–5–2

Backtrack to level 1 2–4

Backtrack to level 0 2
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cycles, one rearranges the order of the nodes to place first
those having the greatest number of cycle arcs. Furthermore,
those nodes without any associated cycle arcs can be elimi-
nated from consideration, thereby lowering the dimension of
the search. When this backtracking method is applied to the
reordered (and abbreviated) nodes in thenl×nl sub matrix
(Fig. 6), it quickly locates the few simple cycles.

Removing anisolatedcycle from its supporting network
is a straightforward task. One simply traces around the cycle
in question and locates the link with the smallest magnitude
(D → A in Fig. 8a). One then subtracts that least magnitude
from the magnitudes of each link in the cycle. This effectively
partitions the original cycle (e.g., A→ B → C→ D → A in
Fig. 8a) into a pathway fragment of unidirectional flows
(Fig. 8b) and a cycle of the same length in which each link
has the magnitude of the smallest arc in the original cycle
(Fig. 8c).

If one now applies the methods for cycle identification
that have been described up to this point to the entiren×n
network of trophic flows (i.e., including those involving the
non-living members), the user encounters a significant com-
plication. In most whole-system networks the number of sim-
ple cycles far outnumbers the number of flows comprising the
network. This implies that several cycles must share the same
smallest link, and one can therefore group cycles sharing the
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It accidentally happens that all cycles contain node 2
hat searches starting from the remaining four pivot elem
ncover no further cycles. If the first pivot element in
xample had been component 1, time would have been w
earching for cycles containing the plants (there are non
s obvious that the order of the pivot elements can influe
he time it takes to complete the full search.

The program just described works fine on systems of s
imension (say <10 or so), but when it was applied to m
ealistic networks of 20 or more, the algorithm would
erminate, because it became caught up in a combina
xponential search. It drastically increases the run time
lgorithm gets caught up searching from a pivot eleme

hat node participates in no cycles whatsoever. One s
herefore, some way of identifying and eliminating from
earch those nodes that do not engage in cycling. It wou
f further help if one could at the same time identify th
odes that are more likely than others to participate in
ling. Fortunately, one can address both of these task
oing a preliminary depth-first search to count the num
f cycle arcs incident to each node (Knuth, 1973). (A cycle
rc with respect to a given node is any connection fro
escendent node to one of that descendant’s ancestors

nitial screening will take at mostn3 steps, and usually mu
ewer.9 Before commencing the backtracking to find sim

9 The simplest algorithm in the worst case requires on the ord
nodes| + |edges| calculations (Tarjan, 1972). Because ecological networ
re sparse, that number can be considered practically linear.
s

ame smallest link. Each such grouping is called anexus. It
s also likely that all the nodes and cycles belonging to g
exus are controlled by their common smallest link. Rem

ng the smallest link by subtracting it, as inFig. 8, from any
articular cycle of the nexus would be quite arbitrary. Ra
ome rational method for apportioning the magnitude o
mallest link overall the cycles of a nexus seems prefera

The possibilities for apportioning the least flow are i
ite. One could, for example, divide the magnitude of
mallest link by the number of cycles in the nexus and
ormly subtract that amount from each of the member
les. There is no heuristic reason for pursuing such e
artitioning, however. A more reasonable division migh

o apportion the least flow according to the fraction of
ggregate activity of the nexus that is comprised by th
pective activity of each simple cycle. Perhaps an even
ational apportionment (and the one implemented) is to
he [F] matrix to calculate the probability that a quant
f medium anywhere in a simple cycle will complete t
articular pathway back to its starting point. (That proba

ty is simply the product of all thefij comprising the cycl
athway). One then attributes the least link to each cyc
roportion to its contribution to the sum of all such pro
ilities associated with that nexus (William Silvert, perso
ommunication).

Having thus removed all cycles from the starting netw
ne is left with an acyclic residual of once-through flow

ree in the language of graph theory). It should be noted
one of the inputs, exports or dissipations in the system
een altered by the cycle extraction process. (Inputs a
ays paired with identical outputs in the subtraction proc
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Fig. 8. (a) Hypothetical network consisting of one simple cycle. (b) Single-pass flows through the network. (c) Cycling within the network. Note that (a) = (b) + (c).

