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Network Growth and Development:

Ascendancy

ROBERT E. ULANOWICZ

University of Maryland
Chesapeake Biological Laboratory
Solomons, Maryland

We have only recently begun o revolution. in ecolagy . . . [Van Dyne, in The Ecosystem
Concept in Natural Resource Management, Ch. X p. 333 [1969), Academic Press].

INTRODUCTION

The ecological world, when viewed at the scale of human senses, is a myriad of seemingly random
and arbitrary events. We certainly cannot dismiss out of hand the contention that this welter lacks
anything akin to an overall organization (Simberioff, 1980). Yet the intuition exists in many, nurtured
perhaps by centuries of reflection by artists, poets, and transcendentalist and natural philosophers,
that the larger biological realm possesses some degree of coherence, order; or even organization.
This issue is emotionally charged and capable of generating heated debate. However, most of the
. controversy is at best marginally quantitative. As in.other chapters of this baok, the goal here is
to introduce a set of quantitative tools that can be applied to resolving the ongoing disagreement.
It is worth noting that if we existed (like Maxwell’s demon) at the molecular scale, the
universe would appear extremely chaotic. Uncountable numbers of molecules would streak arcund,
rotate, and otherwise gyrate in a fashion difficult to predict. However, very large collections of
these same molecules when observed at the scale of the natural senses often obey deterministic
laws (for example, the ideal gas laws). An analogy to this thermodynamic situation of fine-scale
chaos but order in the larger domain might be drawn in the ecological realm. But where should
one begin?

PROBABILITIES ASSOCIATED WITH DYNAMICS
Probability theory, that branch of mathematics devoted to making quantitative statements on events
about which we are uncertain, seems like the most natural starting point. After all, probability
theery and statistics are primary tools used in quantitative biology. Similarly, they are the foundations
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for statistical mechanics, the attemp to reconcile atomic theory with the phenomenology of thermady-
namics. .

Well-defined probabilities exist only in relation to well-posed questions. A well-posed ques-
tion is one for which the outcome is exclusive and the set of possible outcomes is complete. By
exclusive is meant an outcome that can occur in only one of the stated options. A complete set of
outcomes is simply one that spans the entire gamut of possible outcomes; that is, there is perfect
accountability. For example, say that 20 types of organisms constitute the biota of a given ecosystemn.
An organism is chosen at random. It must belong to at most one of the chosen categories (exclusivity);
otherwise, the set of categories needs to be reduced. Furthermore, it must also belong to at least
one of the categories (exhaustiveness); otherwise, the set of categories should be expanded. “What
is the probability that the chosen species belongs to taxon x” is a well-posed question orly when
the set of categories (taxa) is both exclusive and complete.

Usuaily, we apply probabilities to objects at or very near thermodynamic equilibrium, for
example, different colored balls in a jar or the faces of a die. But living systems, and ecosystems
in particular, are never such static entities. Members of the various taxa are constantly appearing

"and disappearing and, what is even more interesting, they undergo transformation from one category
to another. These circumstances have several consequences for the application of probabilities to
ecosystem dynamics. »

Almost by definition, if we are concerned with ecological dynamics, the focus is not what
is in the categories, but rather on what is entering or leaving a taxon. Thus, the expression p(a;)
might be taken to mean the probability that an organism leaves taxon i at a given instant and p(b;),
that an individual enters taxon j an infinitesimal interval later. Now p(a;) and p(b)) are usually not
independent of each other. More often than not, a unit [eaving one compartment of a set immediately
enters another. Such is the case with trophic processes such as herbivory, camivory, or detritivory.
For this reason, it is useful to define a quantity known as the joint probability, p(a,, b)), as the
probability that an organism leaves i and enters j within some infinitesimally short interval. It
should be stressed that the joint probability is not generally equal to the product of the separate
probabilities [that is, p(a) - p(b)]. In fact, the degree of this inequality is related to how well
“organized” the given dynamics appear.

