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Abstract 

In recent years, the description of system networks has been gaining in popularity as an alternative to conventional dynamical 
analysis. Although network description elsewhere treats only simple graphs and digraphs, ecosystem theory has enjoyed a 
legacy of analyzing quantitative digraphs. Ecological network analysis spans all levels of system description. Indirect 
influences of individual species upon one another can readily be measured. Trophic groupings and clusters of cycling can 
be identified and quantified. Whole system attributes, for ex ample, organization and flexibility can be gauged. It is even 
possible to provide specific directions for remediating ecosystems so as to improve their sustainability. 
9.04.1 An Alternative to Mechanism 

Over the years, ecological modeling has produced numerous 
successes (Ulanowicz, 2009a). Fisheries managers, for example, 
have found Leslie matrix models (Caswell, 1989) to be useful 
for setting harvest quotas for fish stocks and game species. 
Models of single species or single processes have also been 
useful for purposes of prediction and interpolation (Jassby 
and Platt, 1976). Similarly, models that are driven by physical 
forces, such as hydrodynamic simulations (e.g., Wang and 
Johnson, 2000), have enjoyed widespread application. When 
chemical processes drive the distribution of living organisms, 
such as often occurs in models of water quality (Biswas, 1981), 
useful predictions can result. Various models that employ cel
lular automata have been instrumental in testing and 
articulating hypotheses in disciplines such as landscape ecology 
(Sanderson and Harris, 2000) and individual-based modeling 
(DeAngelis and Gross, 1992). 

Problems arise, however, as soon as the scope of the mod
eling exercise encompasses more than one biological process. 
In most cases, models of multiple interacting processes are less 
than robust and of marginal utility (Platt et al., 1981). Not that 
such exercises are completely without merit: multiple process 
models oftentimes generate hypotheses about whole ecological 
communities. However, actually using them to test hypotheses 
is quite another matter, because the dynamics of multiple 
process models usually bear little resemblance to actual 
d from Ulanowicz (2004), with permission from Elsevier. 
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ecosystems behaviors, unless (as mentioned) the community 
being modeled is dominated by a single physical or chemical 
factor. 

Such difficulties notwithstanding, there remains a pressing 
need for the study of whole ecosystem behavior – how collec
tions of interacting ecological processes are linked together and 
affect one another (Lewin, 1984). One way to address multiple 
biological processes is to forego the specification of dynamics 
and see what can be learned about the system by focusing on 
the observed configurations of system processes. That is, one 
effectively truncates the modeling process after the first two 
steps – identification and parsing. Identification refers to the 
choice of the ecosystem elements that are deemed of interest 
(Halfon, 1979). The cast in any ecological scenario will neces
sarily reflect the particular interests of the individual carrying 
out the study – as will the suite of interactions among those 
components (parsing). 

The assumptions that comprise these two steps can be 
represented as a set of boxes (nodes) that are connected by 
lines (arcs) denoting the pertinent interactions. A surprising 
amount can be learned about how the system is functioning 
from the topology of the resulting graph or network of interac
tions. In the past decade or so, patterns of connections have 
been classified for any number of systems (Barabási, 2002), 
and knowing whether a system is connected, for example, in a 
power law fashion or via a small world topology reveals much 
about how the system behaves. 

Simply knowing that two components interact constitutes 
useful information. More is provided by signifying the 
35 
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direction of the interaction. For example, an influence by A 
upon B can be denoted by connecting A with B by an arrow that 
terminates in B (A → B). Should B also actively affect A, that 
interaction would be denoted by a second arrow, B → A. The 
ensuing picture of boxes and arrows is called a directed graph, 
or digraph. The last two decades have seen numerous efforts to 
classify ecosystems according to their representations as 
digraphs – work that falls under the rubric of food-web theory 
(e.g., Yodzis, 1989; Cohen et al., 1990; Polis and Winemiller, 
1995). 

A digraph is said to be binary in that a connection from A to 
B either exists or does not. All connections in digraphs are 
considered equiponderant, which is almost never the actual 
case. Some connections are always greater in effect than others, 
and often by large orders of magnitude. If some measure can be 
assigned to each connection that quantifies the differences 
among the connections, the result is called a weighted digraph. 

Examples of the progression graph → digraph → weighted 
digraph are presented in Figure 1. The weighted digraph is 
obviously the most information-rich depiction, because either 
of the simpler forms of graphs can be derived from a weighted 
representation simply by ignoring appropriate information. 
Because one can always proceed from the weighted digraph to 
one of the simpler forms, but not necessarily in the reverse 
direction, the remainder of this chapter will be devoted to 
analyses of weighted digraphs. It is noted without further 
remark that considerations of the simpler graphs could, in 
some cases, result in misleading inferences. 

One final classification of networks occurs when the weights 
assigned to the interactions represent the transfer of some con
servative physical medium, such as energy or a form of matter 
(e.g., carbon, nitrogen, or phosphorus). Such weighted 
digraphs are known as flow networks. Flow networks can be 
assumed to balance around each node (i.e., the sum of inputs 
to a given node equals the sum of its outputs), but strict 
balance is not required by some of the analyses that will be 
discussed. 
9.04.2 Requirements 

The flow networks most familiar to ecologists are trophic in 
nature. That is, the network represents the answers to two 
questions: (1) who eats whom? and (2) at what rates? Each 
node of the network will be said to represent a taxon – that is, 
either an individual, a population of a given species or some 
aggregation of species populations according to guild, habitat, 
or trophic position. Having decided upon a list of appropriate 
taxa, one must then determine for each taxon which of the 
other taxa are included in its diet. 
(a) (b) 

Figure 1 The nested hierarchy of networks: (a) graph; (b) digraph; (c) weigh
Third Window: Natural Life beyond Newton and Darwin. Templeton Foundatio
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Up to this point the digraph for n taxa can be represented as 
an n�n square matrix of ones and zeroes. A one appears as the 
entry for row i and column j whenever material flows from prey 
i to predator j; otherwise the i–jth component is set to zero. 
(Some investigators prefer that the predators appear in the rows 
and the prey in the columns, i.e., the matrix is the transpose of 
that described here.) This binary array is called the adjacency 
matrix. The advantage of representing networks as matrices is 
that one may then invoke operations from linear algebra to 
treat in systematic fashion communities of arbitrarily large 
dimension and complexity. 

A defining characteristic of an ecosystem is that it is never 
closed. There is always exchange of material and energy with 
the rest of the world. Such exogenous transfers must be part of 
any bookkeeping scheme. Henceforth, all exogenous (external) 
inputs to a particular taxon will be bundled into a single flow. 
(This assumption is made without loss of generality, because 
different types of inputs could always be treated separately, 
whenever necessary.) Examples of external inputs include pri
mary production, immigration, and inbound advection of 
material or energy. An exogenous input is represented by an 
arrow that has no visible taxon as its origin but which termi
nates in the particular receiving node (Figure 2). 

Unlike inputs, two different categories of exogenous out
puts will be distinguished: the first type consists of the export of 
material or energy that is still useful to other comparable 
ecosystems. Such exports might represent emigration, harvest
ing by humans, or advection out of the system. Similar to 
the inputs, export flows will be represented by arrows that 
originate in the appropriate taxon but which terminate in no 
node (Figure 2). To be distinguished from useful exports, some 
energy will be dissipated into heat (respiration), or some mate
rial will be degraded into its lowest energetic form 
(e.g., reduction of N to N2, or C to CO2). Following Odum 
(1971), dissipations will be depicted by the conventional 
ground symbol of electrical circuit diagrams (Figure 2). 

Under this typology, the maximum number of flows among 
n taxa becomes n2 + 3n. Whenever n > 20, the number of trans
fers is usually much lower, and typically is less than 15% of n2. 
That is, real ecosystems are usually represented by sparse 
matrices. 

With flow matrices, the weightings become the rates of 
exchange among the taxa. Typically, the medium is energy or 
a particular chemical element, such as C, N, P, or S. The con
vention in ecological network analysis (ENA) is that each 
network represents a particular medium (although some 
investigators allow several (e.g., Hannon et al., 1991)). 
(The treatment of several parallel networks of interacting 
media will be treated in Section 9.04.8.) 
(c)
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n Press, West Conshohocken, PA. 

 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9



Author's personal copy
Quantitative Methods for Ecological Network Analysis and Its Application to Coastal Ecosystems 37 

10.44 

0.05 

0.17 

Filter 
feeders 

1 

Predators
 5 

Deposited 
detritus 

6 

Deposit 
feeders

 4 

Micro-biota 
2 

Meio-fauna 
3 

41.47 0.51 

14.72 

5.76 3.58 

. 0.33 
15.79 0.30 

. 

0.64 

1.91 

8.17 
. 

4.24 6.16 0.43 
.

0.66 
7.27 

1.21 

1.21 

. .
Figure 2 The trophic exchanges of energy (kcal m−2 yr−1) in the Oyster Reef community (Dame and Patten, 1981). Arrows not originating from a box 
represent exogenous inputs. Arrows not terminating in a box portray exogenous outputs. Ground symbols represent dissipations. 
To quantify the various rates, a transfer from prey i to 
predator j will be denoted as Tij. The rate of exogenous input 
to taxon i will be designated as Xi, and the rate of removal of 
useful medium from taxon i to the outside world will be called 
Ei. Dissipation by i will be Ωi. Whenever rates are aggregated 
over a sufficiently long interval, medium is likely to balance 
around each compartment. That is, around each taxon, i, 

n n 

Xi þ Tji ¼ Tik þ Ei þ Ωi ½1� 
j ¼ 1 k ¼ 1 

X X

or 

Xi þ T: i ¼ Ti : þ Ei þ Ωi 

where a dot in the subscript indicates summation over that 
index. When reckoned over shorter intervals, however, inputs 
and outputs around each taxon may not balance. (The analysis 
of cycling and the whole-system information indices that fol
low does not require balance around each compartment. The 
input–output (I–O) and trophic level analyses, however, will 
be distorted by any imbalances.) 

In the best of all possible worlds, an investigator has access 
to field measurements on each rate of transfer. For some rates, 
such as primary production, such data are often available, but 
direct measurement of all flows is usually infeasible. One must 
resort, therefore, to indirect means of estimating the magni
tudes of most rates. 

One helpful assumption for estimating unknown flows is 
that the inputs and outputs balance around each taxon. Even 
then, the estimation of magnitudes in a balanced flow network 
remains an art form that cannot be formalized in all cases. 
Treatise on Estuarine and Coastal Science, 2011, Vol.
Because it is more difficult to measure metabolic rates in the 
field than the sizes of populations, a common approach has 
been to assess first the stock of a taxon (in terms of the chosen 
medium) and to multiply that density by the appropriate tabu
lated metabolic quotients to obtain the desired rates. For 
example, if the density of microzooplankton is measured as 
150 mgC m−2 and published metabolic constants show 
their average consumption rate to be 160% per diem, then 
the total demand by these organisms should be roughly 

−2 −187 600 mgC m yr . Respiration, excretion, and natural 
mortality for this population can be similarly reckoned. 
Overall consumption by predators would then be estimated 
by difference between total inputs and metabolic losses. With 
estimates of overall demands and availabilities now at hand, 
balancing the network becomes the task of matching the corre
sponding ends of the individual flow arrows. 