The aggregated network of cycled medium can be calculated
either by accumulating the cycles that have been removed,
or by taking the difference between the starting network and
the residual once all have cycles have been stripped.Fig. 9a
shows the residual, acyclic network from the Cone Spring ex-
ample (Fig. 2) andFig. 9b, the complementary web of purely
cyclical flows.

It is true that this decomposition of a graph into its cyclic
and acyclic counterparts is purely an abstract exercise. It
seems, however, not to be wanting in practical value.Baird
and Ulanowicz (1989), for example, extracted the cycles from
a 36-compartment network of trophic exchanges in the meso-
haline Chesapeake Bay ecosystem to discover that the cycled

F
T

flow separated out into two non-overlapping graphs. One
grouping contained only pelagic species (those that move
passively with water currents), while the other was com-
prised of benthic (bottom-dwelling) compartments and nek-
tonic (actively moving through the water) species. Thus were
two separate domains of control in estuaries identified, and
such bifurcation seems to characterize many other estuaries
(Allesina et al., in review). What was also quite revealing
was that none of the filter-feeding compartments, either on
the bottom or among the fishes, participated in any recycling.
Rather their apparent “function” is to transfer resources from
the pelagic realm into the benthic-nektonic domain. (N.b., it
is maintained by some ecologists that it makes no sense to
speak of the “function” of a species in the context of its par-
ticular community.) Similarly of interest, two compartments
of pelagic microbes, normally associated with the “microbial
loop” in open oceanic waters, participated in no recycling
in the Chesapeake system. They serve rather to shunt carbon
(which is fixed by excessive plant growth in Chesapeake Bay)
out of the ecosystem.

6. Whole-system status

The foregoing methods have focused upon particular sys-
t stions
t t quite
o ? In
f jects
c hole
e al-
u devel-
o rity
[ r,
i theo-
r fore,
w vide
a nce.

arch
ig. 9. (a) The residual throughflow in the Cone Spring ecosystem (Fig. 2b).
he aggregate cycled flows in the same system.

d iver-
s

em components, or subsystem aggregates, but the que
hat are asked in ecosystem analysis and managemen
ften concern how the system is performing as a whole

act, granting agencies increasingly are requiring that pro
onsider ecological problems in the context of the w
cosystem (NSF, 1999). To facilitate such whole-system ev
ations, several indices of an ad hoc nature have been
ped (e.g., the popular and useful index of biotic integ

IBI] of Karr et al., 1986). It would be preferable, howeve
f ecosystem assessment could proceed on more solid
etical foundations. The question naturally arises, there
hether some attribute of ecosystem networks might pro
n appropriate and useful indicator of system performa

Of historical note in this regard was the widespread se
uring the 1960s for some connection between system d
ity and stability (Woodwell and Smith, 1969). The whole
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issue was initiated byMacArthur (1955), who applied Shan-
non’s information measure to the flows in an ecosystem net-
work as,

H = −k
∑
i,j

(
Tij

T.

)
log

(
Tij

T..

)
,

whereH is the diversity of flows in the network,k is a scalar
constant, andT.. signifies the sum ofTij over all combinations
i andj.

Shortly thereafter, the consensus arose that the same index
could be applied instead to the more accessible stocks of
biomass as,

D = −k
∑
i

(
Bi

B.

)
log

(
Bi

B.

)
,

whereD is the information-theoretic biodiversity,Bi is the
biomass of compartmenti, andB. is the sum of all theBi .

The subsequent discussions on diversity and stability cen-
tered around this biomass diversity. Unfortunately, the enter-
prise met a rather ignominious end whenMay (1972)demon-
strated that a higher biodiversity in linear dynamical systems
was more likely to result in instability than in the reverse.
Thereafter, ecologists by the droves quickly abandoned the
notion that information theory might be useful in ecosys-
tems analysis — a prejudice which remains prevalent among
e hen
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and coherently the flows are connected and a residual that
measures the disorder and freedom that remains. Rutledge et
al. focused uponHc as a more appropriate measure of ecosys-
tem maturity (in the sense ofOdum (1969)) than MacArthur’s
ambiguous index.