Like all well-defined probabilities, the joint probability should be complete; that is, any
potential transition must proceed from one species in the set to another. Of course, for any given
ensemble (ecosystem) of n compartments, not all exchanges originate among or transfer into one
of the identified categories. Hence, any analysis must contain at least one compartment to represent
the external world, the place from which and toward which these exogenous transfers proceed. For
reasons later to become clear, it is useful to identify three snch external categories: (1) a category

. 0 (zero) to serve as the source of all entifies entering j, but not originating in one of the n taxa;
(2) a category n + 1 to represent the destination of all useful things leaving the system; and (3) a
category n + 2 to receive all units that are lost from the system and of no further use to any other
similar system; that is, they are “dissipated” by the ariginating compartment. Examples of transitions
that might occur under this categorization scheme are depicted schematically in Fig. 26.1.

Because p(a), p(b), and p(a;, b)) are each complete, the former probabilities can now be

" written as marginal sums of the latter:

a+2
play = Z pla,, by, ] v (26.1)

j=0

»tl

pb) = z pla, b). (26.2)
i=0 :
Also, by ensuring that the joint probabilities are complete, the way is paved for full accountability
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Figure 26.1 Representation of flows
among the compartments of a sysiem.
Compartment 0 represents the source of all
exogenous inputs, # + 1 the sink for all
usable exports, and n + 2 the sink for all
dissipations. Boxes on the left represent
system nodes at a given time and those on
the right depict the same nodes an infini-
tesimally short time thereafter.

) n+2

of all transfers regardless of whether or not the organisms (or other appropriate units) that comprise
each category are themselves c;onserved through time.

UNCERTAINTY

Recalling that the pivotal issue addressed in this chapter is whether ecosystems can be considered
organized in any sense of the word, it is useful now to counsider how to quantify the negative
hypothesis—the degree to which an ecosystem is disorganized, or disordered. We are usually very
uncertain about the outcome of any event occurring at the “microscopic”™ level of a disorganized,
chaotic, or random assembly of organisms. To be more precise, uncertainty rises in proportion to
the number of factors that serve to differentiate the various possxble gutcomes. Mathematically, this
last statement is equivalent to

. H==KY plogp, (26.3)

i=t

where H is the uncertainty attached to the distribution of probability over the m categories enumerated
by the index i, and K is a scalar constant.

Equation (26.3) is not as mysterious as it is often portrayed to be, providing we focus on
the phrase “number of factors that serve to differentiate” in the statement above. Suppose, for
example, that we were challenged to guess an integer chosen from the range 1 to 1024. One
straightforward way of targeting the choice would be to ask if the number exceeds 512. If the
answer is no, the next query might be if the number exceeds 256. And so on. Using this tactic, we
will determine the number after exactly 10 guesses.

Instead of guessing numbers, we might be asked to identify an orgamsm that belongs to one
of 1024 possible species that are differentiated by 10 binary choices in a taxonomic key. Again,
10 decisions will identify the organism. The 10 selections may be said to have generated the 1024
categories. each of which may be thought of as a unigue combination of the constituent choices in
the key. The logarithm of 1024 (the number of “combinations™) to the base 2 is 10 (the number of -
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decisions). In the case where all final categories are equally populated, the probability of any single
category p; is 1/1024, so

1024

- | | |
#= KZ 024 °% 702 (26.42)

=
= 10K. ' (26.4b)

In the event that categories are not evenly populated, the combination (26.3) can be thought of as
a probability-weighted average of — K log p; (or, altenatively, K'log{1/p;]) yielding the average uncer-
tainty.

The numerical results of eq. (26.3) accord well with inmition. If all members are in a single
category, then H = 0, reflecting no uncertainty. Conversely, uncertainty is maximal if units are
uniformly distributed among m categories, and # = K log m. Thus, the range of function (25.3) is

Klogm=zH=0. . (26.5)
ORGANIZATION

The extent to which a system might be disorganized is quanuﬁed by its measured uncertainty.
Concemmg its outputs there is the amount

[ 7]
H(a) = =K Z pla) log p(a), (26.6)
- =g}
and pertaining to inputs there is the quantity
a+rl
H(b) = =K Z p(b) log p(b). (26.7)
j=0

Hence, the total uncertainty about the system’s dynamics becomes H(a) + H(b), If the inputs and
outputs were completely independent of each other, this last sum would exactly measure the
disorganization inherent in the dynamic structure.

