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Weighted flow networks are structures that arise naturally when analyzing complex systems. The countable
properties of unweighted networks are not easily generalized to weighted networks. One candidate measure of
complexity is the number of roles, or specialized functions in a network. It is easy to identify the number of roles
in a linear or cyclic unweighted network. There is only one logically consistent way to generalize the measures
of nodes, flows, connectivity, and roles into weighted networks, and these generalizations are equivalent to
indices derived from information theory and used by ecologists since the late seventies. Data from ecosystem
networks suggests that ecosystems inhabit a narrow window of the parameter space defined by these measures.
© 2003 Wiley Periodicals, Inc.
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T he shift in paradigm from conventional science to sys-

tems thinking has been characterized by a shift in focus

from parts to wholes and from physical structures to

processes. Capra [1] made the bold assertion that “Systems

thinking is always process thinking.” This shift is occurring

in all fields of science, and changes in one field influence

other disciplines. For example, advances in quantum phys-

ics have convinced those in other sciences of the impor-

tance of indeterminism and randomness. At the other end

of the spectrum, ecology and the other macro-scale sciences

have developed ideas that can be applied to the so-called

hard sciences. The core of what ecologists have to offer

other sciences is the flow network approach. Rather than

limiting attention to fixed properties such as biomass, pop-

ulations, or nutrient levels, ecologists have found that a

more fecund theory can emerge from the study of changes

in these variables across divisions of space, time, species, or

other categories. A system is then described as a network of

flows between nodes. In ecology, the flows often measure

carbon transfers, but other nutrients can be measured as

well.

The applications of flow networks are numerous in fields

such as ecology [2, 3], economics [4], and of course, engi-

neering [5–7]. It should be noted that although weighted

flow networks are identical in form to weighted digraphs,

the convention in the literature is that digraph weights

represent costs or lengths, and thus larger weights on an

edge indicate lesser significance. In flow networks, larger

weights on a flow represent larger flows and thus greater

importance. The mathematical similarity of digraphs and
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networks is superficial; the bulk of the literature on

weighted digraphs is not useful in the analysis of weighted

networks. The massive literature on neural networks is not

of much help either; in spite of an awareness of the need to

address the issue of weighting [8], many scientists still use

binary on/off networks, partly because of the successes of

such networks [9].

Ecologists, however, need the weights, and accordingly,

most of the work on flow networks comes from ecology.

Ecologists have developed a set of variables, based on in-

formation theory, that quantifies the growth and develop-

ment of ecological or economic flow networks [10]; these

variables have the potential to give quantitative expression

to many of the qualitative observations by ecologists regard-

ing the development of ecosystems. This theory is difficult

to use, however, because its measures do not have direct

interpretations in countable quantities. Rather than start

with this theory, we will first look at countable properties of

unweighted flow networks, and then derive generalizations

of these measures that are equivalent to the information

theoretic measures.

UNWEIGHTED NETWORKS
An unweighted flow network is a collection of nodes and

directed flows of equal weight. One can divide the number

of flows in the network by the number of nodes to obtain

the connectivity, the average number of flows per node in

the network. (Some use “connectivity” to refer to the frac-

tion of possible flows that are realized; this measure has

dimension flows per node squared [11]) In Figure 1, the

connectivity is 1 flow per node, so on average, each node

has one flow leaving and one entering. Because the network

is symmetrical, the average connectivity is equal to the

connectivity of each node.

Let us now make a few definitions: Let F be the number
of flows. Let N be the number of nodes. Let C � F/N be the
connectivity, measured in flows/node.

Already, with just F, N, and C, we have scientifically useful
concepts. Numerous investigators in diverse fields have shown
that network connectivity relates to the stability of a dynamical
system. For example, Kauffman has related connectivity of
boolean logic networks to their stability [12, 13]. May was one
of the first to argue that the stability of a complex system is
related to the connectance of a trophic web [11]; others dis-
puted the form of the relationship, but generally agreed that
connectivity relates to stability [14, 15].

We now introduce one more measure. Let R � N/C �

N2/F � F/C2 be the number of roles in the network. A role
is, loosely speaking, a specialized function: it is a group of
nodes that takes its inputs from one source and passes them
to a single destination. The source and destination can be a
group of nodes as well. Although the dimensions of a role,
nodes squared per flow, may seem unnatural, this definition
of role corresponds well with our intuitive notion of a role
for unweighted networks with equal connectivity for each
node. Note that this definition of role is different from that
proposed by other ecologists [16].

This measure for roles cannot be developed here be-
cause, except in special cases, it only makes sense when
applied to weighted networks. To give an intuitive feel for
a role, however, we consider a few examples of un-
weighted networks in which the idea of a role makes
sense. In Figure 1, R � 4. This makes intuitive sense,
because each node is playing a unique role in the net-
work, taking its inputs from one source and passing them
on to one destination.

In Figure 2, R � 1. This also makes sense, because no
compartment is doing anything unique; each node receives
from every node, and gives to each node. The compart-
ments are indistinguishable with respect to where they re-

FIGURE 1

An unweighted cyclic network, with 4 nodes, 4 flows, a connectivity
of 1 flow per node, and 4 roles.

FIGURE 2

An unweighted network with 3 nodes, 9 flows, a connectivity of 3
flows per node, and 1 role.
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ceive or channel their flows. One can think of the nodes as
distinct agents playing the same role.