Ulanowicz (1980)suggested that Rutledge’s focus upon
Hc was perhaps misplaced. In particular, he was impressed by
Atlan’s (1974)demonstration that the AMI is a useful index
of the organization inherent in a system. Ulanowicz proposed
that AMI, instead ofHc, is more indicative of the develop-
mental status of an ecosystem, because AMI measures the
average amount of constraint exerted upon an arbitrary quan-
tum of currency in passing from any one compartment to
the next (Ulanowicz, 1997; Latham and Scully, 2002). AMI,
however, has no physical dimensions. That is, given a partic-
ular value for the AMI, an investigator cannot tell whether the
index pertains to a microbial community in a Petri dish or to
an ecological assemblage on the Serengeti Plain.Tribus and
McIrvine (1971)had commented on the scalar ambiguity of
information indices and suggested that the constant,k, (usu-
ally set equal to one) be used to impart physical dimensions
to the information index. Accordingly, Ulanowicz setk = T..
(the total system throughput) and called the result the system
network ascendency,10 A, where

A
∑ (

TijT..
)
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n
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cologists today. As a result, little interest was shown w
utledge et al. (1976)returned to MacArthur’s original in

uition to focus upon the diversity of flows, and applie
ayesian emendation of Shannon’s information measu
acArthur’s index of flow diversity so as to articulate

atter attribute more precisely.
Effectively, what Rutledge et al. did was to employ

ore recent notion of conditional probability to decomp
acArthur’s index into two complementary terms. If (Tij /T..)

s the unconditional probability that a flow fromi to j occurs
hen (Tij /T.j) is the conditional probability that the quantu
f flow proceeds to compartmentj, given that it had issue

rom componenti. That is,H can be decomposed as

= AMI + Hc (3)

here

MI = k
∑
i,j

(
Tij

T..

)
log

(
TijT..

Ti.T.j

)
,

nd

c = −k
∑
i,j

(
Tij

T..

)
log

(
T 2
ij

Ti.T.j

)
.

AMI is called theaverage mutual informationinherent in
he flow structure, andHc is the residual (conditional) dive
ity/freedom (inappropriately called theconditional entropy
n information theory). In other words, the overall compl
ty of the flow structure, as measured by MacArthur’s ind
an be resolved into a component that gauges how or
=
i,j

Tij log
Ti.T.j

.

Ascendency thus combines the total activity, or powe
he system (T..), with the organization by which the comp
ent processes are linked (AMI) (Latham and Scully, 2002).

t gauges how well the system is performing at processin
iven medium. Initially, it had been thought that an ecosys
ould develop so as to maximize its ascendency (Ulanowicz,
980), but the variational nature of such a statement eve
lly was viewed as being overly mechanical and deter

stic (Mueller and Leupelt, 1998). One now speaks simp
f a propensity for ecosystems to increase in ascend
Ulanowicz, 1997).

One may likewise scaleHc by T.. to yield what is called
he system “overhead”,Φ (Ulanowicz and Norden, 1990), as

= −
∑
i,j

Tij log

(
T 2
ij

Ti.T.j

)
,

ndH itself can also be scaled to produce what is terme
ystem’s “development capacity”,C,

= −
∑
i,j

Tij log

(
Tij

T..

)
. (4)

ccordingly, relationship(3), when scaled becomes

= A + Φ. (5)

10 The alternative spelling “ascendency” is used here to distinguis
uantitative measure from the conventional meaning of “ascendancy”
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The decomposition(5) implies that increasing ascendency
usually arises at the expense of the complementary overhead,
Φ. One then naturally asks, what are the limits to how much
increasing ascendency can displace system overhead? Sys-
tems with a high preponderance of ascendency over overhead
appear to be rigidly linked and almost mechanical.Holling
(1986)calls such systems “brittle” and vulnerable to collapse.
This makes it important to remember that the freedom to adapt
to novel perturbations is contained in the system overhead,Φ.
It then becomes obvious that a “healthy” ecosystem, or one
with biotic “integrity”, requires adequate amounts ofboth
attributes, ascendency and overhead (Ulanowicz, 2000a).