Perhaps the most popular automated balancing routine 
available to the public has been ECOPATH (Christensen and 
Pauly, 1992), which was built on an optimization routine by 
Polovina (1985). Other optimization routines have been writ
ten by Vezina and Platt (1988) and Kavanagh et al. (2004). The 
main difficulty with optimization algorithms, however, is that 
they almost always nullify one or more of the flows that are 
known to be nonzero. Some way of balancing the network that 
keeps all known exchanges nonzero and in proper proportion 
would be preferable. That is, one seeks a method of balancing 
the network that imposes the fewest external assumptions. 

Two such least-inference schemes are now available 
(Ulanowicz and Scharler, 2008). In the first routine, 
MATBLD, the initial magnitude of a flow is set to be jointly 
proportional to the availability of the given prey and the 
9, 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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demand by the particular predator. If the adjacency matrix of 
flows were fully connected (all ones), this joint apportionment 
scheme would immediately yield a balanced network. As men
tioned, however, ecosystem networks are almost always 
sparsely connected, so one must inflate the estimates according 
to joint proportion by a common factor in order to yield a total 
system activity (T..) that is commensurate with the collective 
demands by all components. Such uniform inflation does not 
necessarily balance the network, and one must bring the system 
into balance by some automated scheme, such as linear donor-
control (Allesina and Bondavalli, 2003.) 

The second, possibly more promising algorithm, is called 
MATLOD. It begins by assigning the same miniscule amount of 
flow to all nonzero connections and progressively loads the 
flow matrix by incrementing each active flow by the same, very 
small amount. If the current increment exhausts the availability 
of that prey or if it satisfies the total demand by that predator, 
the flow in question is eliminated from further increments. 
Matrix loading halts when no further flow remains to be incre
mented. This iteration technique resembles the filling of a 
mold in reverse. The elimination of any remaining imbalance 
is achieved via the Allesina and Bondavalli (2003) equilibra
tion routine. 

When started with the same data, networks balanced using 
MATBLD do not differ from those created by MATLOD to any 
statistically significant degree; neither do the results of either 
method diverge from published networks to any statistically 
significant degree (Ulanowicz and Scharler, 2008). 

The minimal information required to create a balanced, 
weighted digraph of trophic interactions thus consists of field 
estimates of the respective population densities, the predator– 
prey topology, and the appropriate values of the physiological 
quotients. As most of these items are known for a wide variety 
of ecological systems, it should now be possible to create a host 
of quantified digraphs for a diversity of ecosystems. The issue 
now becomes how to analyze such networks in order to 
respond to the usual questions posed by ecological managers. 
9.04.3 Issues Needing Attention 

The estimated weighted digraphs just discussed are essentially 
snapshots of the suite of trophic transfers. They do not expli
citly address the underlying dynamics. They are rich, however, 
in implicit information on how the system is functioning – just 
as X-rays of the body provide snapshots that, in turn, provide 
myriad clues about physiological functions in the body 
(e.g., the presence of stones in the kidneys might indicate 
some disorder in the metabolism of calcium). Similarly, 
weighted digraphs of ecosystems are rich in information 
about the status of the ensemble at a number of levels. 

At the level of the individual population, one is interested 
not only in how that compartment interacts with each of its 
direct prey and predators, but also in how each of those popu
lations relates in turn to others in the overall ecosystem. In 
other words, even though a species interacts immediately with 
only a limited number of other organisms, it communicates 
indirectly with a much larger number of elements of the 
ecosystem. The fact that networks can be represented in terms 
of matrices provides a major advantage toward assessing these 
indirect relationships. Whence, matrix algebra can be invoked 
Treatise on Estuarine and Coastal Science, 2011, Vol.9,
to quantify indirect effects across a myriad of network pathways – 
an endeavor that has been termed I–O analysis.  

In particular, it is possible via successive application of 
matrix multiplication to gauge how many times, on average, 
medium has been transferred along its way from primary pro
duction to the taxon of interest, that is, the average trophic 
position of the given taxon. Obversely, the same calculations 
reveal the proportions of that taxon’s activity that has arrived 
along trophic pathways of various integer lengths. That is, what 
percentage of the taxon’s activity is supported by pathways of 
length one (herbivory), of length two (carnivory), and so forth? 
It then becomes a matter of bookkeeping to consolidate all the 
activities of all compartments at any given integer level into a 
virtual representation of that trophic stage. In the absence of 
cycles, these stages all fit together as a classical trophic chain or 
pyramid. Even when complicated by cycles, the reduction of a 
complicated food web into a didactic chain is usually possible. 

Although they complicate trophic analysis, cycles of med
ium are of special interest, because they are usually connected 
with controls in ecosystems. Endogenous control in noncen
tralized systems is usually expressed via feedback, and feedback 
implies the existence of cycles. Hence, how many cycles are 
contained in a particular ecosystem network, what are the con
stituents of each loop, and how are they all put together 
become pressing questions, the answers to which should help 
illumine how the system behaves. Unlike with I–O and trophic 
analyses, uncovering the details of cycling in ecosystems is not 
effected by matrix operations per se, but by representing net
works in terms of matrices, one provides a format conducive to 
the systematic delineation of cycling structure. 

Finally, there remains the question of how the ecosystem as 
a whole behaves. Can its degree of organization be quantified? 
Can one also quantify the flexibility of the system to persist in 
the face of novel perturbations? What are the prospects for the 
sustainability of a particular system? Where are the controlling 
bottlenecks in system functioning? How can system dysfunc
tion be remediated? To approach these questions, it should be 
pointed out that by identifying the various compartments of an 
ecosystem, the investigator articulates the differences among 
the taxa. Gregory Bateson defined information as “the differ
ence that makes a difference.” It should come as no surprise; 
therefore, that information theory is a most appropriate tool 
for answering such whole-system issues. 
9.04.4 Input–Output Analysis 

That networks can be represented as matrices is serendipitous, 
because diagrams otherwise grow too complex to be able to 
follow the pathways and magnitudes of indirect effects. A con
venient starting point for I–O analysis is the definition of the 
matrix of dietary proportions, [G]. The elements of [G] are 
calculated using the elements of the flow matrix, [T], and the 
input vector, (X). Each Tij of [T] is normalized by the total input 
to the receiving compartment, j: 

Tijgij ¼ � � ½2� 
T : j þ Xj 

so that the element gij of [G] becomes the fraction which i 
comprises of the total input into j. In other words, element i 
 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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in column j of [G] describes the percentage of i in the diet of j. 
Hence, [G] is known as the matrix of dietary coefficients. 

Most fortuitously, the algebraic powers of [G] reveal the 
fractions of the diet of j that flows to i along pathways of length 
corresponding to the integer power to which [G] is raised. Its 
algebraic powers have very didactic meanings as regards trophic 
functioning. Those meanings are illustrated by the very simple 
network in Figure 3. The six nonzero values of Tij become the 
six corresponding nonzero elements of [G]: 2

0 g12 g13 g14 

0 0 g½ �G ¼  23 g24 

0 0 0 g34 

3
66
0 0 0 0 

77

The second power of [G

4
] is obtained via matrix

5
 multiplication 

of [G] by itself, 2 3
0 0  g12g23 ðg12g24 þ g13g34Þ 
0 0  0  g23g346 7

2 ¼ 6 7½G � 4 50 0 0  0  
0 0 0  0  

One notices that each of the nonzero elements of [G]2 consists 
of terms that represent all of the pathways of length 2 that 
connect i with j. For example, elements 1–3 of [G]2 reveal 
how much gets to 3 from 1 over the single two-step pathway 
1 → 2 → 3. Element 14 of [G]2 is made up of two terms, each 
representing a two-step pathway from 1 to 4. The first term 
gives the fraction of total input to 4 that flows over the pathway 
1 → 2 → 4, whereas the second term reports the fraction of 
input to 4 that has traversed the route 1 → 3 → 4. 

Multiplying [G]2 yet again by [G] produces the matrix [G]3: 2 3
0 0 0  g12g23g34 

3 0 0 0  06 76 7½ �G ¼ : 4 50 0 0  0  
0 0 0  0  

There is only one nonzero element of [G]3 and it represents the 
sole pathway of length 3 in the network, 1 → 2 → 3 → 4. The 
powers of [G] truncate with [G]4 = [0], because there exist no 
pathways longer than 3 in this network. 

The reader is invited to experiment with other simple graphs 
to convince herself/himself that the elements of the mth power 
of [G] are formed by contributions from all pathways of exactly 
length m and no others. 

The way in which [G] was normalized guarantees that each 
gij ≤ 1, making it highly probable that elements in the higher 
1 

2 

4 

3 

Figure 3 A simple hypothetical network of four components. 
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� �
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powers of [G] will grow progressively smaller. The question 
thus arises whether or not the infinite series 

2 3 4 …½ �I ½ � ½ � ½ � ½ �þ G þ G þ G þ G þ
converges to a finite limit. (The matrix [I] {=[G]0} is called the 
identity matrix. It consists of ones for i = j and zeroes else
where.) Simon and Hawkins (1949) demonstrated that the 
normalization procedure in eqn [2] guarantees that the infinite 
series of matrix powers does converge to a finite limit, namely, 

… − 1lim ½I� þ ½G� þ ½G �2 þ ½G �3 þ ½G �4 þ → ½I −G �
This limit, the matrix inverse of [I – G], is called the Leontief 
structure matrix, [S]. The i–jth component of [S] reveals the 
fraction of the total input into j that left i and traveled over all 
pathways of all lengths to satisfy a final demand upon j of one 
unit. Final demand is a pivotal concept in economic theory, 
and the [S] matrix provided economists with estimates of how 
much production was required by each economic sector in 
order to satisfy any prescribed vector of final demands. 
Leontief (1951) formulated the beginnings of what eventually 
was called I–O theory. Hannon (1973) introduced Leontief’s 
methods into ecology. 

The homologs of final demands in economics are the 
respirations in ecology. Although respiration is important to 
ecologists, the intermediate transfers among system compo
nents interest them more. That is, ecologists give priority to 
knowing how much of what arrives at j can be traced to a 
particular activity i. Szyrmer and Ulanowicz (1987) demon
strated how such intermediate transfers can be estimated by a 
simple transformation of the [S] matrix. Szyrmer called the 
transformed matrix the total dependency matrix, [D]. The ele
ments of the [D] matrix are calculated from [S] and the original 
flows [T] as  

Ti :dij ¼ Sij − δij siiT : j 

where δij are the elements of the identity matrix. All indices run 
from 0 to (n + 2), and the T0j represent the exogenous inputs 
to j, Ti,(n+1) are the useable exports from i to other systems of 
comparable scale, and Ti,(n+2) are the dissipative losses from i. 
Effectively, dij answers the question, “What fraction of the total 
diet of j passes through i along its way to j?” Thus, the jth 
column of [D] becomes the indirect diet of j – the respective 
amounts by which j depends upon the activity of each element 
in the ecosystem. Because medium from i can visit several 
compartments along its way to j, the elements of the jth column 
sum to ≥1, and that sum also signifies the effective trophic 
position of j. 

It is possible to use the matrix of indirect diets to differenti
ate trophic roles. For example, the Chesapeake mesohaline 
ecosystem is host to two piscivorous predators, striped bass 
(Morone saxatillis) and bluefish (Pomotatus saltatrix). One 
would expect heavy competition between them. Baird and 
Ulanowicz (1989), however, calculated their indirect diets, 
revealing (among others) the following indirect dependencies: 
(1) striped bass on zooplankton: 65.8%; (2) bluefish on zoo
plankton 28.7%; (3) striped bass on polychaetes 1.8%; and 
(4) bluefish on polychaetes 48.0%. 

