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ABSTRACT

The question of whether or not the diversity of interactions among the
components of an ecosystem contributes to its stability has been a major issue
in ecology for over three decades. Early discussions on the subject employed
information theory to quantify the complexity of networks of energy and/or
material exchanges. That thrust failed to produce unequivocal results, and
information theory was eventually abandoned as attention turned toward a
dynamical theory of random mactrices, which demonstrated that an excessive
number of interactions per system compartment actually leads to instability.
However, a revised application of information theory to gquantified ecological
networks reveals that the complexity of interactions can function either to
stabilize or to destabilize the system, depending upon the nature of the
perturbation acting upon the system. Furthermore, a homology to the
May-Wigner stability criterion cast in terms of information variables predicts
a value for the greatest upper bound on the complexity of natural networks of
exchanges. The range of complexity observed in 33 ecosystems resembles a
"window of vitality" sandwiched between a domain of intemal instability on
the high side and a region of vulnerability to extemal disruptions below.
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1. INTRODUCTION

More than any other single issue, the one that has dominaged the field
of theoretical ecology over the past three decades has been the search for a
relationship between the level of an ecosystem's "connectedness” and its
conjugate degree of "stability". Hutchinson, and later Odum (1953), suggested
that parallel pathways of interaction connecting any two elements of an
ecosystem imparted stability to communication between those elements. That
is, if a chance external perturbation were to disturb one or more of the parallel
pathways, any remaining, less-impacted routes could potentially grow to
compensate for the disrupted flows. It is significant to note that the first
prominent effort to quantify the degree of parallelism in ecosystem flow
networks was made by MacArthur (1955), who proposed that the
Shannon-Wiener index of uncertainty be used for this purpose.

Data on the magnitudes of ecological interactions and exchanges have
always been notoriously difficult to collect, whereas - information on
population levels is often relatively more accessible. Therefore, it made sense
in the years immediately following MacArthur's paper to experiment with
applying the Shannon-Wiener measure to population densities instead of
interspecies flows in an attempt to see if some connection could be drawn
between the diversity of population levels and the stabilities of the
communities those populations comprised. Unfortunately, this alluring
diversion occupied much of ecology for over a decade without yielding more
than equivocal results (e. g., Woodwell and Smith 1969).

R Research on the issue of ecosystem stability took a decidedly sharp
tum in the early seventies when May (1972, 1973) entertained the
counterproposition that increased complexity decreased the likelihood that a
linear system would remain stable. (An arbitrary system can be approximated
as a linear one in the neighborhood of any of its stationary states.) May based
his arguments on a significant set of Monte-Carlo experiments conducted on
randomly-assembled matrices by Gardner and Ashby (1970). In brief, Gardner
and Ashby studied the stability of linear dynamical systems as the
connectance of such systems is increased. The behavior of a linear system is
determined by the eigenvalues of its matrix of interaction coefficients, A.
Gardner and Ashby assumed that each system element was stable in isolation
(i.e., the diagonal entries in the matrix A were all assumed to be negative),
and in each trial the magnitudes of a specific fraction of the interaction terms
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(off-diagonal elements) were chosen at random from the interval (-1, +1). If
the largest eigenvalue of such a randomly assembled matrix exceeded zero,
the system was assumed to succumb to a "self-generating catastrophe".

Gardner and Ashby found that for systems having only a few
elements, the probability of its being stable declined with increasing
connectance (the fraction of non-zero interaction terms.) More interesting still
was their finding that. for systems of larger dimension (say n>10), there
appeared a distinct threshold in the connectance below which the randomly
generated systems were almost always stable and above which they invariably
fell apart. May (1972) described this breakpoint using Wigner's (1969)
"semi-circle law" in terms of the number of elements, n, their connectance, C.
and the average interaction strength, o . He concluded that whenever

a ( (nC) 2, (h

the system in question was almost certainly stable and otherwise had virtually
zero probability of stability.

The immediate effect of May's counter demonstration was to cool the
ardor of ecologists for any quick and crisp judgment on the proposition
"diversity begets stability”. A secondary consequence (unintended by May)
was to cause many ecologists to forswear any further use of information
theory in ecosystems analysis. The initiative which was begun so promisingly
by MacArthur ended abruptly and ignominiously in the light of May's
demonstrations. In the minds of a majority of ecologists information theory
had become tainted by what appeared to have been the enormous wasted
efforts of the sixties.