It happens that the balancing act between two mutually
exclusive properties such asA andΦ, cannot properly be de-
scribed in algorithmic fashion. The ensuing agonistic tradeoff
is more reminiscent of a dialectic, i.e., a competition between
two mutually exclusive properties at one level, that is resolved
via their mutual necessity at the next higher level. No one has
yet succeeded at programming a dialectic, so it is unlikely
that the corresponding ecosystem dynamic will yield readily
to mechanical simulation.

Difficulties with simulation aside, knowing the relative
values ofA andΦ can nonetheless indicate to the investiga-
tor the status of an ecosystem. For example, one informa-
tive property of flow networks is their degree of connectivity,
s links
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the confines of a small rectangular domain thatUlanowicz
(2002)had earlier suggested demarcated a “window of vi-
tality”. In particular, the link densities all ranged between
1.0 and about 3.0. The lower limit is obviously set by the
requirement that the network remain fully connected. (A
value below 1.0 would indicate that the graph consists of two
or more disconnected subgraphs.) The upper limit of ca. 3
had been noted earlier by several investigators (Wagensberg
et al., 1990; Pimm, 1982; Kauffman, 1991), and Ulanow-
icz had formulated an information-theoretic homolog of the
May–Wigner stability criterion (May, 1972) which indicated
that stability should wane rapidly beyond a natural limit of
e(e/3) (≈3.01) links per node. In the other dimension, the num-
ber of roles varies between 2.0 and about 4.5. The lower
limit expresses the requirement that all ecosystems exhibit a
minimum of two functions—production and decomposition
(Fiscus, 2002). As for the upper limit, it is widely accepted
that virtually all ecosystems are characterized by fewer than
five trophic links (Pimm and Lawton, 1977). Igor Matuti-
novics (personal communication) indicates the same limit
seems to hold for economic systems. A formal identifica-
tion of the actual boundary and the reasons behind that limit
remain, however, unknown.

Often, in order to ascertain the full status of a system,
it helps to decomposeA andΦ further. For example, it is
s ency
t o do
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Φ

ometimes expressed as the link-density, or how many
n average flow into or out of a typical node.Ulanowicz and
olff (1991) demonstrated that taking the base of the lo

ithms to the power (Hc/2), yields a convenient measure of
ffective link-density. In particular, their measure conve

o the appropriate intuitive value as the network in ques
pproaches being uniformly connected and equipond
i.e., a binary or topological network). Sensing signific
tility behind this convergence,Bersier et al. (2002)used the
alculation as a bridge between quantitative network a
is and the more popular “food web analysis”, which tr
nly topological networks. For each and every index that
een defined by investigators in food web analysis, Be
as able to construct an information-theoretic homolog
onverges more rapidly on the property in question than
he original, ad hoc measure.

Zorach and Ulanowicz (2003)were able to show th
he connection betweenHc and link-density is even deep
hey demonstrated that raising the base of the loga

o the power (Hc/2) yields precisely the weighted geom
ic mean of the link-density that one would calculate u
onventional algebra. Arguing from dimensional consid
ions, they then inferred how raising the logarithmic bas
he power AMI should correspondingly estimate the n
er of trophic “roles” in the network. (That is, it correspon
oughly to the effective number of trophic levels in the n
ork, or [looking backwards] to the “trophic depth” of t
etwork.)

Zorach and Ulanowicz also remarked how, on a grap
he number of roles versus the link-density, all of their
ection of 44 estimated ecosystem networks plotted in
ometimes useful to focus upon that part of the ascend
hat is generated by the internal workings of the system. T
his, one limits consideration to the “internal ascendency”AI ,
hich is generated solely by the internal exchanges bet

he n system components,

I =
n∑

i,j=1

Tij log

(
TijT..