These apportionments revealed significant stratification of 
trophic resources between the predators. Striped Bass ultimately 
9, 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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showed a high dependency on pelagic production, whereas 
Bluefish derived their resources more from benthic secondary 
production. 

Instead of normalizing [T] down its columns to get σ, one 
could have as well normalized across the rows of [T], which 
would have resulted in a matrix of host coefficients, [F]: 

T
fij ¼ ij 

ð Ti : þ Ei þ ΩiÞ 
That is, the component, fij, of [F] reveals the fraction of the 
total activity of any compartment i that flows directly to some 
other element j. The corresponding output structure matrix, 
[∑] = ( I – FT)−1 , was originally formulated by Augustinovics 
(1970) to estimate how much of the activity of any sector j 
is generated by a single unit of primary input to i. (The super-
script T indicates matrix transpose, i.e., the matrix that results 
when the rows of a matrix are exchanged with its columns 
[i.e., (fij)

T = fji].) [∑] is the obverse set of indicators to [S]. 
Primary inputs are of substantial interest to ecologists, but 
many might prefer to know the intermediate contributions 
of each compartment to all the others, that is, how much of 
what leaves i eventually flows as input to j. As with the dietary 
coefficients, Szyrmer defined a total contribution matrix, [C], 
with the elements 

Ti  c :
ij ¼ σji − f ji 

�
σiiT : j 

�

where σ

� �
ij is the i-jth element of [∑]. 

It is sometimes useful to regard the elements of the total 
contribution matrix as representing the efficiencies with which 
the medium flows from any one compartment to any given 
other. Suppose, for example, that one desired an indicator of 
overall ecosystem efficiency, that is, how much primary pro-
duction eventually reaches the upper trophic components. In 
this regard, Ulanowicz (1984) wanted to compare the trophic 
efficiencies of two tidal marsh ecosystems situated near the 
Crystal River nuclear power plant on the west coast of Florida. 
The first network straddled the thermal outfall from the plant 
(ΔT ≈ 6 ° C), while the second (control) marsh was beyond the 
influence of the thermal effluent. Calculation of the total con-
tribution coefficients of primary production to the Gulf 
Killifish (Fundulus grandis) and to two Needlefish (Strongylura 
marina and Strongylura notata) revealed the following: 
Treatis
Control 
e on Estuarine a
ΔT 
nd Coastal Scien
Gulf Killifish 
0.147 � 10−3 
0.67 � 10−3 
(−54%) 

Needlefish 
0.338 � 10−3 
0.140 � 10−3 
(−59%) 
The impact of the thermal effluent was obvious. Heated 
water lowered the overall efficiency of the ecosystem for produ-
cing top carnivores by ∼50–60%. 

A frequent criticism of I–O methodology is that it pertains 
only to steady-state or temporally averaged networks. Several 
attempts have been made to expand I–O theory to treat time-
varying systems. Matis et al. (1979), for example, regarded any 
imbalance simply as another category of input or output 
(depending on the direction of the imbalance). Matis and 
Patten (1981) scaled the flows by the storages of their source 
ce, 2011, Vol.9,
compartments and inflated the diagonal flows to better reflect 
their relative storage times. Another alternative is to apply infor
mation-theoretic methods to a time series of network snapshots 
depicting the dynamics over an interval (See Section 9.04.8). 

Still another deficiency of I–O analysis in the eyes of many is 
that it pertains to only positive flows of the medium. Beyond 
contributions and dependencies, ecologists are also interested in 
how the negative effects of predation might propagate through-
out the system. Fortunately, the same linear algebra used to 
quantify positive contributions can evaluate as well the net 
positive or negative trophic impact that any one species has on 
any other (Ulanowicz and Puccia, 1990). One notes that gij 
quantifies the positive impact of prey i upon predator j. By
contrast, fji measures the negative impact that i has on j. 
Consequently, the overall effect of i on j should be related to 
the difference gij – fji. Unfortunately, because fij has been normal-
ized by the total output from i, rather than just the predatory 
losses that i sustains, it underestimates the magnitude of nega-
tive impact by j on i. Accordingly, fij should be renormalized by 
its secondary production alone, rather than by its total outflow. 
The renormalized predator impacts are labeled fij*, where 

f � T
ij ¼   ij

nl P
Tim 

m ¼1 

and the index m is summed over only the subset of living 
components (nl in number) of the full suite of n ecosystem 
components. As a result, a more accurate measure of the net 
direct effect that i has on j becomes 

qij ¼ gij − f ji
� 
 

where –1 ≤ qij ≤ 1. 
In almost all instances, the power series of [Q] converges in 

the manner that the corresponding infinite series of the powers 
of [G] converged. That is, 

lim 
�½I� þ ½Q� þ ½Q �2 þ ½Q �3 þ ½Q �4 þ… → ½I −Q � − 1 

In rare (usually degenerate) instances, the matrix

�
 [I – Q] can be 

singular, and then the series does not converge. 
The net trophic impact (direct and indirect) of any given 

compartment i upon any chosen other, j, is the i–jth compo-
nent of the matrix of net total impacts, [M]. It is calculated as 
{[I  Q]−1 

– – [I]}. For any connected graph, all n 2 elements of 
[M] will be nonzero. Such a jumble of impacts would be 
difficult to interpret (e.g., Hillebrand and Shurin, 2005) failing 
a systematic way of presenting the results. The original algo-
rithm for calculating these indirect trophic influences 
(IMPACTS) allows the user to focus upon a particular compart
ment and ranks the impacts of all the other species upon that 
taxon, so that the major influences are easy to spot at either end 
of the ranking. 

Patten (1982, ‘On the quantitative dominance of indirect 
effects in ecosystems’, unpublished paper presented at the 
Third International Conference on State-of-the-Art in 
Ecological Modeling, Colorado State University, 24–28 May, 
Fort Collins, CO) posited a tendency for negative, competitive 
direct interactions to become positive indirect influences. Using 
the non-normalized form of fij, Fath and Patten (1998) 
counted a higher ratio of positive elements in [M] than are 
present in the direct effects matrix, [Q]. As noted above, the 
 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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lack of renormalization (to fij 
*) would tend to inflate positive 

effects in [M]. Nevertheless, it is easy to identify instances when 
negative direct interactions become positive indirect influences, 
even under the more conservative normalization used above 
(Bondavalli and Ulanowicz, 1999). 
9.04.5 Trophic Analysis 

It has been mentioned how the powers of the [G] matrix 
elaborate flow in terms of integral trophic steps. It stands to 
reason, therefore, that the powers of [G] can be employed to 
quantify the trophic status of an ecosystem network. 

It happens that the notion of trophic level began with a very 
simple depiction of the ecosystem as a trophic chain or pyr
amid. At the first level, energy is fixed by primary producers 
(plants), and some (but never all) of that energy is transmitted 
to plant eaters (herbivores) at the second level. Subsequent 
transfer is made to carnivores at the third trophic level, then 
to the top carnivores at the fourth, etc. Rarely is any mention 
made of tertiary carnivores and beyond. Earlier, it was pre
sumed that thermodynamic losses of energy and material 
during each transfer curtailed trophic chains to no more than 
five steps, but that assumption was shown to be problematic 
(Pimm and Lawton, 1977). 

Of course, nature is hardly ever as simple as a straight chain 
or pyramid, and the actual web of interactions usually proves 
to be quite complicated (Hillebrand and Shurin, 2005.) 
One seeks, therefore, a systematic method for making sense of 
the general situation. While some species are, in fact, obligate 
autotrophs or herbivores, many of the heterotrophs feed at 
several levels, so that no assignment of taxa to integral trophic 
levels seems obvious. Cousins (1985), for example, remarked 
as how a hawk usually feeds at five separate trophic levels. 
Although some urge that the concept of a trophic level be 
dropped as a useless fiction, the properties of the powers of 
[G] give reason to hope that some sense can be made of 
Darwin’s ‘entangled bank’. 

Levine (1980) observed that the sum of any column of the 
structure matrix, [S], was related to the number of trophic 
transfers that medium had experienced on its way to that 
given compartment. This sum is generally not an integer, but 
Levine suggested that one regard it as an average level at which 
the taxon is feeding. In the hypothetical example shown in 
Figure 4, compartments 1, 2, and 3 are arrayed in chain-like 
fashion. Compartment 4, however, receives only 5 of its 
50 units of activity at the fourth trophic level. Otherwise, 30% 
2 
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90 15 

50 

Figure 4 A hypothetical trophic network. Units are arbitrary. 
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of its sustenance arrives the third level and 60% at the second. 
Hence, its effective trophic level can be reckoned as 
(0.6 � 2) + (0.3 � 3) + (0.1 � 4)=2.5. In the [S] matrix corre
sponding to this network, the first three columns sum to 1.0, 
2.0, and 3.0, respectively, and the sum down the fourth column 
is 2.5, as just calculated. This calculation applies to the most 
complicated flow topologies. Christian and Luczkovich (1999) 
used Levine’s notion of effective trophic level to establish the 
direction of causality (bottom-up vs. top-down) in seagrass com
munities in St. Mark’s Refuge, Florida. Pauly et al. (1998) used it 
to demonstrate how world fisheries in the last decades have been 
‘fishing down’ stocks, that is, decimating higher trophic level 
species and relying more on lower level populations. 

Now that it is possible to attach several trophic levels to a 
particular compartment, one asks whether the reverse might 
also be feasible – that is, can the activity of a given compart
ment be apportioned among several integral trophic levels 
(Ulanowicz and Kemp, 1979)? In this regard, one notes that 
the fraction by which compartment i feeds directly upon pri
mary sources is 

Toi goi ¼ n 

Tmi 
m ¼0 

X

so that the fractions for all n components can be arrayed as a 
row vector, call it (L1)

T = (gO)
T. Each element of this row vector 

reveals the fraction of the activity of the respective taxon that 
can be attributed to primary production. To calculate the 
amounts by which each taxon feeds as a herbivore, it is neces
sary only to multiply [G] by  (L1)

T from the left to generate a 
new row vector, (L2)

T = (L1)
T[G]. In like manner, the fractions 

by which each compartment feeds as a carnivore (acts at the 
third level) become (L3)

T = (L2)
T[G]. By mathematical induc

tion, the fractions at the mth trophic level become (Lm)
T = (L1)

T 

[G]m–1. Whenever cycles are absent from a network, the 
sequence of row vectors, (L1)

T, (L2)
T, (L3)

T, …, truncates 
(become all zeroes) within n –1 steps. As a result, whenever 
cycling is absent, it becomes possible to define an unambigu
ous Lindeman trophic transformation matrix, [L], such that the 
ith row of [L] is constituted by (Li)

T. The fraction by which 
taxon j feeds at the ith trophic level is given by matrix compo
nent Lij. Furthermore, reading across the row i reveals the 
composition of ith virtual trophic level. 

