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ABSTRACT

“Szyrmer, J. and Ulanowicz, R.E, 1987 Total flows in ecosystems. Ecol. ‘Modelling, 35:
123-136.

Ever since it was introduced to ecology over a decade ago, economic input-output
analysis has been a tool useful in defining the structure of ecosystems. The central element in
this theory hitherto has been the Leontief. structure matrix, which is commonly thought to
express the total direct and indirect flows between any two compartments of a system.
However, the Leontief calculus focusses upon the contributions towards the exports from the
system and does not explicitly compute the ecologically more interesting bilateral exchanges
that occur within the flow network. It is possible to define a matrix of ‘total flows’ which
provides a more convenient starting point for such tasks as sensitivity analyses, description of
cycles, identification of key compartments, optimal resource reallocation, and definition of
trophic status. The matrix of total flows can be considered the kernel for a more nearly
canonical version of input—output analysis.

1. INTRODUCTION

“Ecology is the study of the relationships of organisms with one another
and with their non-living environment” (Odum, 1959). Exactly how to
quantify the relationships among organisms is a matter -of some debate, but

“a growing number of systems ecologists now regard the magnitudes of flows
of material and energy between the various components of an ecosystem as
appropriate measure of such relationships. In so doing they do not infer
that, for example, the amount of carbon flowing from zebra to lion is a
complete description of every detail of the complicated relationship of that
particular predator and prey interaction any more than the dollar exchange
between an auto manufacturer and the steel industry portrays the intricacies
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of the corresponding business transaction. But the common assumption is
that the ethologies and physiologies of predator and prey are embodied in
the measured carbon flow in the same way that, say, manufacturing technol-
ogies, union-labor relationships and availability of materials are implicit in
the volume of commodities and cash exchanged between supplier and
consumer.

The analogy between ecology and economics is especially appropriate in
that the study of the networks of economic exchanges has a longer history
than does the systematic study of ecological flows. ‘Input—output analysis’,
or the characterization of both direct and indirect influences in economic
communities began with Leontief (1936, 1951) and reached its zenith over 20
years ago. Just when interest in economic matrix methodologies was begin-
ning to wane, Hannon (1973) introduced input—output analysis (I0A) into
ecological studies.Viewed afresh from the new perspective of mathematical
ecologists, IOA was employed for a number of novel applications. Patten et
al. (1976) emphasized the newfound capability to assess indirect effects in
ecosystem networks. An organism might be directly in communication (i.e.,
exchanging matter or energy) with only a few other species. But those
compartments in turn are linked with perhaps a different set of species, and
this second set with still others in an infinite causal regression. IOA seemed
to quantify the cumulative effects of a potentially infinite number of
pathways of cause in the elements of a simple two dimensional matrix, the
Leontief structure matrix. This structure matrix afforded a more complete
description of the environment experienced by each species, whence the title
‘environ’ or niche descriptor.

As I0A deals with the transfers of medium in discrete steps, it conveni-
ently can be used to define the trophic status of an element in a network
(Levine, 1980). Alternatively, discrete trophic levels can be assumed, and the
nodes of the network can be apportioned to these trophic compartments
(UManowicz and Kemp, 1979).

Most ecosystem networks contain closed cycles, and the presence of these
cycles is implicit in the diagonal elements of the Leontief structure matrix.
These diagonal values can be used to calculate the actual amount of cycling
present in the network, purportedly a significant indicator of the degree of
system development (Finn, 1976).

Finally, because the elements of the structure matrix appear to indicate
the fraction of a given compartmental output which flows to any other
compartment, the generic techniques of sensitivity analysis can be applied to
the structure matrix to assess the relative significance of each flow in the
network (Bosserman, 1981).

Unfortunately, the authors are aware of no instance in which these novel
adaptations of IOA by ecologists have been implemented by economists.
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2. TOTAL FLOW

During the early developmental stages of any discipline, elements and
methods evolve opportunistically and sometimes haphazardly. However,
there usually comes a time when it pays to look at the body of theory,
identify the core elements, and ask how the remaining elements can be most
efficiently related to that kernel. One should also explore the possibility that
some other core elements will permit a simple, or canonical, exposition of
the theory. .