Ti.T.j

)
.

he resulting fraction of the development capacity tha
omprised by AI then becomes a putative index of the inte
evelopment of the given ecosystem. This ratio has been

o compare ecosystems that were similarly parsed (Wulff and
lanowicz, 1989; Baird et al., 1991, 2004; Christian et
003).

It is likewise helpful to regard how the overhead is parc
ut among the different types of flows. There being four b
ategories of flow in ecosystems (internal exchanges, e
ous inputs, useful outputs, and dissipations, as in Sec2
bove), the overhead thereby separates into four corres

ng components (Ulanowicz and Norden, 1990):

= −
n∑

i=1

n∑
j=1

Tij log

(
T 2
ij

Ti.T.j

)
,

I = −
n∑

j=1

T0j log

(
T 2

0j

T0.T.j

)
,
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ΦE = −
n∑

i=1

Ti,n+1 log

(
T 2
i,n+1

Ti.T.,n+1

)
,

ΦD = −
n∑

i=1

Ti,n+2 log

(
T 2
i,n+2

Ti.T.,n+2

)
,

whereR is commonly called the flow “redundancy”, be-
cause it is strongly tied to the effective multiplicity of par-
allel flows by which medium passes between any two arbi-
trary system components.ΦI is the overhead due to imports,
while ΦE andΦD are the overheads from exports and dissi-
pations, respectively. Often, perturbations will drive up the
value of R/C (Ulanowicz, 1984), indicating that an impacted
system tends to become more resistant to further perturba-
tions (the LeCĥatelier–Braun Principle as applied to ecol-
ogy). Heymans (2003)has used the internal overhead as a
measure of the potential for adaptation and resilience.

The reader may have noticed that the indices defined thus
far depend entirely upon the flow structure and take no ac-
count of the magnitudes of any stocks. Although it very well
may be that the dynamics of the system depend far more on
the configurations of flows within it than has been hereto-
fore recognized, there still likely remain situations when the
size of certain stocks will affect system dynamics. To con-
s ry to
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reveals that such sensitivity is twice the amount by which
the average turnover rate of medium in compartment p is
exceeded by the overall turnover rate (T../B.). Hence, the sys-
tem is putatively more sensitive to those components having
slower turnover rates of the medium in question. Further-
more, one could ask which prey resource, r, is most impor-
tant as a source of medium to predator p. That source should
be made apparent by taking the partial derivative ofAB with
respect to each prey, r, of p (i.e., to eachTrp). BecauseAB
is a first-order homogeneous function in theTij (Courant,
1936), one may immediately invoke Euler’s relation to write
the following simple result:

∂AB

∂Trp
= log

(
TrpB

2
.

T..BrBp

)
.

Examination of this formula leads to the intuitively satisfying
conclusion that the controlling resource is the one which is
being depleted of medium most quickly relative to its avail-
able stock (i.e., the one with the highest ratio [Trp/Br]).

7. Higher dimensional considerations

The sensitivity analyses just outlined would be far more
useful, if one could consider the simultaneous flow of sev-
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ider the possibility of such controls, it becomes necessa
ntroduce the stock sizes,Bi , into the information-theoret
alculus. One begins by recognizing that the apriori p
bility that a quantum of medium in transit had origina

rom compartmenti is (Bi /B.). The corresponding probab
ty that a particle of flowing medium will enterj is (Bj /B.).
ence, the apriori joint probability that any quantum of flo

ng medium is en route fromi to j, becomes (BiBj /B.2). The
bserved, or aposteriori frequency of such flow fromi to j is
imply (Tij /T..). According toKullback (1959), the averag
ifference between an the apriori and aposteriori distribu

akes the form

B =
∑
i,j

(
Tij

T..

)
log

(
TijB

2
.

T..BiBj

)
,

hereIB is called the Kullback–Leibler information.
ScalingIB by T.., yields a biomass-inclusive form of t

scendency,AB (Ulanowicz and Abarca-Arenas, 1997) as,

B =
∑
i,j

Tij log

(
TijB

2
.

T..BiBj

)
.