However, inputs and outputs are not always independent, and the amount by which they are
coupled quantifies the coherency of the dynamic structure. If we observe the joint behavior of
inputs and outputs over a sufficient interval, it becomes possible to estimate the set of joint
probabilities p(a;, b;). The uncertainty associated with this set is -

nt+2 n+l
H(a, b) = —KZ Z pla;, b) log pla;, b). (26.8)

im0 j=0

It can be proved that this joint uncertainty is always less than or equal to the sum of the separate
uncertainties, H(a) + H(b). In fact, equality pertains only to the case when inputs and outputs are
independent of each other. Under the assumption of independence,

p(ah bj) = p(ai) * P(b; ] (26.9)

and substitution of (26.9) into eq. (26.8) along with the completeness requirements,

A+l a2
Y pay = p) =1 _ @6.10)
i=Q i
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teveals that, when inputs and outputs are compietely independent, .
H(a, b) = H(a) + H(). o @1
' More generaily, however,
H(a) + H(b) > H(a, b), (26.12)

and the amount by which the sum of the sepa:ate uncertainties exceeds the joint uncertainty is the
measure of how coherent or organized the dynamic structure is:

A(a; b) = H(a) + H(b) — H(a, b), (26.13)

where A(a; b) defines the decrease in uncertainty or the degree of organization inherent in the
dynamic structure. Substituting (26.8) into the right side of (26.13) and remembering (26.1) and

(26.2) yields _
A+l nel p( ) ‘
(et
Ala; b) = ’K; onpm, 5) log[p = p(b)] . (26.14)

Inspection of (26.14) or (26.1-3) shows that the order of inputs and outputs in the argument of A
is immaterial; that is, A(g; b) = A(b; a).

ORGANIZATION, INFORMATION, AND DEVELOPMENT

Properly speaking, any decrease in uncertainty about or within a system can be defined as “informa-
tion.” As (26.13) reckons a decrease in uncertainty, it describes a quantity cailed the average mutual
information. The adjective “average™ comes from the averaging technique used in defining the
component uncertainties in eq. (26.14), whereas the modifier “mutual” is meant to highlight the
fact that A is entirely symmetric with regard to inputs and outputs.

A second and equivalent definition of information is given by Tribus and McIrvine (1971)
as “anything which gives rise to a change in probability assignment.” Thus, if nothing is known a
priori about the joint behaviors of the ;s and b;’s, then we are forced to fall back on the assumption
of independence; that is, the joint probability is equated to p(a)p(d;). However, after acmally

* empirically measuring the joint probabilities, they become p(a;, b,). The information associated with
this change in probability assignment is again measured by eq. (26.14).

This second definition of information emphasizes that information theory arises as a natural
outgrowth of probability theory. Probability theory by itself is sufficient to analyze static or equilib-
rium configurations. However, when we attempt to quantify dynamic systems, the probability
assignments, by definition, are subject to change. The analysis of any change in probabilities is the
domain of information theory. Thus, invoking information theory to study ecosystem dynamics is
not the capricious or ad hoc action many ecologists regard it to be. Rather, resorting to information
theory is seen to be just as imperative to the study of biology as relying on probability theory! This
crucial fact has been obscured by the historical accident whereby information theory was originally
formulated in terms of communication theory. Once the universal nature of the information concept is
more widely appreciated, resistance to the utilization of information theory in ecology should vanish.

The organization of the dynamic structure of an ecosystem has been properly quantified in
terms of information variables. It is thus but a smail additional step to quantify the notion of
development. Development is an increase in organization. Any rise in A(a; b} reflects development,
and any decrease is a step toward incoherence and chaotic behavior.

The possibility of assigning a number to the heretofore intuitive concept of development is
heartening. It allows us to recast the issue of whether ecosystems are organized as a statistical
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hypothesis. Kullback (1959) showed how the average mutual information, A, behaves asymptoticaily
like the chi-square function with (n + 2)* degrees of freedom: Testing whether any'_observed
distribution p(a;, b reveals dynamical organization to any specified confidence level becomes a
matter of rote substitution into tabulated formulas—a typical exercise in statistics.