On the positive side, May's work spawned numerous daughter articles
on the connectance-stability issue (e.g., DeAngelis 1975, Gilpin 1975,
Rejmanek and Stary 1979, Yodzis 1981, Hogg et al. 1989) and, in
conjunction with some early topological observations by Cohen (1978), gave
rise to an entire subdiscipline of theoretical ecology that eventually came to be
known as "foodweb theory".

It is difficult to do justice to foodweb theory in a single paragraph,
suffice it here to characterize the effort as the examination of qualitative data
on predator-prey interactions in a wide variety of communities (Cohen 1977,
Briand 1983, Briand and Cohen 1987) for underlying regularities. The central
variables in most discussions are the connectance of the web, C, the number
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of elements in the web, n, the length of the trophic chain and the ratio of
predators to prey. Some of the issues debated have included: "What, if any,

relationship exists between foodweb connectance and number of elements?"

(Pimm 1982). "What determines the maximum length of a food clfain within a
foodweb?" (Pimm and Lawton 1977). "What lies behind the apparent
constancy in the average number of predators per species of prey resource?"
(Briand and Cohen, 1984).

Perhaps mindful of their earlier disappointment with how the
diversity-stability controversy played out, many eccologists today remain
skeptical of the utility of foodweb theory, asking whether the whole effort
might not resemble the construction of "a ladder for picking strawberries”
(Strong 1988). Perhaps most poignantly, Paine (1988) criticizes foodweb
theory for relying on data that has been subjected to considerable "editing"
(intentional or otherwise).

The strongest objection Paine raises is that qualitative data on
foodwebs are always incomplete. That is, it is never possible to study an
ecosystem with so fine a resolution that all the species and all their
interactions can be enumerated. One must always aggregate species to some
degree (usually more so at lower trophic levels) and stop counting interactions
below some nebulous threshold. Both of these approximations can strongly
affect the perceived values of n and C used in all the foodweb narratives.

Actually, Paine's concern implicitly is directed against the qualitative
nature of the assembled foodwebs, i.e., cither a connection exists or it does
not. Once an interaction is assumed to be present, its effect upon the
connectance is the same regardiess of whether it represents a dominant

.interchange or a minute one. (One is reminded of a Ukrainian fable: The
recipe for meatloaf called for equal parts of rabbit and horse, so the peasant
added one rabbit and one horse!) Clearly, some way to quantify interactions
and to combine their magnitudes into a surrogate for connectance is required.
Furthermore, the resulting connectance should be relatively insensitive to the
magnitude of the observational threshold. Also, once interactions have been
weighted, it may become possible to estimate the magnitude of the average
interaction strength, o, which Paine says is unknown in almost all foodweb
endeavors to date and which he fears may remain "unknowable".

Finally, Paine is uneasy about the amount of attention given to the
network connectance. sensitive as that measure is to the number of
components, n, in the chosen depiction of the system. Pimm (1982) and
Rejmanek and Stary (1979) both remark upon the hyperbolic relationship
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between C and n and on how the product nC appears to exhibit an upper
bound. Pimm says that, on the average, the availabie data seem to satisfy the
relationship nC = 3.1, whereas Rejmanek and Stary cite the data of
McNaughton (1978) and others to place the range on observed values of nC to
be between 2 and 6. Like Paine, they lament that they were "unable to
estimate the o values.”

I wish to argue in the remainder of this essay that: (1) The
abandonment by most ecologists of information theory because of its
ostensible failure to resolve the diversity-stability issue was both premature
and ill-considered. (2) When properly applied, information theory can provide
an altemative set of homologous variables to use in foodweb theory that
obviate Paine's well-formulated criticisms. (3) Furthermore, when the
May-Wigner criterion is recast in terms of the homologous properties, a
distinct greatest upper bound on the effective number of connections per node
results.

2. INFORMATION THEORY RECONSIDERED

As remarked earlier, MacArthur's intention to use information theory
to quantify the degree of parallelism in interaction pathways was soon
forgotten in the rush to measure the diversity of populations. Also, it is no
affront to MacArthur's keen intuition to note that Shannon's (1948) version of
information theory had only recently appeared in relatively inchoate form
when the former attempted to apply it to ecosystem networks. It is not
apparent to me whether or not MacArthur was ever aware of later refinements
in information theory such as the "average mutual information" or the
"conditional uncertainty"; or, if he were, that he ever tried to amend his
treatment of compensatory pathways to include these new concepts.