If AB is considered a surrogate for the status of a sys
hen changes in it due to small increments in the bioma

particular component should reveal the sensitivity of
hole system to the stock of that particular taxon. Taking
artial derivative ofAB with respect toBp,

∂AB

∂Bp
= 2

(
T..

B.
− 1

2

T.p + Tp.

Bp

)

ral media at once. Furthermore, the entire enterprise o
ork analysis as described thus far pertains only to a s
napshot of the system. Over time, actual dynamics c
e followed via a “motion picture” or a time-series of n
ork snapshots. One might also want to consider a co

ion of networks each of which pertains to a small segm
f the physical space occupied by the ecosystem. Alth
eneralizations of the analyses detailed in Sections3–5 to
eterogeneities in time, space and media become probl

cal, similar extensions of the information-theoretic indi
resent no such conceptual obstacles and hinge more
vailability of sufficient data.

To extend the network approach to temporal changes
enotesTijk to be the flow of medium from taxoni to taxon
during time intervalk. The temporal capacity,CT, then fol-

ows from straightforward generalization of(4) to become

T = −
∑
i,j,k

Tijk log

(
Tijk

T...

)
.

here remains some ambiguity, however, as to what co
utes the ascendency in the dynamical case. To clarify hoCT
an be resolved into components, it is helpful to employ V
iagrams (Blachman, 1961). In two dimensions the situatio
as unambiguous.
The circle on the left ofFig. 10 represents the diversi

f the source flows (prey), while the one on the right, tha
he sinks (predators). Their intersection, or overlap repre
he AMI. The non-overlapping remaining areas comprise
onditional uncertainty,Hc.
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Fig. 10. Two-dimensional Venn diagram showing the AMI as the intersec-
tion of the uncertainties of sources and sinks. The conditional uncertainty,
Hc =Hc1 +Hc2.

The situation in three dimensions (Fig. 11) becomes more
complex.

One seesFig. 10repeated in the two adjacent upper circles.
The additional (lower) circle represents variation over time.
The juxtaposition of the three domains results in not one, but
four distinct regions of overlap — a central area where all
three domains overlap (AMI3) and three adjacent areas where
only one of the three possible pairs overlap in their turn (λ1,
λ2, λ3). In information theory, the innermost circular triangle
(AMI 3) represents the 3-D AMI. In terms of the fluxesTijk ,
it can be calculated (Abramson, 1963; Pahl-Wostl, 1995) as:

AMI 3 =
∑
i,j,k

(
Tijk

T...

)
log

(
T 2
ijkT...

Ti..T.j.T..k

)
.

AMI 3, then, represents the simultaneous coherence among
sources and sinks over time. Unlike with the 2-D AMI, there
is no guarantee that AMI3 remain non-negative. AMI3, how-
ever, does not encompass all the coherency present in the
system. In particular, the “leaflets” (λ1, λ2, λ3). that adjoin
AMI 3 represent bilateral coherencies that do not correlate
with the third remaining variable. To be more inclusive of all
coherencies in the system,Pahl-Wostl (1995)suggested that
the appropriate measure be taken as the overlap of all bilat-
e
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It is guaranteed that AMIT ≥ 0. Scaling AMIT by T... yields
the temporal ascendencyAT,

AT =
∑
i,j,k

Tijk log

(
T 2
ijkT...

Tij.Ti.kT.jk

)
.

The generalization of capacity and ascendency into 4 or more
dimensions proceeds by induction. Without loss of general-
ity, the 5-D transferTijklm of flow from taxon i to taxon j
during time intervalk at spatial locationl involving medium
m is about as complicated as most ecological considerations
become.11 The overall 5-D ascendency,AO, then becomes

AO =
∑

i,j,k,l,m

Tijklm log

(
T 4
ijklmT.....

T.jklmTi.klmTij.lmTijk.mTijkl.

)
.

Of course, the number of distinct intersections among the di-
mensions will increase binomially with the problem dimen-
sion. The ascendency in all cases, however, remains homo-
geneous in the flows. Thus, for example, the 5-D sensitivities
become

∂AO

∂Tpqrst

= log

(
T 4
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T.qrstTp.rstTpq.stTpqr.tTpqrs.