ESTIMATING TRANSFER PROBABILITIES

Thus far, not much has been said about how to estimate the probabilities p(a;), p(8)), and p(a;, b,).
From egs. (26.1) and (26.2), it can be seen that it is necessary to estimate only the joint probabilities,
because the marginal probabilities are partial sums of these quantities. Usually, we estimate joint
probabilities from a matrix of events. That is, the events g; (a unit leaves compartment i) might
identify the rows of the matrix, and the events b; (a unit enters compartment j), its columns. If the
events are reckoned as numbers of organisms, then the observation that one individual of i is eaten
" by an mdlvxdual of j would constitute one entry into the (i, /)th position of the events matrix. Calling

at+l n+l
the cumulative observations x; and the total number of observations N = Z Z x; , the relative

frequency of each transfer, x; /N, becomes the conventional estimator of p(a; , &).

The author is unaware of anyone having calculated the mutual information of ecosystem
dynamics from probabilities based on numbers of individuals transferred, although the prospect is
intriguing. It is possible that such an exercise might lead to significant insights into the sxze-ﬁ'equency
distributions (for example, Preston, 1948) commonly observed in nature.

The problem with using numbers of organisms to estimate probabilities is that the disparity
in size and makeup of the individuals of various species brings into question the relative significance
of each row in the events matrix. To circumvent this issue, ecosystem analysts have taken to choosing
a common elemental currency, for example, discrete units (atoms or molecules) of carbon, nitrogen,
phosphorus or their compounds, or kilocalories of chemical energy, contained in the organisms
being transferred. A second, very significant convenience afforded by this choice is that these
currencies are strictly conserved. Whereas individuals appear and disappear, their elemental constit-
uents can be traced intact from compartment to compartinent. On the negative side, in the shift
from counting organisms to measuring transfers of material among compartments, there is a naturai
tendency to regard the conveyances of medium as “flows” that are continuous in time. True enough,
when the organisms that embody these materials are very small and their transfers very frequent,
the transformations do approximate continuous flows. However, we should never lose sight of the
fact that ecosystem transfers occur mostly in discrete steps, and to measure the “flow” of, say,
carbon from hares to foxes is, in essence, to observe a discontinuous process best u'eaxed by
probability theory.

With this caveat in mind, attention now focuses on the flows of material from species i to
species j. Call such a transfer 7;. The total amount of flow accurring in the system, T, becomes
simply the sum of all the individual transfers:

a+l A+

T= Z Z T;. (26.15)

imQ j=0

Among all the activity occurring in the system, the probability of observing an atom of cumrency
going from i to j is estimated by the fraction of the total activity that is comprised by T;:

T,
pla;, b) ~ -7-’5 (26.16)

By (26.1) and (26.2),
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Figure 262 Thres artificiai, closed netwarks with differing degrees of articulation: (a)
the minimally articulated configuration of 96 flow units among four nodes; (b) an intermedi-
ate level of articulation; (c) the maximally articulated configuration of flows.

i n+l T.' .
pla) ~ 35 - T (2617
; pa
and
n+l
T . .
pb) ~ ?" . (26.18)

=

Thus, substituting expressions (26.16) and (26.17) into (26.14) and simplifying,

A=§”Zziz7'ylog —":;——ET;T—— . (26.19)
=0 =1 X >
B e

Equation (26.19) can be applied to any well-defined network: of ecosystem “flows.” It turns
out that the measure A quantifies the average degree of articulation inherent in the network. For a
network to be well articulated means that, if an atom of conservative substance is flowing through
any particular node in the system, it is almost certain to which particular node that atom will next
be transferred. By contrast, quanta at any node in a highly unarticulated network can flow almost
anywhere during the next transfer. Figure 26.2 shows three networks with different degrees of
articulation. In Fig. 26.2a, the network is completely unarticulated and A = 0. At the other extreme,
the network in Fig. 26.2c is maximally articulated and A equais two units of XK. Network 26.2b is
intermediate between the two extremes.

SIZE AND GROWTH

When we focus on system dynamics (as opposed to a static distribution), the concept of size literally
takes on a new dimension. The “size” of a dynamic system is best captured by the amount of
acrivity that is occurring. If this notion sounds strange, recall that the sizes of economic communities -
are commonly gauged by their aggregate levels of activity, for example, their gross national products
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(GNP). An analogous measure for ecosystems has already been defined as 7, elsewhere called the
toral system throughput (Hannon, 1973; Finn, 1976).

Growth, in the extensive sense of the word, may be identified with any increase in the size
of a system. Hence, system growth can be measured by an increase in T, just as the growth of a
national economy is said to be any increase in its GNP.