Fully two decades were to elapse before anyone seriously
reconsidered MacArthur's treatment of flow diversity. Mulholland (1975, see
also Rutledge et al. 1976) reasoned that the diversity (Shannon-Wiener
measure of average uncertainty) of the flows was not specific enough a
measure to quantify the extent to which parallel pathways are present in a
network. Some of the overall diversity is constrained by the obligate coupling
of the nodes, while the remainder represents the latitude for "choice" among
alternative pathways out of or into a typical node.
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To become more concrete and quantitative it is useful to denote as Tij
the magnitude of the exchange from species i to species j. The total amount
emanating from i is determined by summing the outputs from i over all
possible destinations j and is designated by T;. One could & easily have
added the inputs to j from all possible sources i to arrive at the total input to j,
or Tj'. (At steady-state T;=T;j' for all i, but the analysis that follows does not
require such an assumption.) Finally, one can sum either all the
compartmental outputs or all of their inputs to calculate a unique measure of
total exchange transpiring in the system. This index is called the total system
throughput and is denoted simply by T.

Muiholland astutely observed that one could employ various quotients
of these flow measures as likelihood estimators for the joint and conditional
transfer probabilities. For example, of all the medium exchanged during a unit
of time, the joint probability that a particular quantum both leaves i and enters
j can be estimated by the quotient T;;/T. Similarly, the conditional probability
that a particular quantum enters j, given that it already left i, is estimated by
the quotient Tij/I'i, and the conditional probability that a quantum known to
be entering j came from i is approximated by Tii/Tj.

Using such probability estimators one can approximate all the
information variables pertaining to a particular weighted network. Ulanowicz
and Norden (1990) have argued that the best measure of the total flow
diversity is the joint uncertainty!, H, about both the origins and destinations
of all flows calculated as

123 (33 @

A particular fraction of this diversity derives from structural constraints and is
quantified by A, the average mutual information ,

o2 (T T.T
A = i il 3)
A2 2 [T)log[x Tj']

=1 =l

! Shannon gave the name "entropy” to his measure of uncertainty, and most texts on
information theory persist in using this term. However, such usage causes unwarranted
confusion with the thermodynamic state variable of the same name and should be studiously
avoided.
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The remainder represents the amount of “choice" (conditional uncertainty),
pertaining to both the inputs and the outputs of an average node in the
network. Subtracting (3) from (2) and regrouping terms yields

__n n _5_] T‘,jz (4)
v=-2 2 [T l°g(1 TJ

=l =l

Dividing @ into two terms reveals more about its mathematical

meaning;
ot £ (I

=1 =1 i

n n T T
_ 'l i Cy
1=1 § [ TJ log [T'] '

3

The argument of the logarithm in the first term of (4') is the fraction of the
total output from i that flows to j. The logarithm is weighted by the fraction of
total exchange activity that is comprised by T;;. Summing over all
combinations of i and |, it is seen that the first term in (4') is the logarithmic
mean output fraction. Similarly, the second term is the logarithmic mean input
fraction. Because each flow Tij appears twice in (4'), the mean fraction that an
arbitrary flow serves either as input or output is /2.

Focusing upon ®/2 as a measure of "choice" or degrees of freedom, it
should be recalled from information theory that the number of pathways
through a decision tree is an exponential function of the number of branch
points or “"decisions" that generate the tree. Accordingly, the mean, or
effective number of flows, m, impinging upon or emanating from a typical
node in the network should be:

e

m=b?, (5)

where b is the base to which the logarithms are referred (usually 2, € or 10).
To show that equations (4) and (5) yield values of m that appeal to the

intuition, the reader should refer to the hypothetical network shown in Figure

la. There each node has exactly two inputs and two outputs, all of equal
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magnitude. The reader should substitute the uniform values for the Tij into (4)
and (5) to confirm that m = 2 for this particular case.

Mulholland's measures pertain only to closed networks. leata and
Ulanowicz (1984) show how the Mulholland indices can be extended to open
systems as well. They define three virtual compartments to provide sources
and sinks for exogenous transfers. For example, the node 0 (zero) denotes the
source of an external input, while n+I and n+2 refer to the sinks that receive
exports of useful and dissipated medium, respectively. (The distinction
between useful and dissipated exports is not absolutely essential to this
analysis.) Thus, Toj represents the amount of medium flowing into j from
outside the system, whereas Tj 47 is the amount of medium dissipated by i
per unit time. Simply by extending all the summations in equations (2}, (3},
and (4) to run from 0 to n+2, one thereby calculates the values of H, A, and
® as they apply to open systems.