Applying this construction to the simple network in 
Figure 4 yields as the Lindeman trophic transformation matrix, 

½ �L ¼

2
1: 0: 0: 0: 
0: 

3
66 1: 0: 0:6 
 4 0: 0: 1: 0:3 
0: 0: 0: 0:1 

77

Reading down the columns, one sees that 

5
the first three com

partments act wholly at one of the first three trophic levels, but 
that compartment 4 is partitioned as described earlier. Looking 
across the rows reveals the apportionments of the various 
components to the virtual integer levels. For example, virtual 
trophic level 3 consists of all of the activity of taxon 3 and 30% 
of the activity of taxon 4. 

Reality is not hypothetical, however, and almost all real 
trophic networks contain cycles. Although this is true, Pimm 
(1982) nevertheless observed that cycles confined strictly to 
9, 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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Figure 6 The partitioned expansion of the [L′] matrix. 
living, feeding taxa remain quite rare and are usually small in 
magnitude. Reading Pimm’s statement the other way around, 
virtually all cycles in ecosystems contain at least one nonliving 
compartment. By ordering the ecosystem’s components so as to 
place all living compartments (say there are nl of them) first, 
the nl � nl submatrix of transfers among the living compart
ments should contain very few cycles, all consisting of flows of 
insignificant magnitude. It will be shown below how cycles can 
be removed from networks without affecting the balance 
around any constituent. It becomes possible, then, to remove 
such feeding cycles without significantly altering the nl � nl 
submatrix of predatory flows. An nl � nl Lindeman transforma
tion matrix [L] can then be constructed using the nl � nl 
submatrix of [T] from which cycles of predatory exchanges 
have been removed (Ulanowicz, 1995). 

To sort out the manifold predatory flows in the ecosystem, 
one regards [L] as a conventional transform in linear algebra. 
That is, [L] can act upon the known input vector (X) to define a 
vector of canonical inputs, (Ψ) (Greek uppercase psi): 

ðΨÞ ¼ L ð Þ½ � X
Similarly, canonical forms for the useful exports, (E), and dis
sipations, (R), become 

Y ½ � Eð Þ ¼ L ð Þ  

and 

P ½ � Rð Þ ¼ L ð Þ  

respectively. 
One then seeks to create a canonical matrix of flows [Θ] by  

transforming the matrix of original flows, [T], in conventional 
fashion: 

T½ � ¼Θ ½ �L T ½ �½ � L : 

Unfortunately, [L] is not orthonormal, so that the transformed 
matrix of flows, [Θ], is not diagonal in form. The situation can 
be redeemed, however, because [Θ] possesses a peculiar form 
of symmetry that allows one to rework it into a surrogate 
diagonal matrix, [Ξ]. [Ξ] has as its ith diagonal element the 
sum of the ith row of [Θ] and zeroes elsewhere, that is, 
ξii = ∑kθik, and ξij = 0 otherwise. Then in analogy to eqn [1], 
one may balance each virtual trophic level, λ, as follows: 

ψλ þ ξλ ¼ ξðλþ1Þ þ υλ þ ωλ 

Proceeding in this way, the Lindeman matrix [L] shown above 
for the simple network in Figure 4 transforms that network into 
the equivalent straight chain in Figure 5. 

Although the canonical transformation just described works 
whenever there are no cycles in the entire network, significant 
cycles are present in almost every real ecosystem network and 
involve mostly the nonliving compartments. Arranging the n 
compartments so that the nl living taxa always appear first 
facilitates the removal of all (insignificant) cycles among only 
200 I 110 35 5II III IV 

90 75 30 5 

Figure 5 The Lindeman spine of the network in Figure 4. 
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predators. This arrangement allows one to create an nl � nl 
Lindeman matrix, [L’], from the revised nl � nl acyclic subma
trix. To create a Lindeman transformation for the entire system, 
one places [L’] into the upper left hand corner of the expanded 
n � n matrix, [L], as in Figure 6. The remainder of matrix is 
filled out with zeroes, except for the final [n – nl] elements of 
the nth row, all of which are set equal to one. 

The ensuing matrix [Ξ] creates what is called a ‘Lindeman 
spine’ of chain-like flows. The remainder of the [L] matrix 
aggregates all the nonliving compartments into a single non
living pool in such a way that maintains balance around each 
virtual component. Applying this method to the network in 
Figure 2 produces the Lindeman spine in Figure 7 along with 
its associated detrital flows. 

Transforming general networks into canonical trophic 
chains allows the investigator to compare trophic dynamics 
among disparate ecosystems or to monitor changes in the 
same ecosystem over time. It should be mentioned that one 
often encounters canonical trophic chains that are longer than 
five steps, seemingly at odds with the observation of Pimm and 
Lawton (1977) that trophic chains do not exceed five steps. 
Closer inspection, however, shows that the magnitudes of 
transfers beyond the fifth level are miniscule. Whipple and 
Patten (1993) write about activities at very high trophic levels 
(e.g., >10), but the magnitudes associated with such levels 
make it improbable that more than a few molecules reach 
such elevated levels. As an indicator of ecosystem perturbation, 
one notes that environmental perturbations usually act to 
shorten the length of the canonical chain by disproportionately 
diminishing flows at higher levels (Ulanowicz, 1984). 

In addition to these I–O methods, Bernard Patten and 
associates have developed what they called the environ theory 
of ecosystems (Patten, 1978, 1982; Patten and Auble, 1981; 
Fath and Patten, 1999). By an ‘environ’ is meant the entire tree 
of flows antecedent to a particular compartment, or, alterna
tively, the subsequent dendrite of medium exiting a 
compartment. That is, an input environ is the quantitative 
description of where the current biomass has appeared since 
it entered the system and the pathways along which it flowed to 
 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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Figure 7 The canonical representation of the Oyster Reef network (Figure 2). 
arrive at the node in question. Similarly, an output environ 
describes which other nodes will receive the material in ques
tion and the routes it will take to get there. Any given network 
can be decomposed into a suite of input and output environs. 
Environs are useful for scoping out the possible causes and 
effects of any changes in a particular population. One signifi
cant result of environ theory is that indirect effects are very 
frequently more significant than direct interactions. 

A useful survey of I–O and trophic methods of network 
analysis can be found in Higashi and Burns (1991) and 
Higashi et al. (1991). 
9.04.6 Analysis of Cycling 

As mentioned in the last section, medium does not simply pass 
straight through an ecosystem. Scarcity and crowding make it 
inevitable that some of the same material be reused by the 
biota. Within the confines of a given locality, chances are that 
the same medium will be used more than once by the same 
biotic species. That is, the system engages in recycling, or more 
simply, cycling of medium. 

Words such as scarcity and inevitable hint that cycling in 
ecosystems is associated with controls that guide the processing 
of medium by biotic species. Ecosystems are likely to develop 
means for retaining chemical elements that are both scarce and 
necessary. One such means is autocatalysis, which rewards each 
participant for its role in keeping the scarce medium in circula
tion (Ulanowicz, 2009b). Hence, a significant focus of the study 
of ecosystem dynamics should be the pattern and magnitudes by 
which medium is being recycled. That is, one needs to know the 
topology of pathways over which medium is recycled as well as 
some idea of how much material is cycled around each loop. 

It was the latter, quantitative issue that was first received 
attention in ecology. Odum (1969) identified the magnitude 
of cycling as one of his 24 criteria defining mature or developed 
ecosystems. Patten et al. (1976) and Finn (1976), therefore,  set  
about to use I–O analysis (earlier introduced to ecology by 
Hannon, 1973) to quantify the aggregate intensity of cycling in 
a system. Finn reasoned that each diagonal element in the 
Treatise on Estuarine and Coastal Science, 2011, Vol.
Leontief structure matrix, [S], is related to the probability that a 
quantum of medium will visit the same designated compart
ment more than once. He suggested that the degree of recycling 
in the given network be quantified by multiplying each diagonal 
element by the total activity (throughput) of that particular 
taxon and then summing all such products (i.e., Tcyc = ∑i[Ti.Sii]). 
Over time the ratio of this sum to the total system throughflow 
(T..) became known as the Finn cycling index (FCI = [Tcyc/T..]). 

As noted earlier, Szyrmer and Ulanowicz (1987) elaborated 
upon Leontief’s accounting scheme and noted that the diagonal 
elements of both the total dependency matrix, [D], and the total 
contribution matrix, [C], were identical. Furthermore, these diag
onals, rather than the diagonals of [S], more accurately represent 
the probability that a given quantum leaves a particular taxon 
and returns to it. They recommended that the diagonal elements 
of either [C] or  [D]  be used in lieu of  those  of  [S] in  Finn’s 
calculations. (Han, 1997 independently recapitulated Szyrmer’s 
calculations.) Allesina and Ulanowicz (2004) remarked how 
previous estimates of cycling ignored some of the compound 
cycling that is inherent in the off-diagonal terms. They developed 
a tedious method to calculate the full amount involved in 
cycling. Fortunately, their revised estimates amounted to the 
same 14% in all the cases examined. In effect, the original 
index continues to be a useful estimate, when appropriately 
modified (L.G. Latham, personal communication). 

The problem with the Finn index is that its magnitude does 
not always reflect the developmental status of an ecosystem. 
Ulanowicz (1984), for example, showed that perturbing an 
ecosystem could lead to an increase the FCI (see also Wulff 
and Ulanowicz, 1989). Ulanowicz (1984) suggested that aug
mented cycling was a homeostatic response of an ecosystem to 
stress. Impacts tended to shake loose medium from storage in 
the biomass of higher taxa, and the system responds in homeo
static fashion to prevent, insofar as possible, the loss of the 
resource by cycling it among the lower trophic taxa. 

To understand better the increase of the Finn index in 
response to stress requires detailed knowledge of how the 
pattern of recycling changes under stress. It happens that 
longer, slower cycles involving the higher taxa are usually 
replaced under perturbation by shorter, faster cycles among 
9, 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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lower trophic components. Discerning this shift requires know
ing the exact topology of cycling (Ulanowicz, 1983, 1986). 

The first task in elaborating the topology of cycling is the 
identification of all simple cycles in a network. Simple cycles 
are those in which any element appears only once. Writing an 
algorithm to find all the simple cycles in a network would appear, 
at first glance, to be straightforward. For example, one could 
perform a depth-first search with backtracking (Tarjan 1972; 
Mateti and Deo, 1976). A backtracking algorithm starts with 
ordering the nodes in some convenient way (to be described) 
and then repeats the same order of n nodes at n levels as depicted 
in Table 1. 

The search begins at the first node in the zeroth level (desig
nated as the pivot element) and the nodes in the next higher 
level are examined from left to right until a network connection 
is found. One then advances to that node in the next level and 
initiates searching (left to right) the level above to find a con
nection at yet a higher level. As one moves up to higher levels, 
the last node visited in each previous level is temporarily stored 
in a vector array that defines the current pathway. Before advan
cing to any higher level, one checks the destination there to 
make sure that this node does not appear in the current path
way. (The search is for simple cycles.) 

One climbs to as high a level as possible, until halted by one 
of two conditions: (1) If the link encountered in the next level is 
to the pivot (starting) element, then a simple-directed cycle has 
been found. The cycle constituents are recorded from the current 
pathway, and the search continues. (2) If the search is from node 
k at level m and all possibilities in level m + 1 have been 
exhausted (i.e., one reaches the far-right extreme), then one back
tracks to the node in the current pathway at the (m – 1)th level 
and reinitiates searching the mth level, beginning with the 
(k +1)st node. When further backtracking becomes impossible, 
all cycles passing through the pivot element have been identified. 
The pivot element may be eliminated from further consideration 
(thereby decreasing the dimension of the subsequent search). 