In IOA the central element has always been the structure matrix, of
Leontief inverse. This matrix is calculated solely from the intramural system
transfers (intermediate flows) and final outputs (final demands). Among »
compartments there exist at most »n? nonnegative flows, z, ;» from any
compartment i to any other compartment j (i # j), or to itself (i =J). These
form the components of an n X n matrix of direct flows, Z. The final
outputs to the external world appear as the n elements of a column vector,
Y. The total outputs from each compartment are defined to be the elements
of a vector X and are calculated by summming all the intramural outputs
and adding the external output, i.e.

X=2ZJ+Y (1)

where J is an n-dimensional column vector of 1’s.

The fundamental assumption upon which [OA rests is that any input to a
compartment will appear proportionately among the various outputs of that
compartment. In matrix terms, if X is an »# X n diagonal matrix with

-diagonal entries equal to the elements of vector X, then:

Z=AX (2)

where A is an »nX»n matrix of constant structural coefficients (called
technical coefficients in economics or stoichometric coefficients in chem-
istry). Because XJ = X, substitution of eqn. (2) into eqn. (1) yields:

X=AX+Y (3)
Solving eqn. (3) for X in terms of ¥ and A gives:
X=(I-A)'Y 4)

where I is the » X »n identity matrix.
The matrix relating the total outputs to the final outputs is called the
structure matrix and will be denoted here by D, that is:

D=(I-4)" : | / (3)
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Because matrix A has been properly normalized, it is possible to expand
the structure matrix as an infinite series (Miller and Blair, 1985) in the
manner: '

(I-A) '=T+A+ 42+ 4+ .. (6)

Now, if ¥ represents a diagonal matrix with the components of vector YV
along the diagonal, then the i—j component of AY represents the amount of
total output of i/ which exits the system at j after the first round of
transfers. Similarly, the i~/ component of A%Y represents that amount which
exits the system at j two rounds of transfers after it emerged from i. It
follows that the amount issuing from i and eventually exiting from j after
all possible transfers will be represented by the i, jth element of the matrix:

F=(D-1)Y (7)

Economists are primarily interested in what leaves a system—the final
outputs or demands. However, final outputs are relatively less interesting to
ecologists to whom they appear as respiration or other losses. The intramu-
ral ecological outputs usually evoke greater interest in ecology. Reflecting
upon the opening sentence of this paper, it becomes evident that the
ecologist is more interested in the total effect which the output from i has
on the total output of j. This gross amount of flow can be estimated by
scaling up F from the final outputs Y to the total outputs X, so that the
matrix, Z, of overall or gross flows from all i to all j takes the form:

ZS=(D-1NX : (8)

In a system without cycling the elements of Z¢ will represent the total
influence which compartment ; has upon compartment j, and one stands
ready to base ecological judgements about total influence upon this matrix.
However, real ecosystem networks contain cycles of material and energy,
and the presence of cycles confounds the meaning of Z©. Part of the gross
flow from i to j is cycled back to i. As in any causal circle, the gross flow
represents not only the influence of i upon j, but also that of j upon i. Is
there any way to isolate that influence upon j which is proper to compart-
ment i? Such an influence will be called the total flow from i to j and
designated by the matrix ZT. *

To calculate the components of Z7 it is best to reformulate the question,
“What is the total unidirectional influence of i upon j?” as, “What
happens if i is prevented from influencing j?” In general the output of / can

* Throughout this paper superscripts T and T’ denote corresponding total flow and coeffi-
cient matrices. They do not denote matrix transposition.
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indirectly flow to j via any of the other compartments of the system. Hence,
to prevent i from influencing j it becomes necessary to decouple j from a//
its intramural inputs. That is, one imagines that all the internal inputs to j
come instead from outside the system. Operationally, this is equivalent to
zeroing all the elements in the j™ column of the matrix A. Call the resultant
matrix 4. ‘

A structure matrix Correspondmg to altered configuration can be calcu-
lated as:

!