“There is a minor complication in applying equations (4) and (5) to open
systems to calculate the effective connectance per node, m, in that the
resulting value will usually be inflated by what often is a large number of
flows efferent to node O and afferent to nodes n+1 and n+2”. As these nodes
are purely hypothetical, it is best not to include their respective output and
input fractions in the calculation of m. An amended conditional uncertainty
that obviates such inflation of m will be be denoted by @' and calculated as

n n T TZ__
P = - _i i
53 (32

-zi z TT} log[T—fj} | ©)
1= = ]
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The hypothetical network in Fig. b has exactly two intemal flows and one
-exogenous flow (all equal) incident to each node. Substitution of the flow
values first into (6) and then into (5) yields m=3, as expected.

2. EFFECTIVE CONNECTANCE PER NODE

I now wish to compare the variables used in foodweb analysis with
those encountered in flow analysis. It should be noted here that flow analysis
is limited to considering only palpable exchanges. In dynamical foodweb
theory more general interactions are allowed, such as spatial interference,
ethological communication, and a host of other processes that are difficult to
quantify. Those trafficking in foodweb analysis are usually well aware that
they are dealing with only a necessary subset of all possible interactions, but
they argue that through the myriad of feedback processes at work in the
system, the effects of the nonpalpable interactions are made implicit in the
observed flow magnitudes that they treat. Furthermore, it should be noted that
the input and output quotients are not unrelated to a dynamical analysis of the
system. If one writes the dynamical balance equations for the medium under
scrutiny, the input and output quotients (i.e., T;;/T j' or Tijfl' ;> respectively)
become the (positive and negative) coupling coefficients in a set of first-order
differential equations describing the time rate of change in each pool of
medium as normalized by the throughput of that compartment.

In real, weighted flow networks the exchanges are virtually never all
equal in magnitude, as in Figure 1, so that the effective connectance per node,
m, will almost never take on an integer value.

g
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Fig. | - Hypothetical uniform flows among four components (a) of a closed system (b) of an
open system.

s
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But weightings serve to impart more meaning to m than is possessed by any
connectance calculated from qualitative linkages. For exampled‘,900 units of
output from compartment i are configured two ways in Figure 2.

300 896
. 300 . 3
L ——— L o
300 1
(a) (b)

Fig. 2 - Three sample outputs from arbitrary compartment i (a) equi-partitioned, (b) heavily
skewed towards top flow.

In Fig. 2a medium exits i as three equal flows. In Figure 2b almost all
medium egresses along the first channel, and only minute amounts leave via
the remaining two routes. In a qualitative sense three outputs exit node i in
each case. However, when one reckons the log mean number of outputs using
equations (4) and (5), one arrives at m=3 for configuration 2a, but m=1.0315
for the one in Fig. 2b. The latter value more accurately reflects the fact that
output in the second use is dominated by a single output. Hence, m is seen to
represent the effective connectance per node. ,

- In the foodweb literature the connectance, C, can be calculated in one
of several ways, but all methods of reckoning involve dividing the number of
observed interactions by a quantity that is proportional to the square of the
number of nodes, n. Thus, the product nC represents an average number of
flows per node, or an average connectance per node. The quantity m likewise
depicts a connectance per node, but one wherein the contribution of each flow
1s weighted according to its relative magnitude.

I wish to suggest that the effective connectance per node, m, is more
useful than the product nC for evaluating the overall status of ecosystem
interactions. In using m one avoids the pitfalls that Paine cites. Of course;
data on weighted interactions in ecosystems will still remain incomplete--it is
inevitable that some small interactions will remain beyond detection by the
observer (see also Cohen and Newman 1988). However, by virtue of the small
weightings that would be assigned to these neglected flows and/or nodes
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(species), the value of m calculated in their absence will differ minimally
from what would result by their inclusion.

As for the concem that connectance, C, is a strong function of n, it
already has been noted by Rejmanek and Stary (1979) and Pimm (1982) how
the product nC (the connectance per node) varies much less than does C
alone. It should be obvious from the averaging scheme used to calculate @
that m will be almost independent of the number of nodes, n, and indeed
evidence will be presented below showing that m is even less sensitive to
changes in n than is the product nC.

