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Symmetrical overhead in flow networks

ROBERT E. ULANOWICZt and JEFFREY S. NORDEN}

Recent work by one of the authors has identified the average mutual information
and the conditional entropy as two measures from information theory that are useful
in quantifying the system organization and incoherence, respectively. While the
scaled average mutual information, or network ascendency, is inherently sym-
metrical with respect to inputs and outputs, the scaled conditional entropy, or
overhead, remains asymmetrical. Employing the joint entropy, instead of the
conditional entropy, to characterize the overhead, results in a symmetrical overhead
and also permits the decomposition of the system capacity, or complexity, into
components useful in following the response of the whole system to perturbations.

1. Introduction

Flow networks are very convenient respresentations of ensembles of transactions,
such as might occur in economic communities, ecosystems, neural systems, and a host
of other kinetic structures often designated as ‘self-organizing’. Whatever self-
organizing behaviour such systems may exhibit is likely to derive from the formal
structure of material or energetic interactions within the community (Odum 1971,
Ulanowicz 1988). Thus, a deeper understanding of developing systems should follow
from any phenomenological observations on how the network structures of living
systems evolve. If such phenomenology is to be scientific, it perforce must be quan-
titative. Hence, one secks methods for quantifying various system-level properties
of flow networks (Ulanowicz 1986).

Ecology has been a particularly fertile domain for the discussion of network
properties. Almost four decades ago Odum (1953), following suggestions by his
mentor, G. E. Hutchinson, pointed to the muitiplicity of network pathways between
two different species in an ecosystem as a structural feature that promotes the
homeostasis of any bilateral interchange. In simple terms, if communication along one
of the multiple paths is disrupted, it is still possible that the remaining connections can
compensate to maintain the overall exchange at a viable level.

MacArthur (1955) was quick to realize that the nascent theory of information
could be used to quantify the multiplicity of pathways in a system. For example, if T;;
represents the flux from compartment i to species j, then the fraction, f;;, of the total
flow constituted by T;; becomes

—_ X
=y,
k

MacArthur used these fractions in the Shannon—Wiener index of uncertainty to define
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the diversity of flows, D,,, as
Dm:_ZfijIngij (1
LJ

where the summation is taken over all combinations of i and j.

Unfortunately, attention in ecology soon shifted from the diversity of flows to the
diversity of biomass distributions, and well over a decade of ecosystems research was
dominated by futile attempts to confirm or reject the existence of a positive
correlation between ‘diversity and stability’ (Woodwell and Smith 1969). May (1973)
cooled the fervour for the topic by demonstrating that a necessary connection between
the two properties does not exist. Because the results from so great a collective effort
turned out to be so equivocal, many ecologists continue to nurture a disdain for the
mention of information theory. What almost everyone failed to notice during the 60s,
however, was that new concepts relevant to ecosystems had been derived by
information theorists. It remained for Rutledge et al. (1976) to reinterpret
MacArthur's ideas in terms of conditional probabilities. They showed that the
conditional entropy was a more appropriate measure of functional redundancy in
food webs.

Rutledge defined the statistical entropy, H, of the flows in a closed network
differently from MacArthur:

H=-Y 0,logQ, 2)
where ' '
Y T
Qi = Z T

,m

is the probability that a quantum of medium is flowing through i. Given that a
quantum is flowing through i, the conditional probability that it will flow next into j is
estimated by MacArthur’s f;. Knowing the location of a quantum reduces one’s
uncertainty about where it will flow next by an amount known as the average mutual
information,

This amount when deducted from the statistical entropy in (2) yields the conditional
entropy, Dy, or

Dy=H-1I (4)

Dy is the network property most related to system homeostasis. However, Rutledge’s
attempts to show that systems matured in the direction of higher values of D yielded
equivocal results.

Ulanowicz (1980) refocused Rutledge’s treatment to emphasize I as the cardinal
attribute of a developing network. In fact, when I is given physical dimensions by
multiplying it by the total amount of flow in the system, T (=Z,; T;;), then the
resulting ‘ascendency’,

A=TI (5)

correlates well with most of Odum’s (1969) 24 properties of ‘mature’ ecosystems. It
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appears that, in the absence of major perturbations, systems mature in the direction of
increasing ascendency.