=(I-4 j) ‘ (9)
and a corresponding vector of total outputs as:
X,=DY (10)

Now that i does not have to support (or influence) j, the i™ element of X;
is always smaller than or equal to the corresponding element of X. The
vector difference, X — X, represents the amounts of each output which go
to sustain the output of j. Hence, the matrix of total flows, ZT, has the
difference vector, X — Xj, in column j.

This outline of how to calculate ZT was helpful in expositing the origin
and nature of total flows. However, the algorithm is computationally
cumbersome and requires the inversion of n separate matrices. Equation (8),
by comparison, requires only one inversion. It turns out (Szyrmer, 1984) that
the elements of ZT can be calculated directly from the elements of D
according to the formula:

Zﬁ:[(du 8,)/4, ]x (11)

where §,; are the elements of the identity matrix (which =0 for i #; and
=1 for i =j).

Finally, it should be mentioned that total flows could likewise have been
derived using the intramural flows and exogenous inputs (the Augustinovics
(1970) approach). Szyrmer (1984) shows that the consequent total flow
matrix, Z7, is not in general equal to Z7. The difference may be ascribed to
the influence of cycling. (See Section 4)

3. THE UTILITY OF TOTAL FLOWS

At this point it is fair to ask, “If the total flows are implicit in the
calculation of the gross flows, why go to the trouble of defining them?” In
short, the answer is that properties of the network are more closely related to
the total flows than they are to either the direct flows or the gross flows.
Which is to say that the structure of input—output analysis appears more
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nearly canonical when built around total flows than when centered on the
Leontief inverse. Total flows also allow for a more natural ranking of the
ecological importance of each component in the system.

- A major advantage of total flows is that they more clearly define the role
of cycling in the network. Using rather complicated calculations based on
the Leontief inverse, Finn (1976) was able to compute the aggregate amount
of total throughput which was being cycled. However, the very same index
appears explicity as a weighted average of the diagonal elements of the total
flow matrix.

Trophic analysis is traditionally based on the distance of a given compart-
ment from the primary inputs (Levine, 1980). It might be inferred that the
trophic distance between two compartments is measured by the difference in
their respective trophic measures, but the trophic metric does not behave in
such a way. One may use total flow to assess the bilateral trophic relation-
ship between any two compartments.

Total flows are also of considerable help in defining measures of complex-
ity (Szyrmer, 1986) and identifying optimal network reallocations (in pre-
paration). ‘

4. AN EXAMPLE OF TOTAL FLOWS

A convenient example with which to demonstrate the calculation of total
flows is the Cone Spring ecosystem (Tilly, 1968) as adapted for IOA by
Williams and Crouthamel (1972). Cone Spring is a cold, shallow spring-fed
brook located near Conesville, Iowa. It is small in areal extent (141 m?) with
well-defined boundaries, relatively homogeneous spatial structure, nearly
constant temperature and a stable physical and chemical environment.

Tilly argued that the analysis of populations, tedious and cumbersome as
it is, would have been too detailed; whereas limiting the study to a trophic
chain would have deleted some important information. Therefore, the
ecosystem is aggregated into five ‘food-web segments’ (see Fig. 1) as follows:

(1) Autotrophic plants—consisting mainly of three species which interact
while sharing the biotope in space and time.

(1) Detritus—nonliving organic material which forms the base of the
foodweb in Cone Spring. It serves as substrate for the bacteria and food for
the detritus feeders.

(3) Bacteria—playing the dual role of primary consumers and decom-
posers.

(4) Detritus feeders—mainly invertebrates which consume the detritus-
bacteria amalgam.

(5) Carnivores—The highest trophic compartment in this system preying
upon the detritus feeders. Through excretion and death they contribute to
the detrital compartment.
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Fig. 1. Energy flow in Cone Spring ecosystem, measured in kcal m~? year” . 1= autotrophs,
2 = detritus, 3 = bacteria, 4 = detritus feeders, 5 = carnivores. Ground symbols represent
losses to respiration.