Most important, however, is the fact that information on the mean
level of interaction between components is implicit in the calculated value of
m. If one can devise a way to make that interaction strength explicit, then
some criterion for the stability of flow configurations might be ventured.
Towards this goal, it is useful to define a topological connectance per node.
m*, as the value that m would take on if all the non-zero flows in the network
were assumed equal in magnitude (as is implicitly done when one works with
~ qualitative data.) To calculate m* one simply sets all Tij in (4) or<{6) to the
same value, call it T* and proceeds to calculate a value @* for the
conditional uncertainty. This value of @* can then be substituted into (5) to
obtain m*. (In the examples in Figure | m*=m for both cases. As soon as any
two values of Tij become unequal, then m*>m.)

A mean level of interaction. a, now can be defined as that constant
value which, when it multiplies each input fraction (T*/Tj') or relative output
(T*/T;) in the formula for ®*, yields the identical value that one would
obtain using the actual weighted data. That is,

n n aT* aZT*Z
= . Q)]
o=-$ 5 () o[ 7]

or,

] n T* T*2 '
®=-2aloga-ay (-—j log( 'J' (7
T TT,

=l =)
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But the double summation in (7') is recognized to be CD*,“when‘ce (7"
becomes v

® =a (O *-2loga). (7"

For open systems one would employ eqn. (6) instead of (4) to calculate D*,
but the final result (7") would still obtain. Knowing the flow magnitudes one
can calculate @ using either (4) or (6). After setting each flow in the network
to the same arbitrary value, say 1, one then employs the same formula to
calculate @ *. Thereafter, the mean interaction strength, a, remains the only
unknown in the transcendental equation (7"). Any one of a number of iterative
techniques can be used to solve (7") for a.

It will prove useful to recast (7") in terms of connectances per node,
m* and m. Equation (3) may be used for this purpose and yields:

log m = a(log m* — log a}. ®)

For example, if Figure 2b represents an observed situation (m=1.0315), and
Figure 2a its qualitative counterpart (m*=3), then a works out to be
approximately 0.00482. This value is central (in a logarithmic sense) to the
three output fractions in Figure 2b (0.9956, 0.0033 and 0.001 1. respectively).

-

4. RECASTING THE MAY-WIGNER CRITERION

I now wish to explore whether it might prove useful to recapitulate
the May-Wigner stability analysis in terms of the variables just defined. Two
homologous pairings have been noted: Although May's mean square
interaction term, o , is calculated differently than the log-mean value of
exchange magnitude, a, there probably is a strong correlation between the two
quantities. Likewise, despite numerical differences between the product nC
and the topological connectance per node, m*, a significant correlation
between those cognates is to be expected.
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There is no a-priori reason why May's stability criterion (1) written in
terms of the logarithmic variables, i.e.

a () ©)

-

must hold. However. the "dimensions" of each pair of homologous variables
are identical, so that a dimensional analysis should reveal that the actual
criterion would at least be similarly scaled. Most importantly, one should bear
in mind that criterion (1) arose from empirical observations by Gardner and
Ashby. Therefore, it is quite legitimate to test how effectively (9) serves to
delimit the stability of observed networks of ecosystem exchanges. The actual
line of demarcation between stable and unstable configurations will be
described by rewriting the inequality (9) as an equality, i.e.,

1
a= (m*)—i ‘ (10)
If (10) is substituted into (8), the result is an equation for m in terms of m*,

((321;5:)2’3) , (11)

that separates a domain of probably stable combinations of m* and m from
another wherein the pairings are likely to be unstable.

logm=
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Three regions of the m*-m plane are depicted in Figure 3.
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Fig. 3 - Plot of the topological connectance per node (m*) vs. the effective connectance per
node (m) for 33 different networks of ecosystems flows, Straight line separates feasible from
infeasible combinations; curve delimits stable region.

The area above the 45-degree line represents all combinations of m* and m
that are unfeasible because of the requirement that m*>m. The domain
bounded by the curved line and the m* axis [actually the line m*=1, because
the graph has its origin at (m*,m) = (I,1)] contains all combinations of
topological connectance and effective connectance that would be stable under
criterion (9). Presumably, observed networks of ecosystem flows would
populate this domain. Any combination of m* and m falling between these
two regions identifies a class of flow networks that are feasible, but unlikely
to be stable.