In order to assess the limits to increasing ascendency, Ulanowicz multiplied
Rutledge’s statistical entropy, H, by T and observed that a basic result from
information theory requires that

C>A420 (6)

where C = TH. That is, the factor C serves as an upper bound on A—a circumstance
that led Ulanowicz to coin the name ‘development capacity’ for C. Thus, the
ascendency appears to grow towards its theoretical limit, C, but is destined to fall
short of that limit by a non-negative amount, C — 4, which thereby takes on the
appearance of the system overhead.

2. Completeness and symmetry

If one limits the discussion, as Rutledge did, to materially closed systems, then the
overhead stems entirely from pathway redundancy. However, closed systems are
theoretical abstractions, so that Ulanowicz (1980) sought to extend the Rutledge
formalism to include open systems as well. In the process he showed that the newly-
defined system overhead is augmented by losses from the system, such as exports and
respirations.

Unfortunately, Ulanowicz’s original formulation of the average mutual infor-
mation in open systems employed incomplete probabilities. Among other difficulties,
this means that the ascendency would often take on significantly different values when
calculated in terms of the inputs to each node from those computed on the basis of
their outputs. Likewise, the overhead would be highly asymmetric with respect to the
input and output perspectives. This assymetry in the ascendency was obviated by
Hirata and Ulanowicz (1984) by redefining the normalization factor (the total system
throughput) used to estimate the probabilities. They defined separate compartments
to serve as virtual origins and sinks for exogenous transfers. In an n-compartment
system they attached the index zero to the source of exogenous inputs and n + 1 to the
virtual repository for medium leaving the system. (To be more accurate, the labels
n+ 1 and n + 2 were used to designate the sinks for usable exports and dissipations,
respectively; there are excellent hierarchical reasons for making this distinction—
Ulanowicz (1986)—which will be invoked later in this article; however, for now it is
more convenient to consider that all losses from the system flow into compartment
n+ 1) Thus, T,; refers to the exogenous inputs into compartment j, and T, ,
designates all the losses from component i. The modified total system throughput
becomes the aggregate of all T;;, where i and j both range from 0 to n + 1. Two new
terms, Q, and Q, . , appear in the equation for statistical entropy (2), and fy; and f; , , ;
also contribute to new terms in the revised average mutual information (3).

A significant advantage of the new ascendency is that it is entirely symmetrical
with respect to inputs and outputs. For example, if one defines g;; as the fraction of
total input to i that flows from j, then it can be shown that

I= Z f0ilog (z ﬁJ:Qk)

ntl &ji ) (7
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where
0= ; Tu/T

That is, the ascendency (4 = T x I) will have the same value regardless of whether it is
‘looked at’ from the input or the output perspective (ie. one could reverse the
directions of the arrows and not affect the numerical resuits). Furthermore, the mutual
information in (7) remains well defined, even if the inputs and outputs around each
compartment do not balance. The ascendency may now be calculated for networks
not in the steady state. It can be shown that the mutual information in a balanced
network always exceeds those of any nearby unbalanced configurations (Ulanowicz
1986).

In order to highlight the symmetry in the revised ascendency, one may multiply
either form of I in (7) by the total system throughput, T, to yield:

n+1
A= %, Tl [(;7?)} ®
where
I;= z T
%
and
I = Zk: T

Although the revised network ascendency is well behaved, the modified overhead
remains asymmetrical with respect to inputs and outputs. Recalling that the overhead
is defined to be the difference between the development capacity (the scaled statistical
entropy) and the mutual information, it becomes clear that the asymmetry in the
overhead derives from the asymmetry inherent in the statistical entropy used to define
system capacity. Neither the MacArthur statistical entropy (1) nor the Rutledge form
(2) is symmetrical with respect to inputs and outputs.

3. Symmetrical overhead
It is rather easy to show (Abramson 1963) that the statistical joint entropy, H;, is
symmetric with respect to both inputs and outputs:

n+1

H;=— ZofijQ,- log (f;0:)

Li=
n+1

- ZO 20} log (gin’i)

Lj=

n+1 T;j 7’11_].
“5(7)(3) g

The index is so named because the argument of the logarithm is an estimator of the
joint probability that a quantum of medium passes through i and j in succession.
Defining a development capacity based on this statistical entropy, C; = T x H}, yields
an overhead, 8, that is the difference between two symmetric terms, and thus is itself
symmetric.