The estimated flows (in kcal m 2 year ') among the compartments com-
prise the elements of the Z matrix and appear in Table 1 along with the
vector of final outputs, Y (respiration and export) and the vector of
exogenous inputs, W. These are the fundamental data from which all other
guantities may be calculated—namely X (from (1), 4 from (2), D from (5)
ZS from (8), and finally ZT from (11).

The gross flows, ZS, are displayed in Table 2. Of course, each element in
this matrix is equal to or greater than the corresponding direct flow. Hence,
80% of the overall flow from detritus to detritus feeders (2—4) is direct,

whereas only 16% of the gross flow from bacteria to carnivores occurs in a

single step, and none of the considerable flow from plants to detritus feeders
is an immediate transfer.

The matrix of total flows, ZT, contains elements which are intermediate
to the direct flows-and the gross flows (see Table 3). That these values of Z7T
lie closer to Z€ than to Z is a reflection of the relatively small degree of
cycling in the Cone Spring network (some 16% of total throughput appears
as cycling).

The total flows calculated using the input approach, Z 7, are shown in
Table 4. As mentioned earlier, the difference between ZT and Z7 is

1 kcalm ™ ? year ' = 4.1868 kIm 2 year ! =133x107 % Jm 25 ' =133% 1078 Wm~2.
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TABLE 1

Cone Spring ecosystem: matrix of direct flows, Z, the final output vector, Y, and the vector
of exogenous inputs, W (kcalm ™2 year 1)

Autotrophic ~ Detritus  Bacteria  Detritus  Carnivores  Final
plants (#) 3) Feeders  (5) output
@ ©
Autotrophic
plants
o 0 8881 0 0 0 2303
Detritus
) 0 0 5205 2309 0. 3969
Bacteria
3 0 1600 0 75 0 3530
Detritus
feeders
G 0 200 0 0 370 1814
Carnivores
&) 0 167 0 0 0 203
Exogenous
inputs 11184 635 0 0 0

attributable to the presence of cycling in the system (ZT and Z"7 being
identical in the absence of cycling). For example, from the output perspec-
tive 8881 units of flow issuing from the plants eventually (directly in this

TABLE 2

Matrix of gross flows, Z9 (kcalm™2 year™?)

Autotrophic Detritus Bacteria Detritus Carnivores
plants 2) 3) feeders )
@ C))
Autotrophic
plants :
@O 0 10717.08 4857.98 2225.06 345.33
Detritus
2) 0 2373.53 6280.87 2876.77 446.48
Bacteria
3) 0 1945.22 881.73 478.71 74.30
Detritus
feeders
4 0 443.24 200.91 92.02 484.18
Carnivores
&) 0 200.95 91.09 41.72 6.48

N
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TABLE 3
Matrix of total flows, Z7 (kcalm ™ ? year™?)
Autotrophic Detritus Bacteria Detritus Carnivores
plants 2) 3 feeders &)
M ) .
‘Autotrophic
plants
ey 0 8881.00 4154.16 2142.30 339.35
Detritus
)] 0 1967.00 5371.27 2769.96 438.78
Bacteria
3 0 1611.35 753.81 460.96 73.02
Detritus
feeders
ey, 0 367.00 171.67 88.53 377.64
Carnivores
) 0 167.00 78.12 40.28 6.38

case) reach the detritus. The perspective from the receiver (input) side is
different in that, of all the inputs to the detritus, 10717 units can be traced
back to the plants. The difference arises from the cycling which passes
through the other three compartments.