)
.
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ig. 11. The intersection of the three domains of sources sinks and
he central area of overlap (AMI3) represents the 3-D average mutual in
ation, but the three areas of bilateral overlap (λ1, λ2, λ3) also contribute t

he overall system organization.
orm

OB =
∑

i,j,k,l,m

Tijklm log

(
TijklmB2

....

BiklmBjklmT....

)
, (6)

hereBiklm is the biomass of taxoni in terms of mediumm
t timek in spatial segmentl. The corresponding sensitiv
oefficients become:

∂AOB

∂Bprst

= 2

{
T.....

B....
− 1

2

[
Tp.rst

Bprst

+ T.prst

Bprst

]}
, (7)

nd

∂AOB

∂Tpqrst

= log

(
TpqrstB

2
....

BprstBqrstT.....

)
. (8)

For those cases where data are available on multiple m
lanowicz and Baird (1999)have shown analytically that th

argest biomass sensitivity coefficients(7) correspond to th
edium that is limiting in the sense ofvon Liebig (1854).

on Liebig’s Law, however, gives no way of identifying t
ost limiting source of that nutrient. That source is given

he largest value of(8).
Ulanowicz and Baird (1999)applied(7)and(8) to paralle

etworks of several media to provide a new and system
ay of elucidating nutrient dynamics in ecosystems. The
embled sufficient data to estimate the trophic exchang

11 Space is considered as only a single dimension, because any 2-D
artitioning of a finite domain of physical space always can be enume
y a single index [in the same fashion that multi-dimensional array
numerated by computer code].
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carbon, nitrogen and phosphorus (C, N, and P) in the ecosys-
tem of the mesohaline reach of Chesapeake Bay over the four
seasons of a typical year (no spatial variation). They used the
4-D version of(7) to identify the limiting medium for each
taxon and found that N was limiting primary production dur-
ing the summer season (as has been long-known). During
that same season, however, P was controlling bacterial pro-
duction and secondary production by nekton (mobile fishes).
Applying (8) to their networks, the investigators were able to
diagram (graphical) trees that depict the hierarchy of nutrient
controls during each season.

Ulanowicz (2000b)also calculatedAOB (6)across a simple
10× 10 spatial grid of hypothetical migrating animal popu-
lations to demonstrate how information theoretic measures
could be used in landscape ecology. He used cellular au-
tomata to simulate several migration patterns and then pro-
ceeded to quantify the perturbation (or augmentation) that
certain constraints exercised on the organization of the pat-
terns.Kikawada (1998)extended Ulanowicz’s spatial anal-
ysis to include simultaneous trophic interactions, and dis-
cussed several problems encountered in doing so. More gen-
erally, network sensitivity analysis can be regarded as a new
way to examine the network dynamics of various chemical
elements being distributed across the landscape (Krivov and
Ulanowicz, 2003). The method can even be applied to pat-
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and cycle analysis methods and to calculate community
information measures. It is still available for download-
ing athttp://www.cbl.umces.edu/∼ulan/ntwk/network.html.
A translation of NETWRK4 for the Windows platform
has been written by the NOAA Great Lakes Envi-
ronmental Research Lab and is available to the pub-
lic as EcoNetwrk http://www.glerl.noaa.gov/EcoNetwrk/.
EcoNetwrk will also include a number of Graphical
User Interfaces for input and output. Stefano Allesina
at the University of Parma has created a variation of
NETWRK, called WAND, that is compatible with Win-
dows ExcelTM http://www.dsa.unipr.it/∼alle/ena/. (Allesina
and Bondavalli, 2004; Fath, 2004). An optimization routine
to construct balanced networks from incomplete data accord-
ing to the method ofPolovina (1985)is available as ECO-
PATH from http://www.ecopath.org. ECOPATH also imple-
ments the trophic impact analysis and calculates the network
ascendency and related information measures. Several ex-
perimental algorithms to implement the multi-dimensional
information indices are currently in various stages of devel-
opment by the author and by Stefano Allesina.
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