UNITARY GROWTH AND DEVELOPMENT

The organization, or asticulation, of a network is an intensive property of the system. That is, it is
independent of system size. The dimensions of A are the same as its scalar constant, K Usually,
K is considered to be fixed by the choice of the base of logarithms used in the calculation. For
example, when 2 is chosen as the logarithmic base, one unit of X is called a bir (binary digit).
When the base ¢ is used, a unit of X is called a nat; with base 10, it is termed a hartley; and so on.

However, Tribus (1961) suggests that the scalar constant should be used, as its name implies,
to scale any intensive system measure. [t has just been argued that the appropriate size measure
for a flow system is its total system throughput, T Hence, in setting X equal to T we scale the
organization of a dynamic system by its size. The resultant quantity

a+2 a+l )
A= Zo ,Z; T; log Eﬁﬂ (26.20)
‘ r=0 =0

becomes the product of a factor of size times a measure of organization. This resulting quantity
has been termed the system ascendancy (Ulanowicz, 1980). It measures the ability of a system to
prevail over alternative system configurations. It also measures, in 2 manner different from exergy
(Chapters 22 and 23), the distance of a system from its most chaotic configuration, thermody-
namic equilibrium,

To prevail over another configuration requires a propitious combination of size and develop-
ment. A system that is big but undeveloped is a Golliath. One that is highly developed but very
small is vulnerable to being extinguished by its less developed but larger neighbors. Both size and
organization are required in adequate measures to produce high ascendancy.

Growth is an increase in system size; development is an augmentation of its organization.
Thus, an increase in system ascendancy is taken to portray the unitary process of growth and
development. That growth and development are twe aspects of a singie process is revealed by
refererice to any dictionary of the English language, where the definitions for the two characteristics
can be seen to overlap significantly.

The means are now at hand to assess whether an ecosystem has undergone growth and
development. Its underlying networks of carbon and the like or energy flows are estimated at two
points in time. Comparing the two associated values of ascendancy will reveal whether or not
growth and development have occurred during the interval.

Odum (1969) suggested 24 atributes to characterize more “mature” ecosystems. Ulanowicz
(1986a) has shown how increases in most of these characteristics parallel increases in system
ascendancy. This is not to imply that all increases in ascendancy are necessarily beneficial to the
system of to human society interacting with it. For example, an ecosystem might react to a sudden
increase in available resources by rapidly expanding in size (7), at the same time diminishing in
organizational status (A/T). If the former increase more than compensates for the latter drop, the
product will still rise. Such a situation has been offered as a quantitative description of the process
of eutrophication (Ulanowicz, 1986b).
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LIMITS TO GROWTH AND DEVELOPMENT

Growth and development, like any natural process, possesses finite limits. The lower limit has
already been discussed, that is, when a; and &; are completely independent so that p(a;, b;) = p(a)p(b;)
and A = 0. At the other extreme, a; and &; are mutually determined, so knowing g, implies a
corresponding &; for some combination of x unique pairs (4, j). Under such conditions, p(a;, b) =
pla) = p(b) for each of those given pairs (i, j), and pla, b) = 0 otherwise. Substituting these
conditions into eg. (26.14) yields
a¥rl
=-K z pa) log play), (26.21a)

i

A+l
C=-K Z p(B) log p(&), . (26.21b)
=0 .
where C is the maximum value that A can attain and is therefore called the development capacilty.
Notice that under these extreme circumstances H(a, b), H(a), and H(b) all become identical in value
to C. To preserve symmetry, it is best in general to identify C with H(a, b) (Ulanowicz and Norden,
‘1990). In terms of flow estimators, the capacity (26.21a) is ca.lcu{ated as ‘

2 ¥ " )
C= —Z Z T; log = (26.22)
g jaOy -
We expect that
' C=A=0, ‘ (26.23)

as can be proved algebrmcally {McEliece, 1977). The nonnegative difference, C — A, is termed
the system overhiead and is generated by all real conditions that keep the system ascendancy from
reaching its theoretical maximum. _

Before considering in more detail the conditions that can contribute to system overhead, it
is worthwhile to pause briefly and identify some of the mechanisms that contribute to an increase
in ascendancy. In Chapter 4 of Ulanowicz (1986a), it was argued that the principal agent for the
rise in ascendancy and the genesis of selection pressure in ecological networks is positive feedback
among the members of the community (Wicken, 1984). In those systems that are alive, the ascendancy
{and capacity) is dominated by the terms associated with the 2 members interior to the system.