As an illustration, the backtracking algorithm is applied to the 
Oyster Reef (Dame and Patten, 1981) network  in  Figure 2. Cycles  
can be found most efficiently if the nodes are ordered in a propi
tious sequence. Ideally, one wishes to consider first those nodes 
most likely to participate in cycling. One way of estimating that 
likelihood is to count the number of cycle arcs incident to each 
node. A cycle arc is one that completes one or more cycles (Knuth, 
1973). To count up the incident cycle arcs, one first determines all 
of the other nodes that can be reached from the given node. (The 
reachable nodes can be located in n 2 or fewer steps.) One then 
counts up the connections from each reachable node directly back 
to the given node (another n steps). The consequent sum is the 
number of cycle arcs incident to the given node. 
Table 1 The order of the nodes in a depth-first search 

n | [1] [2] [3] … [n] 
. | . . . . 

L . | . . . . 
e . | . . . … . 
v 2 | [1] [2] [3] … [n] 
e 1 | [1] [2] [3] … [n] 
l 0 | [1] [2] [3] … [n] 

|__________________________________ 
Compartment 
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Performing these operations on the Oyster Reef network, 
one counts 3 cycle arcs each incident to compartments 4 and 6. 
There are 2 cycle arcs into compartment 3 and one each into 
compartments 2 and 5. Compartment 1 possesses no incident 
cycle arcs and thus can be eliminated from the search. A propi
tious order in which to consider the compartments thus 
becomes 4, 6, 3, 2, 5. The following mnemonic array may 
help to keep track of the order of operations: 

L 4  j 4 6 3 2 5  
e 3  j 4 6 3 2 5  
v 2  j 4 6 3 2 5  
e 1  j 4 6 3 2 5  
l 0  j 4 6 3 2 5  �������������  

Compartment 

One begins with pivot element 4 in level 0 and searches level 1 
from left to right, following the instructions in the text above. 
The order of the significant operations in the search and the 
current pathways they generate are as follows: 

Operation Current 
pathway 

Begin at pivot element in level 0 4 
Advance to level 1 4−6 
Report cycle 1 4−6−4 
Advance to level 2 4−6−3 
Report cycle 2 4−6−3−4 
Backtrack to level 1 4−6 
Advance to level 2 4−6−2 
Report cycle 3 4−6−2−4 
Advance to level 3 4−6−2−3 
Report cycle 4 4−6−2−3−4 
Backtrack to level 2 4−6−2 
Backtrack to level 1 4−6 
Backtrack to level 0 4 
Advance to level 1 4−5 
Advance to level 2 4−5−6 
Report cycle 5 4−5−6−4 
Advance to level 3 4−5−6−3 
Report cycle 6 4−5−6−3−4 
Advance in level 3 4−5−6−2 
Report cycle 7 4−5−6−2−4 
Advance to level 4 4−5−6−2−3 
Report cycle 8 4−5−6−2−3−4 
Backtrack to level 3 4−5−6−2 
Backtrack to level 2 4−5−6 
Backtrack to level 1 4−5 
Backtrack to level 0 4 
Advance in level 0 6 
ðAll cycles with 4 have been foundÞ 
Advance to level 1 6−3 
Report cycle 9 6−3−6 
Backtrack to level 0 6 
Advance to level 1 6−2 
Advance to level 2 6−2−3 
Report cycle 10 6−2−3−6 
Backtrack to level 1 6−2 
Backtrack to level 0 6 
Advance in level 0 3 
ðAll cycles with 6 have been foundÞ 
Advance in level 0 2 
Advance in level 0 5 
Further backtracking impossible: END 
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One sees that the Oyster Reef network contains 10 simple 
cycles. If the components had been considered in the order 
given in Figure 2, the first pivot element would have been 1, 
and considerable time would have been wasted searching for 
cycles that simply do not exist. It is obvious that reordering the 
pivot elements can significantly diminish the time it takes to 
complete the full search. 

In principle, the time spent searching networks is combina
toric in magnitude (i.e., it varies as n-factorial). This means that 
years of computer time can be spent searching networks of even 
moderate dimension. Reasonable computational times cannot 
be guaranteed for the method just described. As mentioned, 
however, ecological networks of moderate dimension are 
(a) 

A 

5 
35 

Smallest 
D arc 

25 
30 

C 

15 

25 

(b) 
10 

A B 
100 65 

35 20 

(c) 

A 

D 

C 

5 5 

5 5 

Figure 8 (a) Hypothetical network consisting of one simple cycle. (b) Single-
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rather sparse, that is, they typically possess 15% or fewer non
zero arcs. This, in combination with the component ordering 
scheme outlined above, makes the identification of simple 
cycles feasible for most estimated ecosystem flow networks. 

Having identified all simple cycles in a network, one now 
seeks to separate cycled from straight-through flows, that is, 
subtract the cycled flows from the original network. Subtracting 
an isolated cycle from out of its supporting network is rather 
straightforward. One first finds the link with the smallest mag
nitude (D → A in  Figure 8(a)). 

Then the magnitude of that smallest link is subtracted from 
the weight of each link in the cycle. Doing so separates the 
target cycle (e.g., A → B → C → D → A) from the supporting 
B 
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pass flows through the network. (c) Cycling within the network. Note that 
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straight-through pathway (Figure 8(b)). Each link of the cycle 
bears the magnitude of the smallest arc in the original cycle 
(Figure 8(c)) and the balance around each of the nodes in the 
residual fragment (Figure 8(b)) has been maintained. 

This method of cycle extraction will work only when none 
of the simple cycles in the network overlaps. In most whole-
system networks, however, the number of simple cycles far 
outnumbers the total number of flows comprising the network. 
Hence, some cycles must share the same smallest link. The 
collection of simple cycles that shares the same smallest link 
is henceforth called a nexus. It is also likely that all cycles 
comprising a nexus are controlled by their shared smallest 
link. Removing that smallest link by subtracting it from any 
one cycle of the nexus would also negate all the other cycles in 
the nexus, but choosing any particular cycle is likely to be 
arbitrary. It would seem preferable and more realistic to devise 
a rational method for apportioning the magnitude of the smal
lest link over all the cycles of the nexus. 

Some reflection will reveal that there are an infinite number 
of ways of apportioning the least flow over all cycles of the 
nexus. For example, one could simply divide the magnitude of 
the smallest link by the number of cycles in the nexus and 
uniformly subtract that amount from each arc of all the nexus 
cycles. However, this uniform distribution seems arbitrary as 
well. Another reasonable allocation might be to apportion the 
least flow to each nexus cycle in relation to the fraction of the 
total nexus activity that is comprised by that cycle. Perhaps 
more reasonable still would be to use the [F] matrix to calculate 
the probability that a quantum of medium anywhere in a 
simple cycle will complete that particular pathway and return 
to its starting point. (That probability is simply the product of 
all the fij in the particular cycle pathway.) One then divides that 
probability of completion by the sum of all other such 
probabilities for all of the cycles in the nexus. That fraction of 
the smallest magnitude is then subtracted from each arc in the 
given cycle. Once the subtraction is done for all cycles in the 
nexus, the smallest link will zero-out, but the balance around 
all nodes will remain intact (William Silvert, personal 
communication). 

After removing all cycles from the starting network, one is 
left with an acyclic tree of once-through flows. The separation 
procedure ensures that none of the inputs, exports, or dissipa
tions in the system have been altered. (For every amount that 
has been subtracted from an input to a node, an equal magni
tude was also removed from an output of the same node.) 
A network of all the medium being cycled can be constructed 
either by simple addition of the cycles that have been removed, 
or by subtracting the residual tree from the starting network. 
Figure 9(a) shows the residual, acyclic network from the Oyster 
Reef example (Figure 2) and Figure 9(b) the complementary 
web of purely cyclical flows. 

Although the partitioning of a graph into its cyclic and 
acyclic components is an abstract exercise, it also has its prac
tical side. Baird and Ulanowicz (1989), for example, extracted 
all the cycles from the mesohaline Chesapeake Bay ecosystem 
(Figure 10) and were surprised to find that the aggregated 
cycling was comprised of two nonoverlapping graphs. One 
cluster cycled among only planktonic species (those that 
move passively with water currents), while the other encom
passed both benthic (bottom-dwelling) compartments and 
nektonic (actively moving through the water) species. The 
Treatise on Estuarine and Coastal Science, 2011, Vol.9,
two constellations of cycling represent independent domains 
of control – an apparently common characteristic of estuaries 
(Allesina et al., 2005). Another item of interest was that none of 
the filter-feeding compartments, be they on the bottom or 
among the fishes, participated in any of the recycling. Instead, 
their function in this context appeared to be the transfer of 
resources from the pelagic realm into the benthic–nektonic 
domain. It was also of particular interest that two compart
ments of pelagic microbes that are normally included among 
the microbial loop of open oceanic waters were not among any 
of the cycles in the Chesapeake system. In the Chesapeake, 
these compartments seemed instead to be transferring carbon 
(which is fixed by excessive plant growth in Chesapeake Bay) 
out of the ecosystem. 
9.04.7 Whole System Status 

The methods discussed thus far treat either particular system 
components, or a subsystem of the whole, but ecosystem man
agers increasingly are wanting to know how an ecosystem is 
performing in toto. Funding agencies more often are seeking 
research that addresses environmental problems in the context 
of the whole ecosystem (NSF, 1999). As mentioned in the 
introduction, the conventional response to the need for 
whole-ecosystem research has been to simulate the system 
using a mechanistic mathematical model. Such models, how
ever, are usually lacking in prediction ability and often do not 
provide a convenient metric by which to gauge system status. 
As an alternative, investigators have developed several whole-
system indices of an ad hoc nature, for example, the popular 
and useful index of biotic integrity (IBI) of Karr et al. (1986). 
More suitable would be indices that are founded upon solid 
theoretical considerations. As the subject of this chapter is 
ecological networks, it is only appropriate to ask whether 
some quantitative attribute of ecosystem networks might be 
appropriate with which to gauge ecosystem performance. 

Before embarking upon the quest for whole-system metrics, 
it should be remarked that ecosystems are significantly affected 
by what is missing, very often as much as by what is present 
(Ulanowicz et al., 2009). Whether or not a given predator is 
missing in a habitat will have great bearing on whether a 
particular prey will thrive there. The significance of absence is 
mentioned, because most treatments of ecosystem behaviors 
derive from methodology created for physics and chemistry. 
Bateson (1972) pointed out, however, that physics treats over
whelmingly only that which is present. Very little in physics 
addresses that which is missing. (Rare exceptions include the 
Pauli exclusion principle and Heisenberg’s uncertainty.) 

The approach to quantifying that which is missing is called 
information theory (IT). Conventional descriptions of 
information theory usually begin with the rubrics of commu
nication. IT, however, has applications far beyond 
communications theory, and can be invoked to measure the 
relative degrees of constraint and flexibility inherent in a 
system. 