There remains a secondary, but not insignificant, benefit to defining the system

Il
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capacity in terms of the joint entropy. Namely, the segregation of terms generated by
exogenous inputs, internal transfers, and losses can be accomplished simultaneously
within the ascendency, the overhead, and the capacity. Referring to Table 1, the
subscript O refers to that part of the summation process generated by the exogenous
inputs, i.e.

-

n T,, T
Ay = T,. 1o ]
0= 2, To g[(m}')]
0, = iTlo[T"zf]> (10)
0 = 0j g TOT}/

n T.
P T) |

and the components with subscript E are the corresponding elements of 4, # and C
generated by the T; . . Those components with subscript I are generated by the

internal transfers, ie.
1 1:T
A= Z T;;log o
iji=1 T;

toJ

2

n T
0= — 2 Tij10g|: u,:|
=1 ;1

n T
Ci=— ) T;log (J)
=1 T

Thus, summing across the first two components in each row of Table 1 always yields
the third, and summing down the top three entries in each column yields the fourth.
(In Table 1 and hereinafter the subscript J has been dropped from the capacity, so that
writing simply C will denote the capacity based on the joint entropy.)

The separation effected in Table 1 may seem unremarkable, until one realizes that
no other choice for system capacity allows for such a clean separation of overhead.
For example, using Rutledge’s statistical entropy to define a system capacity will result
in an internal overhead (the counterpart to 6;) that contains terms generated by
exogenous transfers. (By ‘generated’ is meant the transfer in question appears as a
multiplier of the logarithmic term. The separation in Table 1 is not meant to imply
that the terms are entirely independent of each other. All the flows are actually implicit
in each logarithmic argument.)

Y

(11)

Ao 0o Co
A, 0, C;
Ay 0, Ck
A 0 o

Table 1. Two-way decomposition of the network devel-
opment capacity into functional components.
Subscripts 0, I and E refer to imports, internal
flows, and losses, respectively. The last mem-
ber in each row or column is the sum of its
preceding components.




434 R. E. Ulanowicz and J. S. Norden

From a practical standpoint, the separation into distinct components allows one
to focus on a particular section of the network. For example, one might be most
interested in the internal development of the system, whereupon knowing the value of
the internal capacity and how it is apportioned between the internal ascendency and
the internal overhead should give clues as to the status of internal development. It
should be noted that, although the whole system indices are intrinsically non-
negative, some of the components of the ascendency, could hypothetically become
negative. For example, if external exchanges become very much larger than the
aggregated internal exchanges, it is possible that the internal ascendency could
become negative. (The capacities and overheads are guaranteed to be termwise non-
negative.) In the author’s experience, negative internal ascendencies have been
observed only for contrived, anomolous, hypothetical networks. This last observation
prompts the speculation that a positive internal ascendency might be a prerequisite
for the continued development of a natural system.

The reader may have noticed that the symmetries just discussed tend to obscure
irreversibility and the direction of time as elements of the system description. That is, if
one were to reverse hypothetically the direction of every flow in the network and
recalculate all the components in Table 1, the only difference would be an exchange of
row one with row three. If one were asked to choose which configuration represented
the real system, one would probably choose that wherein 8; > 0. However, there is
nothing in the second law of thermodynamics that would guarantee the correctness of
this choice.

This ambiguity underscores the utility of the hierarchical distinction made by
Ulanowicz (1980): that medium which leaves the system, but is still of use to another
system at the same hierarchical level, is called ‘export’. Export is thus distinguished
from ‘dissipation’, which is the medium leaving the community that no longer can
serve as an import to any comparable system. Using the convention established by
Hirata and Ulanowicz (1984), exports will be assumed to flow to a sink compartment
labelled n+ 1 and dissipations are imagined to pass into unit n 4+ 2. Exports and
dissipations generate separate terms in the ascendency, overhead and capacity as

follows:
N
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Table 1 would thereby be expanded by adding a fourth row to accommodate Ag, 65
and C;. The distinction between the two types of export is hierarchical in nature (see
below) and adds another element of asymmetry between inputs and outputs that helps
to distinguish the direction in which irreversible events are transpiring.