To understand the nature of the overhead in more detail, we may decompose it algebraically
into four separate terms:

; C~A=I+E+S+R (26.24)
where
1 zq
I= z Ty log | ————te—— (26.25)
=" |EE
R
Z Tonvt log | == T | (26.26)

| EE ]
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ﬁn'o- - .
Z T log | op——r -(26.27)

T RE

R== Tylog | sor——r— |- (26.28)
=" [E9E

k=] m=(

Notice that [ is generated by any multiplicity in the exogenous inputs, while Z, 5, and R correspond to

multiplicities in the exports, dissipations, and internal transfers, respectively, Elsewhere (Ulanowicz,

1980) [ have called £ the “wribute” to other systems, S the “dissipation,” and R the internal

. ‘“‘redundancy,” that is, the multiplicity of internal pathways connecting any two compartments in
the system. (Rutledge, Bassore, and Muihoiland, 1976).

" When €g. (26.24) is written in the form

A=C-(+E+S+R), (26.29)

a verbal narrative for the limits to increasing internal ascendancy (and thereby the overall ascendancy)
becomes possible: Any increase in A is occasioned by either an increase in C; a decrease in one
of the terms in the internal overhead, or some combination thereof. C, in tum, is augmented either
by an increase in the scaling factor T or by an ever-finer partitioning of flow among an increasing
number of nodes (Ulanowicz, 1987); The total system throughput will rise when species are maximiz-
ing their power throughput, a nonconservative strategy for survival first advocated by-A. J. Lotka
and later championed by H. T. Odum (Odum and Pinkerton, 1955). However, the combination of
finite input flows and mandatory dissipations at each node serves ultimately to limit the rise of T
The ever-finer partitioning of compartments is likewise limited by the finite availability of resources,
which implies that some of the finely partitioned nodes will inevitably become too small to persist
in the face of chance environmental perturbations.

It might at first seem counterintuitive that inputs (which are required for sustenance) would
contribute to the system overhead. Recall, however, that in developing systems there is a tendency
for the magnitude of inputs relative to other system flows to decrease. As Odum (1969) points out,
mature systems are predominated by internal activities. As for increasing ascendancy by decreasing
the multiplicity of inputs, such overreliance on but few lines of sustenance jeopardizes system
maintenance in the face of disruption of those remaining inputs.

“-Minimizing the tribute by internalizing (recycling) exports is a good way for a system to
increase its ascendancy. However, that course of action, too, can have its limits. For if the exports
and imports of a given system both happen to be elements in a positive cybemetic loop at some
higher hierarchical level, then decreasing exports from the given system might eventually diminish
its own sustenance. Such a scenario was played out on the world economic stage with the coilapse
of the oil cartels in the late 1970s.

Minimizing the dissipation, S, provides an analog 10 an illustrious principle of irreversible
thermodynamics (Prigogine, 1945). However, as long as resources remain abundant, it is unlikely
that the system will follow such a course, because A is more readily increased by a growing T and
a widening gap between capacity and overhead. Later, however, after limitations on resources
become more stringent, minimizing § becomes an appropriate route for increasing A in mature
systems. Of course, § is prohibited from ever reaching zero by the second law of thermodynamics.

Finally, decreasing R reflects a more streamlined and efficient network topology. It is a natural
consequence of the competition between overlapping cycles of positive feedback. Unfortunately,
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more efficient networks also make for more fragile structures. In systems with insufficient R,
perturbations at any point in the network are likely to have disastrous consequences on downstream
nodes, whereas a modicum of redundant pathways might allow for compensatory flows to down-
stream nodes via the less affected lines of communication (Odum, 1953). Because real environments
always impose some degree of perturbation on a system, continued survival of the system wiil
always require a nonzero level of pathway redundancy to function as “strength in reserve.” We
anticipate that, over the long term, the amount of redundancy retained by the network will be just
sufficient to balance the rigor of the environment. [n these terms, the old balance-of-nature precepts
now widely rejected by many medern ecologists begin to take on a new dimension and significance.

In summary, there are hierarchical, thermodynamic, environmental, and resource-related
constraints acting to retard any increase in internal ascendancy.