The total flow matrix explicitly shows the ultimate exchanges between any
two components. When normalized by the appropriate total throughputs the

TABLE 4

Matrix of total flows from input perspective, Z r (kcalm 2 year 1)
Autotrophic Detritus Bacteria Detritus Carnivores
plants 2) 3 feeders™ %)
D 4
Autotrophic
plants
(6] 0 10716.74 4857.67 222492 345.31
Detritus
2 0 1967.00 5205.00 2384.00 370.00
Bacteria .
3) 0 1663.02 753.81 409.40 63.54
Detritus
feeders
@ 0 426.42 193.28 88.53 370.00
Carnivores

%) -0 198.04 89.77 41.12 6.38
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TABLE 5

Total intermediate input coefficients, 47

Autotrophic Detritus Bacteria Detritus Carnivores
plants 2 3 feeders &)
ey 4)
Autotrophic
plants :
(€)) 0 0.933 0.933 0.933 0.933
Detritus
(@) 0 0.171 1.000 1.000 1.000
Bacteria
3 0 0.145 0.145 0.172 0.172
Detritus
feeders
4 0 0.037 0.037 0.037 1.000
Carnivores
®)] 0 0.017 0.017 0.017 0.017

resulting fractions measure the bilateral interdependencies. For example,
when the columns of the total flow matrix, Z7', are normalized by the total
throughputs,

ZT =A% | (12)
the i-jth component of the resulting matrix of total intermediate inputs, A7,

represents the fraction of the jth input that comes directly or indirectly from
i. In similar manner, when the rows of Z7 are normalized,

ZT = XBT (13)

the i —jth entry in the total intermediate output matrix, BT, represents the
fraction of the ith output that eventually reaches j. The values of AT and
BT for Cone Spring are shown in Tables 5 and 6, respectively.

Table 4 shows that, for example, the detritus (2) and the detritus feeders
(4) are mutually interdependent. However, the relationship is rather skewed.
The detritus feeders are entirely dependent upon the detritus (al, = 1.0),
whereas less than 4% of the detritus originates with the detritus feeders.
Donorship between these two species is more nearly equitable, as can be
seen from Table 5. Some 24% of the detritus is ultimately processed by the
detritus feeders, and about 15% of the detritus feeder production winds up
in the detrital pool.

In complementary fashion (1-a];) and (1 — b];) provide the degrees to
which 7 is independent of j with respect to inputs and outputs, respectively.
For example, the carnivores possess no independence from the detritus or
the detritus feeders.
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TABLE 6 , , o
Total intermediate output coéfﬁcienis,i BT ,
. Autotrophic Detritus Bacteria Detritus . Carnivores
plants e 3) feeders (5)
(€3] ‘ (4) =
Autotrophic
plants ‘ ,
o) 0 : 0.794 0.371 0.192 0.030
Detritus ‘ ‘
@ 0 0171 0.468 0.241 0.038
Bacteria
3) 0 0.310 0.145 0.089 0.014
Detritus '
feeders
“ 0 0.154 0.072 0.037 0.158
Carnivores
®)] 0 0.451 0.211 0.109 0.017

Shifting towards a more system-wide perspective, the question naturally
arises as to how to rank the contributions of each compartment towards the
total activity of the system, i.e., which are the key compartments? In 10A,
where exogenous supplies and demands captivate the attention of most
economists, the marginal sums of the Leontief and Augustinovics inverses
provide ready yardsticks of importance. However, in keeping with the theme
emphasized here that intramural activity is the natural focus of ecology, the
marginal sums of ZT and Z7" become more appropriate indicators of the
size of the role each compartment plays in the total activity of the commun-
ity. It should also be noted that the method by which these matrices could
be calculated is reminiscent of a perturbation or sensitivity analysis, thereby
making the total flows even more pertinent to the identification of key
elements.