That information theory begins by quantifying that which is 
missing is evident in Boltzmann’s famous definition of 
surprisal: 

s ¼ −k log pð Þ  
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Figure 9 (a) The residual throughflow in the Oyster Reef ecosystem (Figure 2). (b) The aggregate cycled flows in the same system. 
where s is one’s surprisal at seeing an event that occurs with 
probability p, and  k is an appropriate (positive) scalar constant. 
Because the probability, p, falls between 0 and 1, we may con
clude that the negative sign in the definition is a mathematical 
convenience that guarantees that s will remain positive (and such 
may have been Boltzmann’s motivation). However in terms of 
sheer logic, this equation clearly defines s to measure the degree 
Treatise on Estuarine and Coastal Science, 2011, Vol.
to which p is not. That is, if p is the weight one gives to the 
presence of something, then s becomes a measure of its absence. 
(Here the reader might ask why the absence of event i is not 
represented more directly by (1 – pi). The advantage and necessity 
of using the logarithm will soon become apparent.) If p is very 
small, then the ensuing large magnitude of s reflects the circum
stance that most of the time we do not see the event in question. 
9, 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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Figure 10 The composite cycling that occurs in the Chesapeake Mesohaline ecosystem. Reproduced with permission from Baird, D., Ulanowicz, R.E., 
1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59, 329–364. 
Boltzmann’s gift to science – the feasibility of quantifying 
what is not – remains largely unappreciated. It ranks alongside 
the contribution of the Arabian mathematicians who invented 
the number 0. One can build upon Boltzmann’s invention to 
demonstrate that IT literally opens new vistas to which classical 
physics remains blind. Moreover, the interplay between pre
sence and absence becomes crucial to whether a system survives 
or disappears, that is, to its sustainability. In particular, it is the 
very absence of order (in the form of a diversity of processes) 
that makes it possible for a system to persist (sustain itself) over 
the long run (Ulanowicz, 2009c). 

That the Boltzmann definition actually quantifies absence 
provides an insight that few appreciate – namely, that the 
product of the measure of the presence of event i (pi) by the 
magnitude of its absence (si) yields a quantity that represents 
the indeterminacy (hi) of the event in question, 

hi ¼ −kpi log pi ½3�ð Þ  

When pi ≈ 1, event i is almost certain, and hi ≈ 0; then when 
pi ≈ 0, the event is almost surely absent, so that again hi ≈ 0. It 
is only for intermediate, less determinate values of pi that hi 
becomes appreciable, achieving its maximum at pi = (1/e). 

It is helpful to reinterpret eqn [3] as it relates to evolutionary 
change and sustainability. When pi ≈ 1, the event in question is 
almost constantly present and exhibits little change (hi ≈ 0). 
Conversely, when pi ≈ 0, the event in question has great poten
tial to change matters (si ≈ 1), but it hardly ever appears in the 
system dynamics (so that, again, hi ≈ 0). It is only when pi is 
intermediate that the event is both present frequently enough 
and has sufficient potential for change. Whence, hi represents 
Treatise on Estuarine and Coastal Science, 2011, Vol.9,
� � � �

the capacity for event i to be a significant player in system 
change or evolution. With regard to the entire ensemble of 
events, one can aggregate all the indeterminacies: 

X X
H ¼ hi ¼ −k pi log pi ½ð Þ  4� 

i i 

to achieve a metric of the total capacity of the system to 
undergo change. Whether such change will be coordinated or 
mostly stochastic depends upon whether or not the various 
events i can affect each other and by how much. 

Most readers will recognize eqn [4] as the familiar Shannon– 
Wiener index of diversity. The quest for measures of whole-
ecosystem status was provided major impetus by MacArthur 
(1955) when he applied Shannon’s information measure to 
quantify the diversity of flows, H, in an ecosystem network: 

X Tij TijH ¼ −k log
T:: T::i;j 

where k is a scalar constant, and T.. denotes the sum of Tij over 
all combinations i and j. In this case, the pi in eqn [4] becomes 
the probability that a randomly selected quantum of medium 
is in transit between compartments i and j, and it is estimated 
by the quotient (Tij/T..). 

MacArthur’s goal was to probe for a connection between the 
diversity of a system’s flows, as measured by eqn [4], and the 
stability of that system. His attempt was the first in a long line 
of efforts to link a system’s diversity with its stability 
(Woodwell and Smith, 1969) that dominated systems ecology 
during the 1960s. 
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(a) (b) 

Figure 11 (a) A network of flows having a relatively confused pattern of 
transfers. (b) Another network where the flows of power are more deter
minate (greater ascendency). Reproduced with permission from 
Ulanowicz, R.E., 2009b. A Third Window: Natural Life beyond Newton and 
Darwin. Templeton Foundation Press, West Conshohocken, PA. 
Not long after MacArthur’s effort, attention shifted away 
from the difficult-to-measure flows to the more accessible 
stocks of biomass, and biological diversity, D, was recast as 

B
k 
X� �

i B
D ¼ log i

−
B: B

i

� �
: 

where Bi is the biomass (or number) in compartment i, and B. 
is the sum of all the Bi. 

Unfortunately, the fervor to establish a theoretical connec
tion between the two systems attributes came to a sudden halt 
as soon as May (1972) demonstrated that in randomly 
assembled linear dynamical systems, a higher biodiversity was 
more likely to result in instability. Caught in abrupt embarrass
ment, most ecologists immediately foreswore any further 
efforts to apply information theory to ecology – a prejudice 
that lingers among many ecologists today. As a consequence, 
when Rutledge et al. (1976) returned to MacArthur’s original 
focus upon flows, and reinterpreted their diversity in a Bayesian 
manner, hardly anyone was paying attention. Rutledge et al. 
(1976) were able to decompose MacArthur’s index into two 
complementary terms using the notion of conditional prob
ability. Taking (Tij/T..) as the estimate of the unconditional 
probability that a flow occurs from i to j, (Tij/T.j) then becomes 
the estimator of the conditional probability that any quantum 
of flow continues on to compartment j, given that it had 
originated from component i. This allows H to be decomposed 
as 

H ¼ AMI þ Hc ½5� 
where 

X�
Tij 
� �

TijTAMI ¼ k log ::

T
i;j :: Ti : T : j 

�

and 

� �
T T2

¼ ij
 

X
 ijHc  −k log 

T
i;j :: Ti : T : j

! 

AMI is called the average mutual information inherent in the 
flow structure, while Hc is the residual (conditional) diversity/ 
freedom (commonly known as the conditional entropy in 
information theory). Both are non-negative. 

It is important to stress that information is not being used 
here in the usual context of communications theory, but rather 
in the more generalized sense of constraint. In that context, 
MacArthur’s overall complexity of flow structure has been 
decomposed into a component that gauges how orderly and 
coherently the flows are connected (constrained) and one that 
measures the residual disorder and/or freedom. 

Rutledge et al. (1976) focused upon Hc as a more didactic 
measure of ecosystem maturity (sensu Odum, 1969) than 
MacArthur’s index had provided. Ulanowicz (1980), however, 
became more interested in the AMI, because he was impressed 
by Atlan’s (1974) argument that AMI can provide a useful 
measure of the organization inherent in a system. Ulanowicz 
suggested that AMI is an indicator of the developmental status 
of an ecosystem, because it reflects the average degree of con
straint that channels an arbitrary quantum of currency from 
any one compartment to the next (Ulanowicz, 1997; Latham 
and Scully, 2002). 
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Unfortunately, AMI bears no physical dimensions. Given a 
particular value of the AMI, one cannot tell whether the index is 
representing a microbial community in a Petri dish or an 
ecological community on the Serengeti Plain. Tribus and 
McIrvine (1971) had commented that the lack of physical 
dimensions on information measures gives rise to ambiguity 
about their importance. As a remedy, they suggested that the 
scalar constant, k (usually set equal to one and then forgotten), 
becomes the vehicle that imparts physical dimensions to the 
information index. Following Tribus’ lead, Ulanowicz set k = T.. 
(the total system throughput) and named the resulting product 
the system network ascendency, A, where 

A
X TijT ¼ T ::

ij log 
i;j 

�
Ti : T : j 

�

Ascendency was formulated to combine the total activity, or 
power generated by the system (T..), with its organization in the 
sense of how effectively component processes are linked (AMI) 
(Latham and Scully, 2002). (The alternative spelling ‘ascendency’ 
is used here to distinguish the quantitative measure from the 
conventional meaning of ‘ascendancy’.) As a result, it quantifies 
how well the system is processing the given medium. It is perhaps 
easiest to think of ascendency as ‘organized power’, because the 
measure represents power that is flowing within the system 
toward particular ends, as distinct from power that is dissipated 
willy-nilly (Ulanowicz, 2009b). Almost half a century earlier, 
Lotka (1922) had suggested that the capacity of a system to 
prevail in evolution is related to its ability to capture useful 
power. Ascendency can be regarded as a refinement of Lotka’s 
supposition that takes into account how power is actually being 
channeled within a system. In Figure 11(a), for example, power is 
exchanged in relatively confused fashion among the components 
(nodes) of the network. By contrast, in Figure 11(b), the flows 
out of or into any given compartment are more selective and 
determinate (constrained). In addition, the magnitudes of the 
flows are greater (as indicated by thicker arrows). The increased 
power flowing in Figure 11(b) is realized in a more organized 
way; whence the ascendency of network b exceeds that of a. 

When he first created the ascendency measure, Ulanowicz 
(1980) was thinking that an ecosystem would develop so as to 
maximize its ascendency. He later abandoned that presump
tion as being too mechanical and deterministic (Mueller and 
Leupelt, 1998). He now refers to the propensity for ecosystems 
to increase in ascendency (Ulanowicz, 1997). 
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Figure 12 The degrees of order and corresponding magnitudes of 
fitness for the subset of 17 ecosystem flow networks that consist of more 
than 12 compartments. Ulanowicz, R.E., 2009c. Increasing entropy: Heat 
death or perpetual harmonies? International Journal of Design and Nature 
and Ecodynamics 42 (2), 83–96. 
One may impart physical dimensions to Hc (the comple
ment of AMI) by also multiplying it by (T..). The result is what 
Ulanowicz and Norden (1990) called the system overhead, Φ: 

T2 

Φ ¼ ij
− 

;

! X
 Tij log 

Ti i j : T : j

In fact, H itself can be scaled by T.. to create what is termed the 
system’s ‘development capacity’, C: 

C ¼ − 
X

Tij log 
i;j 

�
Tij
�

½6� 
T :: 

Accordingly, the scaled version of relationship eqn [5] becomes 

C ¼ A þ Φ	 ½7� 
The complementary relationship of the terms in eqn [7] suggests  
that any increase in ascendency usually comes at the expense of 
overhead, Φ. One is led to ask whether there are any limits as to 
how far ascendency can displace system overhead without 
endangering system persistence. Systems with high ascendency 
that retain little overhead appear rigidly linked and almost 
mechanical. Holling (1986) calls such systems ‘brittle’ and vul
nerable to collapse. Such vulnerability proceeds from a lack of 
sufficient freedom and flexibility (overhead) remaining to the 
system to adapt to novel perturbations. It follows that the health 
or integrity of an ecosystem requires adequate amounts of both 
ascendency and overhead (Ulanowicz, 2000a). 