A SIMPLE EXAMPLE

An e;cample of an ecological flow network found in numerous other publications is a description
(Patten et al., 1976, pp. 572-574) of the energy flows among five functional components of Cone
Spring, a small cold-water spring in [owa. The compartments are depicted, along with their attendant
flows (in kcal m~? y7"), in Fig. 26.3. Arrows not originating in a compartment portray exogenous
inputs; those not terminating in a compartment denote endogenous outputs of useful energy to the
system’s environment; ground symbols represent dissipative flows.

These same transfers may be amrrayed in the form of an 8 X 8 matrix (Table 26.1), where
energy- flows from row to column designations, for example, T;; = 5205 kcal m™? y~! transferred
from node 2 to 3. Inputs are arrayed along the 0 row, useful outputs down column 6, and dissipations
down column 7. Substituting these 7;; values into egs. (26.15), (26.20), (26.22), and (26.25) through
(26.28) yields values for the total system throughput, ascendancy, capacity, and the overhead terms,
respectively. These values are listed in Table 26.2 for the Cone Spring model.

255

)
Carnivores

-
203

Figure 26.3 Schematic of energy flows (kcal m~? y™') among functional components
of the Cone Spring ecosystem. Arrows not originating from a box represent inputs from
outside the system. Arrows not terminating in a compartment represent exports of usable
energy out of the system. Ground symbols represent dissipations.
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TABLE 26.1 Flows T; in the Cone Spring ecosystem model

0 1 2 3 4 5 6 7
0 0 11,184 635 0 0 0 0 0
I 0 0 8,881 0 0 0 300 2,003
2 0 0 0 5,205 2,309 0 860 3,109
3 0 0 1,600 0 75 0 255 3275
4 0 0 200° 0 0 370 0 1,814
5 0 0 167 0 0 0 0 203
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

Row i contributes to column j. All values in kcal m™ y~'.

TABLE 26.2 Calculated values of ascendancy and
related variables for the Cone Spring ecosystem

model

Total system throughput (T) 2,445
Ascendancy (A) 56,725
Capacity (0) 93,172
Input overhead (I) 6,222
Tribute (E) 7.811
Dissipation (S) 35,274
Redundancy (R) - 29,832
Units: total system throughput, kcal m™* y™*; all others, kcal-
bits m~2 y~'.

CONCLUDING REMARKS

The preceding development has been intended to provide a quantitative basis for investigating
whether or not ecosystems undergo anything akin to growth and development. The origins and
place of the described measures in the domain of probability theory have been stressed in the belief
that both sides in any dialogue on the issues involved will accept definitions cast in probabilistic
terms. The amount of data necessary to study the behavior of the variables introduced here for
realisticaily modeled systems would be voluminous indeed. Hundreds of ecosystem networks and
their time series would have to be examined before any outcome would become apparent. And it
would require considerable effort to quantify even one such network of the scope of complexity
suggested, for example, in Chapter 20. But the issue, bearing on the pature of supraorganismal
organization, ranks today as one of the most philosophically intriguing in all science.

It is exciting to speculate what might happen if the evidence were to favor existence of
organized behavior in ecosystems. Would such behavior be reducible to events occurring at the
level of the organism or smailer, or is it conceivable that the larger scale phenomena are to a degree
autonomous like their living constituent parts appear to be? At first, as embedded parts ourselves,
it may seem difficuit to imagine how such higher-level autonomy could arise, and even more difficult
to concede that we are governed by it. But, somewhere in the feedback structure of complex
reticulated relationships between subsidiary units in ecosystems may reside a cybernetic organizing
principle capable of being drawn as an appropriate agent behind (semi)autonomous growth and
~development at the ecosystem level (Ulanowicz, 1986a; Wicken, 1984), ,

Nothing less than the status of ecology as a science is at stake in this dialogue. If ecosystems
are determined by their molecular constituents, then ecology is clearly a corollary discipline to
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genetics and molecular biology. If, however,- autonomous-elements of ecosystems can be clearly.
identified, then ecology takes on an importance in its own right. Even more to the point, the
discovery of autonomous ecosystem behavior would stand as a significant advance in the theory
of far-from-equilibrium thermodynamics and catapuit ecosystem science into the very forefront of
scientific inquiry—which is where it has always beionged!
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