As discussed by Ulanowicz (1986}, the role of overhead is to provide limits on the
increase in ascendency and simultaneously to reflect the system’s ‘strength in reserve’
from which it can draw to meet unexpected perturbations. For example, 4, could
increase at the expense of 8,. To do so, however, the system would either have to
diminish the magnitude of its imports (and thereby starve itself) or focus on the most
easily tapped resource to the exclusion of all others. The latter reconfiguration would
leave the entire system vulnerable to any disruption in its single avenue of sustenance.
Therefore, it does not benefit the system in the long run to reduce 6§, below some
point. The critical level of 8, is determined by the spectrum of disturbances that befail
the system.

Similarly, a reduction in each of the other three components remains feasible only
up to a point. The potential reduction in 8; is limited by the rigors of the environment.
0, arises from the multiplicity of pathways connecting any two system components.
When few or no alternative pathways are available to compensate for flow reductions
caused by stochastic disturbances along any subset of connections, the continued
existence of the receiving element stands in jeopardy. With &, the limit is reached
whenever any further reduction in a remaining export causes a proportionate decrease
in one of its imports to which the given export is linked via an autocatalytic pathway
in the next higher hierarchical level.

4. Cone spring example

A benchmark example employed by many engaged in ecosystem network analysis
is the simple configuration of energy transfers among the five ecological components
of Cone Spring (Williams and Crouthamel, unpublished) as shown in Fig. 1. The full
suite of components of the newly-defined development capacity for Cone Spring are
listed in Table 2(a).
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Figure 1. Observed network of energy flows in keal m ™2 y ™! among the five major features of

the Cone Spring ecosystermn (Williams and Cronthamel, unpublished).
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Ascendency Overhead Capacity

Inputs 19148 6222 25370
Internal 29332 29832 59 164

(e)< Exports 1052 7811 8863
Dissipations 7194 35274 42468
Totals 56726 79139 135865
Inputs 21712 0 21712
Internal 36 507 24939 61446

(b)< Exports 820 1062 1882
Dissipations 7254 37489 44743
Totals 66293 63490 129783

Table 2. The functional components of the development capacity for (a) the Cone Spring

network of energy flows depicted in Fig. 1; (b) the hypothetically streamlined version

shown in Fig. 2, All values are in kcal bitsm 2y~ !

In some fundamental respects, this simple example is representative of many more
complicated networks that have been observed. For example, the points of entry for
exogenous inputs are fewer than the routes of egress from the system. Furthermore,
those compartments receiving exogenous imports usually have few other inputs from
internal components. The first observation means that the overhead terms generated
by exports and dissipations encumber larger fractions of their capacities (88% and
83%, respectively). In the second case, most of the capacity generated by the inputs
appears as ascendency (75%) and the overhead on imports is relatively small. Usually,
the crucial point is how the internal ascendency and the internal overhead (redun-
dancy) are apportioned. Here the split is very nearly 50—50%.

To see how the components of the capacity might respond to changes in network
structure, the total system throughput in Fig. 1 was re-routed to give the slightly more
‘streamlined’ or ‘efficient” hypothetical configuration shown in Fig. 2. Two types of
changes were made to the Cone Spring network to create this revised structure.
Firstly, the five cycles found in the observed network were reduced to only two cycles
without altering the aggregate throughput. This aggregation of cycles also simplified
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Figure 2. Hypothetical ‘streamlined’ version of the Cone Spring network maintaining the
same system throughput, but diminishing the number of cycles and exogenous transfers.
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the internal transfers by eliminating two of the actual flows. Secondly, the imports and
exports were combined into one each, in such a way as to keep the total throughput
constant.

As can be seen from the resulting components of the capacity listed in Table 2(b),
the ratio of the internal ascendency to the redundancy rose to 60:40. The overhead on
imports vanished, because the hypothetical system is dependent upon a single input.
The export capacity fell almost five-fold with the disappearance of two of the exports,
and the percentage of export capacity encumbered by overhead decreased to 56%. In
contrast, the dissipation capacity and its components changed relatively little.

5. Summary and conclusions

Using the joint entropy to compute the development capacity of a flow network
results in a systems overhead that is symmetrical with respect to inputs and outputs.
Furthermore, the capacity defined by the joint entropy can be decomposed readily
into 14 separate components that are useful as congeneric indices that quantify the
topological changes in the network structure.
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