To help gauge where a balance of constraint and flexibility 
might lie, one notes that 

0 ≤A
 
C ≤1
 

The ratio a = A/C, therefore, becomes a convenient (and nor
malized) measure of the degree of system order. The actual
 
pattern of order in any instance is the result of two opposing
 
tendencies (Ulanowicz, 2009a). In an inchoate system
 
(one with low a), there are manifold opportunities for selective
 
constraints (such as autocatalytic cycles) to arise. This tendency
 
for a to increase persists over all values of a. The role of over
head, Φ, however, changes over the range of a. As just
 
mentioned, in systems with little order (low a), the random
ness inherent in Φ is what provides the opportunities for
 
constraints to appear (Ulanowicz, 2009b). In systems that are
 
already highly developed (a ≈ 1), however, the dominant action
 
of Φ is to disrupt established constraints, often resulting in the
 
sudden loss of organized performance (the system resets to
 
much a lower a). At high a, then, Φ strongly opposes additional 
increase in a. Presumably, a critical balance between the coun
tervailing roles of Φ exists for some value of a. 

It is important to stress that ecological reality is not simply 
the unfolding of a mechanical clockwork. It is more a matter of 
opposition between order-generating tendencies and dissipa
tive inefficiencies. Noise, inefficiencies, and incoherencies play 
as large a role in how ecosystems behave as do constraints and 
efficient performance. 

Exactly how this agonism plays out and where the balance 
between A and Φ lies are matters of both theoretical and practical 
concern. Theoretical considerations are addressed in Ulanowicz 
(2009c). As for actual data on how ecosystems are distributed 
over the domain of a, quantified networks of real ecosystems 
Treatise on Estuarine and Coastal Science, 2011, Vol.9,
scatter across the interval 0 < a < 1,skewed slightly toward higher 
values, but with a notable concentration between a = 0.3 and 0.5 
(Ulanowicz, 2009c). Robert Christian (personal communica
tion) noted that the outlying systems (those closer to either 0 
or 1) are all represented by networks of small dimension. 
Whenever ecosystems were parsed in more detail (say, n >12),  
however, their values of a would join the cluster. 

Figure 12 is a plot of data on 17 ecosystems (mostly from 
estuarine and coastal habitats). The ordinate is a hypothesized, 
normalized measure of the fitness for an ecosystem to persist, F, 
and is defined as F = –ea ln(a), where e is the natural base for 
logarithms (see Ulanowicz, 2009c). 

An implication that can be drawn from Figure 12 is that 
networks distant from the maximum at a = (1/e) are not sus
tainable. They either have too little organization (a small) or 
are too inflexible (a large.) In order for an ecosystem to persist, 
it should exhibit a value of a in the neighborhood of maximum 
fitness. The question then arises, if a system is not at the max
imum, how can it be directed toward the maximum – that is, 
toward a more sustainable configuration? This question can be 
answered by defining the robustness, R, of a system as the 
product of its fitness, F, and its total activity (T..): 

R ¼ T:: F 

Now, taking the derivatives of the robustness, R, with respect to 
each flow, Tij, yields the marginal contribution of each unit of 
flow Tij toward the sustainability of the system: 

∂R ∂F 
∂

¼ F þ T
T ::
ij ∂Tij 

∂R 
F′ 

∂a 
F T

∂T ::
ij 
¼ þ

∂Tij 

T T T2
∂R T F′ 

∂Tij	 
¼ F þ ::

( �
ij :: log 

 

	
þ ija log

C Ti : T : j 

"
Ti : T : j 

#)

Where F′ is the derivative of F with respect to a, that is, �
log ð Þa  

F ′ ¼ −e þ 1 
log ð Þe
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One notices that because F = 1 and F′ = 0  at  a = (1/e), the mar
ginal contribution of each Tij at the maximum is 1. If a 
particular derivative is less than 1.0, then the system would 
be moved in the direction of the maximum by decreasing that 
flow. Conversely, if the marginal contribution of Tij is greater 
than one, systemic sustainability should be improved by 
increasing the magnitude of that arc. 

As an example, the derivatives of the robustness are calcu
lated for each flow in the Oyster Reef network of Figure 2 as 
depicted in Figure 13. Because a = 0.436, the system is only 
slightly beyond the maximum, and incremental changes in the 
various flows would move the system to the left toward the 
maximum in Figure 12. 

A more didactic demonstration of the application of these 
vectors toward sustainability would be to hypothetically 
inflate primary production in the system and shunt all the 
extra production through the detritus on to the microbiota, 
where it is respired out of the system – that is, it makes the 
system highly eutrophic. Such a shunt radically increases a to a 
value of 0.687. The corresponding values of the marginal 
contributions are given in parentheses below the values of 
the flows in Figure 14. One sees from those marginal values 
that each link in the primary route of eutrophication possesses 
negative marginal values (especially the one for primary 
production). Most of the other flows now have positive mar
ginal values, and some, such as feeding by predators and 
deposit feeders, are quite significant. According to these 
results, remediation should entail depressing primary produc
tion in combination with channeling material away from 
the eutrophication pathway and into the consumer ecosys
tem. Such is precisely the strategy that has been recommended 
for eutrophic estuaries (Newell, 1988; Ulanowicz and 
Tuttle, 1992). 
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Figure 13 The values of the marginal contributions (in parentheses) of the f

Treatise on Estuarine and Coastal Science, 2011, Vol.
It should be clear that the relative values of A and Φ are 
significant indicators of the status of an ecosystem. For exam
ple, a key property of flow networks is their degree of 
connectivity, or how many links, on average, flow into or out 
of a typical node (sometimes called the link density). 
Ulanowicz and Wolff (1991) demonstrated that a convenient 
measure of the effective link density is achieved by raising e 
(the natural base of logarithms) to the power (Hc/2). They were 
able to demonstrate that this index, which is valid for any 
weighted digraph, converges to intuitive integer values for sim
ple examples. Bersier et al. (2002) saw major significance in 
how properties of weighted digraphs can generalize those of 
binary topologies. They used the link-density relationship to 
bridge quantitative network analysis with the more popular 
food-web analysis that deals only in binary networks. For 
each and every index that has been defined in food-web analy
sis, Bersier et al. were able to construct an information-theoretic 
weighted homolog. Of special importance, they were able to 
demonstrate that the measures pertaining to weighted digraphs 
converge more rapidly to the intended properties than do the 
original, ad hoc food-web measures. 

Zorach and Ulanowicz (2003) have been able to pursue the 
connection between Hc and link density to even greater depth. 
They were able to demonstrate that raising e to the power 
(Hc/2) yields precisely the weighted geometric mean of the 
link density that one calculates using conventional algebra. 
Following dimensional considerations, they inferred that rais
ing e to the power AMI should provide an estimate of the 
number of trophic roles in the network (i.e., it should corre
spond roughly to the effective number of trophic levels, or the 
trophic depth of the network). 

Although A and Φ quantify the status of the whole network, 
one is often interested in details about how subgroups of taxa 
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lows in the Oyster Reef community (Figure 2). 
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Figure 14 Hypothetical eutrophication in the Oyster Reef community, represented by adding 100 units to the pathway → 1 → 6 → 2 →. The revised 
marginal contributions appear in parentheses. 
� �

or individual populations are behaving. To address such ques
tions, it helps to decompose A and Φ further. For example, one 
may be interested in only the internal workings of the system. 
To focus on the inside of the system, one defines an internal 
ascendency, AI, that is confined solely to the internal exchanges 
between the n system components: 

n X TijT::AI ¼ Tij log 
Ti : T : ji; j ¼ 1 

The fraction of the development capacity that is comprised by AI 

is then purported to be an index of the internal development of 
the given ecosystem. This ratio has been used to compare eco
systems that were similarly parsed (Wulff and Ulanowicz, 1989; 
Baird et al., 1991; Christian et al., 2003; Baird et al., 2004). 

Likewise, it is sometimes helpful to know the contributions 
to the overhead that are generated by different types of flows. As 
noted earlier, there are four basic categories of flow in ecosys
tems: internal exchanges, exogenous inputs, useful outputs, and 
dissipations. Accordingly, the overhead separates neatly into 
four respective components (Ulanowicz and Norden, 1990): ! 

n n 

Λ ¼ − Tij log ij 

Ti : T : j

X X T2 

i ¼ 1 j ¼ 1 

! 
n 

ΦI ¼ − T0j log 0j 

T0:T : j

X T2 

j ¼ 1 ! 
n 

i;nþ1
X T2 

ΦE ¼ − Ti ; nþ1 log 
i ¼ 1 

Ti : T :; n þ 1
Treatise on Estuarine and Coastal Science, 2011, Vol.9,
! 
n X T2 

i;nþ2ΦD ¼ − Ti ; n þ 2 log 
i ¼ 1 

Ti : T:;n þ 2

where Λ is called the redundancy of flows in the system, 
because it provides a measure of the multiplicity of, or paralle
lism in, flow pathways between any two arbitrary system 
components. ΦI is the overhead due to imports, and ΦE and 
ΦD are the overheads that can be traced to exports and dissipa
tions, respectively. Often, disturbances will increase the ratio 
Λ/C (Ulanowicz, 1984), indicating that the response of a sys
tem to disturbance usually increases its ability to resist further 
perturbations (the LeChâtelier–Braun principle as applied to 
ecology). Heymans (2003) and Heymans et al. (2007) 
employed the internal overhead to gauge the potential of a 
system for adaptation and resilience. 

One criticism of network analysis in general is that all 
attention seems to be focused on flows to the neglect of stocks. 
It has been argued here that ecosystem dynamics depend lar
gely on the configurations of flows within them, but there most 
certainly remain situations where the magnitudes of stocks 
affect system dynamics. In order to introduce stock size into 
the information dynamics, the stock in compartment i will be 
denoted by Bi. To relate Bi to flows into and out of i, one notes 
that the a priori probability that any quantum of medium in 
transit has originated from compartment i is (Bi/B.). Similarly, 
the corresponding (unconditional) probability that a particle 
of flowing medium will enter j is (Bj/B.). Thus, the a priori joint 
probability that any quantum of flowing medium is en route 
from i to j becomes (BiBj/B.

2). The observed, or a posteriori 
frequency of such flow from i to j is measured as (Tij/T..). The 
 35-57, DOI: 10.1016/B978-0-12-374711-2.00904-9
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Hc1 AMI Hc2
Kullback (1959) index can be employed to calculate the 
average difference between these a priori and a posteriori prob
abilities, IB, to be  

T T B2 
 IB ¼ ijk 

X�
ij log :

T:: 

� �
T B

i :: iBj ;j

�

As with the flow ascendency, one may scale IB by T.. to yield the 
biomass-inclusive form of the ascendency, AB (Ulanowicz and 
Abarca-Arenas, 1997), as 

 
ijBA  ij log :

B ¼ 
X T 2

T  T Bji ::Bi  ;j

� �

How the overall system status might change with infinitesimal 
additions to the biomass of taxon p, Bp, is reckoned by taking 
the partial derivative of AB with respect to Bp: 

∂AB 

∂
¼ 2 

Bp 

�
T:: 1 T

 : p þ Tp :
−

B: 2 Bp 

�

Examination of this result shows that the sensitivity is propor
tional to the amount by which the average turnover rate of 
medium in compartment p is exceeded by the overall turnover 
rate (T../B.). The system appears to be more sensitive to those 
components having slower turnover rates. 

One might ask further, “Which prey resource, r, is most 
important as a source of medium to predator p?” As with the 
biomasses, the limiting source can be identified by taking the 
partial derivative of AB with respect to each prey, r, of taxon p. 
Because AB is a first-order homogeneous function in the Tij 
(Courant, 1936: 108), one may invoke Euler’s relation to arrive 
at the simple result: 

∂AB TrpB2 

 log :

∂Trp 
¼

�
T::BrBp 

�

According to this formula, one arrives at the intuitively satisfy
ing conclusion that the controlling resource is the one that is 
being depleted of medium at the fastest rate relative to its 
available remaining stock (i.e., the one with the highest ratio 
(Trp/Br)). In the next section, these sensitivities will be used to 
identify points of control by various nutrients in an estuarine 
ecosystem. 
  