In particular, the column sums of ZT can be used to measure the
contributions of the outputs of the various nodes to the total system activity.
Summing the columns of ZT in Table 3, one finds that the largest total
intermediate output derives from the detritus (12994 kcal m~? year !, or
about 42% of the total output). This dominance of the detritus accords with
the ecologist’s description of Cone Spring as having a “detrital-based
ecosystem”. It contrasts, however, with the results one would obtain by
relying on the corresponding Leontief analysis, which identifies bacteria as
ultimately contributing the greatest amount to total output (39%, as com-
pared to 31% from the detritus). This switch in designation of key compart-
ment is due entirely to the change in perspective afforded by total flow
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TABLE 7

Ratios of total production: total consumption, 7,

Autotrophic Detritus Bacteria Detritus Carnivores
plants (#)) ?3) feeders )
¢y 4
Autotrophic
plants
§)) 0 0 0 0 0
Detritus
@ 0 1.00 3.23 6.50 222
Bacteria
3 0 0.31 1.00 2.39 0.81
Detritus
feeders
C)) 0 0.15 0.42 1.00 921
Carnivores
®) 0 045 1.23 0.11 1.00

analysis. The Leontief calculus gauges the importance of the elements in
terms of their contributions to the final outputs (at which the bacteria
visibly excel), whereas the analysis introduced here evaluates the influence of
each compartment to the overall activity of the community (which is clearly
characterized by the cycling of detritus).

Knowing the entire picture of flow sources and destinations within a
system allows one to make definitive statements about trophic relationships
within the flow network. The trophic relationship of i to j depends on the
ratio of the amount of flow leaving / which flows to j to the amount leaving
J that ultimately serves as input to i. Quantitatively, an index 7, may be
defined as,

T =2/ 7 (14)

The values of 7,; for Cone Spring are shown in Table 7. As can be seen
7., = 1/7,, which indicates mutual reciprocity of the trophic relationship. (If
i 1s a net supplier for j, then j must be a net consumer of i.)

Several interesting relationships appear from Table 7. When Levine’s
trophic positions are calculated for the elements of the Cone Spring network
the values for bacteria, detritivores and carnivores are 3.37, 3.40 and 4.40,
respectively. Whereas bacteria and detritivores are seen to be nearly equidis- -
tant from the primary inputs, it is clear from the ,; that the detritivores
dominate the bilateral exchange. What is perhaps more suprising is that the
bacteria dominate their trophic exchanges with the carnivores (7, > 7;5). In
fact, one observes a cyclical pattern of dominance, bacteria > carnivores >
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detritivores > bacteria. Ulanowicz (1983) has suggested that closed cycles of
direct flows are indicative of cybernetic feedback. It is interesting to note
that the cycle just enumerated does not exist at the level of direct flows. If,
as Higashi and Patten (1986) argue, the indirect flows can at times dominate
the direct interactions, then the cycles of trophic dominance obtained from
total flows may be more appropriate indicators of cybernetic behavior.

In any event, the total amount of flow being cycled within the system has
been proposed as an index of cybernetic feedback (Odum, 1969). Finn
(1976) showed how one may use the Leontief inverse to calculate the
fraction of total throughput which occurs as cycled flow. The cycling flows
are related in nonlinear fashion to the diagonals of the Leontief inverse. In
total flow analysis this relationship becomes an identity, that is, the amount
of flow being recycled is precisely the sum of the diagonals of the ZT
matrix! To obtain the Finn cycling index one simply normalizes this sum by
the total system throughput.

5. SUMMARY AND CONCLUSIONS

Input—output analysis has been fashioned by economists to answer ques-
tions about indrect effects of initial supplies or final demands upon sectors
of the economy. Until now the mathematical framework of IOA has been
borrowed intact by ecologists to study indirect effect in ecosystems. How-
ever, the kinds of questions ecologists ask about living communities bear
more upon the intramural relationships which species or other ecosystem
components have one another. Using the formulations of Leontief and

~ Augustinovics to treat indirect flows between components is mathematically

(and ofttimes conceptually) cumbersome.
The actual amounts of direct and indirect flows between compartments

‘may be portrayed explicitly as the components of a matrix of total flows.

Any question pertaining to the bilateral indirect relationship between two
components is best addressed using this matrix. Key ecosystem elements are
more naturally defined by the total flows. Furthermore, cybernetic relation-
ships (e.g., cycles of flows and flow dominance involving more than two
compartments) are more directly demonstrated by the structure of the total
flow matrix.
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