To see where observed or estimated ecosystem networks stand on
Figure 3, I have collected a set of 33 examples of weighted webs that have
been estimated by at least 17 different investigators for a wide variety of
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ecosystems. The number of compartments, n, in the flow webs ranges from 4
to 36. [ have made no effort to assess the relative accuracies of the reported
flows, either within a given ecosystem representation or among the numerous
authors--the quality of the data is almost certainly uneven. Despite such
vanability, when the values of m* and m were calculated for each of the
networks, they plotted without exception into the stable region of the m*-m
plane, as indicated by the dots in Figure 3. Of course, 33 points is a small
number of observations upon which to base an empirical principle, but the
fact that all the configurations fell within the hypothesized stable zone leads
one to speculate that; (1) there probably exists an information theory
counterpart to the May-Wigner stability criterion, and (2) the functional form
of that criterion is not likely to be much different from inequality (9).

5. IMPLICATIONS OF RESULTS

One cannot help but notice in Figure 3 the relative thinness of the
zone of stability. None of the available networks possessed an unusually high
value of topological connectance per node, m*, but equation (11) implies that
even had one been observed, it's effective connectance per node would have
remained low. In fact, it is easy to demonstrate using (11) that the bound
curve on m possesses a single maximum of m=e" (about 3.015) when m*=¢
(around 7.389). Thus. a greatest upper bound on the effective connectivity of
natural exchange networks appears to exist. Criterion (9) says that naturally
occurring flow networks cannot grow arbitrarily complex. Whenever the value
of the effective connectivity per node approaches 3, it seems likely the system
will succumb to a self-generating catastrophe.

An absolute limit to effective ecosystem connectance would support
and even fortify the earlier remarks by Margalef (1968) and May (1972) to the
effect that internal stability considerations impose a hierarchy upon the suite
of interactions possible within a natural system. On the average, a component
of a system can interact strongly with a very few other compartments and very
weakly with many others, but situations where a component interacts evenly
(either weakly or strongly) with many other taxa are likely to be rare (but not
prohibited, as long as they are stabilized by other parts of the system.)

There are other factors that mitigate the complexity of networks of
exchanges. I have argued elsewhere that autocatalysis (Ulanowicz 1986) and
competition (Ulanowicz, 1989) both serve to increase the degree of
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arficulation, coherence and constraint present in a network. That is, in the
- absence of major perturbations there is a natural tendency for the average
mutual information of a network, as defined in eqn. (3), to increase at the
expense of the conditional uncertainty (4). In Figure 3, this tendency works as
if to move the points nearer to the m* axis. However, the approach of a
_system to m=1 also signifies that it is becoming too constrained, too brittle
(Holling 1986) and thus vulnerable to catastrophe initiated by chance
perturbations originating outside the system. '

After many years, a coherent and self-consistent picture of the
relationship between stability and complexity in ecosystems is beginning to
emerge: Natural stochastic processes (immigrations, mutations, etc.) cause the
system to accrue even more variety and complexity. However, as the system
approaches the limits discussed here, the likelihood increases that the system
will fall apart due to endogenous perturbations. (The magnitude of such
catastrophe need not radically alter the system's identity. It may involve the
extirpation of only one or a few minor taxa.) Against this tendency towards
ever more complex systems operate the order-building drives, such as
autocatalysis or competition, that act to increase system efficiency and
streamline the topology of its constituent interactions. But as the system
reaches low values of effective connectance (i.e., as m approaches 1), it begins
to lose those parallel pathways that, according to Hutchinson and Odum,
could potentially buffer it against extemal perturbations. Hence, it becomes
evermore probable that system structure will change catastrophically in
response to a novel exogenous perturbation.

It appears. then, that dynamical structures persist by populating a
"window of viability"—the middle ground set between susceptibility to
disordering agents from within on the one hand and unexpected impacts from
without on the other. Endurance of dynamical form seem to require something
resembling a dialectic —to persist a system must possess adequate portions of
two mutually exclusive properties. The data presented in Figure 3 are too
sparse and too unreliable to demonstrate unequivocally such a tradeoff.
however one does discern in them a tendency for the estimated systems to
group towards the middle of of the layer defined by the stability envelope and
the m*-axis.

The pieces in the puzzle that portray the relationship between
diversity and stability are beginning to fit together. It is not a simple picture
that is emerging, but there was never any reason to expect that an adequate
narration of complexity would itself be simple! What matters is that the
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description remain self-consistent, and consistency is often a consequence of
how the subject is viewed. But the quantitative relationship between object
and observer is the realm of information theory—the closest one can come to
a mathematical formulation of epistemology. Information theory is a tool that
has been eschewed now for too long by many ecologists, largely because of
historical accident. If there is to be any hope of drawing a unified picture of
the ecological world, this most unfortunate bias must be put aside. I commend
information theory to ecologists as fundamental to their endeavors.
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