λ1 

AMI3 

λ 2 λ 3 

Figure 15 2D Venn diagram showing the AMI as the intersection of the 
uncertainties of sources and sinks. The conditional uncertainty, 
Hc = Hc1 + Hc2. 

Figure 16 The intersection of the three domains of sources, sinks, and 
time. The central area of overlap (AMI3) represents the 3D average mutual 
information, but the three areas of bilateral overlap (λ1, λ2, λ3) also 
contribute to the overall system organization. 
9.04.8 Higher Dimensional Considerations 

The utility of the sensitivities just presented would be enhanced 
if they could be used to discriminate among the dynamics of 
several media flowing simultaneously. Furthermore, until now 
network analysis has been applied only to a single snapshot of 
the system. It is not difficult, however, to depict temporal 
ecosystem dynamics as a motion picture or a time series of 
such network snapshots. Nor is it far-fetched to envision a 
tessellation of networks, each pertaining to a small segment 
of the physical space occupied by the ecosystem. While it 
remains difficult in general to extend the I–O, trophic and 
cycle analyses to encompass heterogeneities in time, space, 
and media, widening the scope of information-theoretic 
indices presents no conceptual obstacles. 

If, for example, Tijk denotes the flow of medium from 
taxon i to taxon j during time interval k, then the temporal 
Treatise on Estuarine and Coastal Science, 2011, Vol.
capacity, CT, immediately follows as a straightforward gener
alization of eqn [6]: 

  
X T

CT ¼ − Tijk log 

�
ijk

T
i …;j;k 

�

In defining the corresponding temporal ascendency, however, 
one must choose among several possibilities. In schematic 
terms, CT can be decomposed into numerous terms, as sug
gested by Venn diagrams (Blachman, 1961). In two 
dimensions the situation is unambiguous (Figure 15). 

The left circle in Figure 15 represents the diversity of source 
flows (from prey), whereas the right one represents the diver
sity of sinks (to predators). The overlap between the circles 
represents the AMI. The combined nonoverlapping areas com
prise the conditional uncertainty, Hc. 

The overlaps in three dimensions are multiple, however. 
Figure 16 consists of the pattern of Figure 15 repeated 3 
times. If the three circles represent the diversities of sources, 
sinks, and time, then there are three bilateral regions of overlap, 
representing the mutual information between sources and 
sinks, sources and time, and sinks and time, respectively. In 
addition, however, these overlaps themselves intersect, yielding 
at least four distinct regions: there is the central area where all 
three domains intersect (AMI3) and the three adjoining regions 
where only a single pair each overlaps (λ1, λ2, and λ3 in the 
figure). As to which region should represent the information 
factor in three-dimensional (3D) ascendency, one could 
choose the innermost circular triangle (AMI3; which is desig
nated as the 3D AMI in information theory), but this formula 
has the disadvantage of sometimes being negative in value. 

In terms of the Tijk, AMI3 can be calculated (Abramson, 
1963) as  
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� �

� �

� �

� � �	

� �

! X T2 T…Tijk ijkAMI3 ¼ log
T… Ti::T : j : T :: ki;j;k 

It represents the simultaneous coherence among sources and 
sinks over time. It does not, however, encompass all the coher
ency present in the system. In particular, the leaflets (λ1, λ2, λ3) 
that adjoin AMI3 represent bilateral coherencies that do not 
correlate with the third remaining variable. To be inclusive of 
all coherencies in the system, Pahl-Wostl (1995) suggested that 
the appropriate measure is the overlap of all bilateral AMIs 
(i.e., the trefoil-like region AMI3 + λ1 + λ2 + λ3). Calling this con
junction AMIT, one calculates its magnitude in terms of the Tijk as ! X T2 T…Tijk ijkAMIT ¼ log

T… Tij : Ti : k : T : jki;j;k 

Unlike AMI3, AMIT is guaranteed to be ≥0. Scaling AMIT by T … 

yields the temporal ascendency AT: !X  
T2 T… 

AT ¼ Tijk log ijk

Tij : Ti : k : T : jki;j;k 

Having resolved 3D ambiguities, the extension of capacity and 
ascendency by induction into four or more dimensions 
becomes relatively straightforward. Probably, the most inclu
sive domain an ecologist is likely to consider would consist of 
five dimensions – donor, recipient, time, space, and medium. 
Accordingly, transfer Tijklm will represent the flow from taxon i 
to taxon j during time interval k at spatial location l of medium 
m. (Space is considered as only a single dimension, because any 
2D and 3D partitioning of a finite domain of physical space 
always can be enumerated by a single index (in the same 
fashion that multi- dimensional arrays are stored as a single 
sequence by computer machine code).) The corresponding 5D 
ascendency, AO, would then be !X  

T4 
ijklmT::… 

AO ¼ Tijklm log 
T : jklmTi : klmTij : lmTijk : mTijkl :i;j;k;l;m 

This ascendency remains homogeneous (sensu Euler) in the 
flows. As before, this property allows one to calculate readily 
the 5D sensitivities as ! 

T4
∂AO pqrstT:…: ¼ log
∂Tpqrst T : qrstTp : rstTpq : stTpqr : tTpqrs :

The corresponding biomass-inclusive overall ascendency, AOB, 
then takes the form 

X TijklmB2 
:…AOB ¼ Tijklmlog 

BiklmBjklmT::…i;j;k;l;m 

where Biklm is the biomass of medium m in taxon i at time k in 
spatial segment l. The corresponding sensitivities become 

∂AOB T::… 1 Tp:rst T:prst¼ 2 − þ ½8� 
∂Bprst B:… 2 Bprst Bprst 

and 

∂AOB TpqrstB:
2 
…¼ log ½9� 

∂Tpqrst BprstBqrstT::… 
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In those cases for which data are available on multiple media, 
Ulanowicz and Baird (1999) have demonstrated analytically 
that the largest biomass sensitivity coefficients eqn [8] corre
spond to that medium which is present in least proportionate 
amount, that is, in the sense of von Liebig (1854). Liebig’s law,  
however, provides no way of identifying the most limiting 
source of that nutrient. The controlling source is given by the 
largest value of eqn [9]. Ulanowicz and Baird (1999) applied 
eqns [8] and  [9] to parallel networks of several media to eluci
date a new and systematic way of depicting nutrient dynamics in 
ecosystems. They assembled sufficient data to estimate the 
trophic exchanges of carbon, nitrogen, and phosphorus (C, N, 
and P) in the ecosystem of the mesohaline reach of Chesapeake 
Bay over the four seasons of a typical year (no spatial variation). 
They used the 4D version of eqn [8] to identify the limiting 
medium for each taxon and found that N was limiting primary 
production during the summer season (as has long been 
known). During that same season, however, P was controlling 
bacterial production and secondary production by nekton 
(mobile fishes). Applying eqn [9] to their networks, the investi
gators were able to diagram (graphical) trees that depict the 
hierarchy of nutrient controls during each season (Figure 17). 

The nutrient limitation analysis can be used as well for 
purposes of comparison. For example, data at very similar 
resolution to those estimated for the Chesapeake are available 
on the chief components of the Sylt-Romero Bight ecosystem 
(Daniel Baird, personal communication). The analysis of C, N, 
and P for this system reveals that a very similar pattern of 
nutrient controls is operating in both estuarine ecosystems, 
although they are separated by thousands of kilometers and 
more than 10° of latitude. Primary production in both systems 
is limited by nitrogen, whereas most heterotrophs in both 
habitats are controlled by phosphorus. There is more of a 
tendency in the Sylt system for bottom dwellers to be starved 
for N: crabs and demersal fish appear to be controlled by N in 
the Sylt, while their counterparts in the Chesapeake are limited 
by carbon and phosphorus, respectively. Likewise, sediment 
bacteria are wanting N in the Sylt and P in the Chesapeake. It 
is curious that the nutrient limitation of crabs is reversed the 
next trophic level down, that is, crabs lack C in the Chesapeake 
and N in the Sylt. 

AOB was also applied by Ulanowicz (2000b) to animal 
migration across a simple 10 � 10 spatial grid. He simulated 
(using cellular automata) the hypothetical migration of popu
lation across this landscape to generate data to show how 
information theoretic measures could be applied to landscape 
ecology. Kikawada (1998) extended Ulanowicz’s analysis to 
include simultaneous trophic interactions, and Krivov and 
Ulanowicz (2003) addressed the most general configuration 
of network dynamics pertaining to several chemical elements 
distributed across a landscape. Of note to hydrodynamicists, 
the calculus discussed here can even be applied to quantify the 
degree of organization inherent in fluid dynamics (Ulanowicz 
and Zickel, 2005). 
9.04.9 Summary and Conclusions 

The network perspective was prompted by the observed short
comings of the mechanical worldview – how mechanical 
descriptions of coupled processes usually fail to mimic 
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Figure 17 A schematic of the prevailing nutrient controls in the Chesapeake mesohaline ecosystem during springtime. Compartments and flows 
controlled by nitrogen are indicated by solid lines; those controlled by phosphorous by short dotted line; and those by carbon by long dotted lines. 
ecosystem behaviors. In the course of searching for ways 
around this obstacle, network tools have been developed that 
do not merely circumvent the problem, but actually open 
entirely new perspectives on the process of life (Ulanowicz, 
1997). 

In retrospect, this outcome should not have been a surprise. 
An electron, for example, possesses its own internal nature 
(Sungchul Ji, personal communication). If one uses one set of 
apparatus to observe an electron, the entity will appear as a 
particle with a certain mass. If one focuses a different set of 
observational tools upon an electron, it will appear rather as a 
wave packet. As every physicist knows, the nature of the elec
tron is dual. Its perceived nature depends upon the method of 
observation. 

In a more general way, the same thing is true of an ecosys
tem. If one approaches a living community with the tools of 
quiescent material and laws, one can observe only the more 
mechanical aspects of the system. If, however, one adopts a 
process-oriented perspective (such as is afforded by network 
analysis), then the dynamics of life can be observed more 
directly, and the (restricted) role of noise becomes far more 
apparent. The process viewpoint allows for a truly evolutionary 
description of what transpires in living systems. 

In particular, living systems now appear to be the outcome 
of the opposing tendencies toward order and dissipation, not 
Treatise on Estuarine and Coastal Science, 2011, Vol.
simply the unfolding of a mechanical scheme (Ulanowicz, 
2009b). The focus in the network perspective is upon causality 
via configurations of processes, rather than laws working on 
inert material. 

That the lens of process affords a most exciting new phi
losophical viewpoint on living systems does not at all detract 
from the utilitarian value of network analysis. In the absence 
of mechanical models, one can still say much, both qualita
tive and quantitative, about how estuarine and coastal 
systems are operating. One can use networks to identify 
configurations that order dynamics, to locate bottlenecks in 
the sequence of processes, to quantify the developmental 
status of a particular system in relation to others, to trace 
indirect effects, to evaluate trophic status, to assess how the 
ecological community as a whole might be made more sus
tainable, and so on. 

Network analysis belongs in the toolbox of every manager 
of estuarine and coastal ecosystems. 
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