WEIGHTED NETWORKS
The extent to which unweighted networks can be used to
describe the real world is limited. In real systems, flows have
unequal size, with sometimes extraordinary differences.
Even when the flows themselves are equal in size, the im-
portance of each nodes is often not: with equal flows, the
throughput of a node with 10 inputs and outputs is greater
than that of a node with only 1 input and output. Specific
measures from food web analysis have been generalized
into weighted networks [17], but so far the number of nodes,
flows, and roles have not. In order to extend these measures
to apply to weighted networks, we must weight our mea-
sures both by the size of the flows and by the influence of
each node. We must do so in a manner consistent with the
countable properties of unweighted networks and our no-
tion of a role. We will start by looking at connectivity in
simple weighted networks; analogous derivations exist for
our other measures.

We now look at the input connectivity of node A in
Figure 3. With unweighted measures, the input connectivity
of A is identical for both networks: 2. In Figure 3(a) the flows
from C to A and from B to A are identical in size. In Figure
3(b) the flows are different; if these networks represented
physical systems, 3(b) would behave as if the input to A
from B were the sole input; the influence of C would be
negligible. If these were trophic exchanges between species
in an ecosystem, species A would depend on B for its live-
lihood. If the compartments were neurons and the weights
were strengths of the synaptic connections, the firing of A
would essentially be determined by B. Intuitively, we want
the effective connectivity of A in Figure 3(b) to be close to 1.
We can do this by weighting the connections by their mag-
nitudes.

We now introduce some notation. Let (a1�w1,a2�
w2,…,an�wn) be a weighted mean function, where the ai are
the values being considered and the wi are the respective
weights, normalized so that ¥i wi � 1. Let Tij represent the
flow from node i to node j. Let Ti• � ¥jTij be the total flow
out of node i, and T•j � ¥iTij be the total flow into node j. Let
T•• � ¥ijTij be the total sum of all flows. T•• is known as the
total system throughput (TST), and we will call Ti• and T•j,
respectively, the output and input throughputs of a node.
We have two formulae for the connectivity of a given node:
one for inflows and one for outflows:

CNode i Outflows �
1

Wj�Tij

Ti•
� Tij

Ti•
� CNode j Inflows �

1

Wi�Tij

T •j
� Tij

T •j
�

It may appear as though any mean will suffice; with any
weighted mean we will have a connectivity consistent with
the case of equal flows, and continuity with respect to the
flows. The most obvious choices are a weighted arithmetic
or geometric mean, but there are an infinitude of options.
We will use the geometric mean; below, we show that the
geometric mean is the only mean consistent with our notion
of a role.

WEIGHTED GEOMETRIC MEAN

W�a1�w1, a2�w2� � a1
w1a2

w2, Wi�ai�wi� � �
i

ai
wi

We now must address the weighting of each node in the
context of the whole system. As before, we look at a prob-
lematic network that illustrates our need for weighting.

In Figure 4, even if we had a measure that accounted for
the weights of flows into and out of a given node, we could
not simply average over all nodes, because some nodes

FIGURE 3

(a) Node A has an input connectivity of 2 flows per node; (b) If unweighted, A has an input connectivity of 2. Effectively, however, A’s input connectivity
is close to 1.
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constitute a greater portion of the TST. In Figure 4, B has
connectivity of 1, whereas the connectivity of C, D, E, and F
are higher. If we did not weight the compartments, the
connectivity of the system would be much greater than 1,
due to the 4 nodes C, D, E, and F with high connectivity. But
the system should be influenced mostly by the apparatus on
the left, as these flows constitute almost 98% of the TST.
Again we must use a weighted mean. The connectivities of
each node and the unweighted vs. weighted connectivity
measures of the entire network in Figure 4 are listed in
Table 1.

We weight the contribution to total connectivity from
each node by that node’s weight in the total system. Be-
cause each node functions both as source and destination,
there are two terms for each node. We weight a node’s
inflow connectivity as the fraction of its inflows of the TST,
and similarly for outflows. Then we have two indices de-
scribing the network, one for inflows and one for outflows.
To remain internally consistent, we combine these by the
same mean that we chose earlier. In general, we weight the
inflows and outflows equally, although if one were looking
at connectivity in the context of a specific question, one

could look exclusively at one term or use unequal weight-
ings. In weighted networks, the input and output connec-
tivity are often unequal, and when branching or condensing
structures are present, the difference can be significant:

C � �
i,j

� Tij
2

Ti•T •j
� ��1/2� ��Tij/T••�

Note the �(1/2) in the exponent from the reciprocal and
mean.

This expression is equivalent to the effective connectivity
as proposed by Ulanowicz [18]; he defines effective connec-
tivity of a flow network as e�/2, where

� � ��
i,j

Tij

T••
ln

Tij
2

Ti •T•j
.

We now return to our beginning discussion of networks and
recall that we had four variables: F for flows, N for nodes, C
� F/N for connectivity, and R � N/C for number of roles.
Without deriving them here (one can follow reasoning sim-
ilar to that above) we will state that we have

F � �
i,j

� Tij

T••
� ��Tij/T••�

which is the effective number of flows; note the negative in
the exponent. This expression approaches the actual num-
ber of flows as the flows approach equal size and

N � C � F � �
i,j

� T••
2

Ti •T •j
� �1/2� ��Tij/T••�

which is the effective number of nodes; this is a weighted
mean of the normalized throughput of each node. Again,
note the 1/2 in the exponent. We have now freed ourselves

FIGURE 4

This network illustrates the need to weight the mean over all nodes.
The two flows on the left constitute almost 98% of the TST and both
flow between nodes of low connectivity. The other nodes have higher
connectivity.

Table 1

Measures of Figure 4

Node: Input Conn: Output Conn: Weight of Node: Unweighted Mean Connectivity:

Arithmetic: 1.83
A 1.03 1.03 0.48900 Geometric: 1.66
B 1.00 1.00 0.48655

Weighted Measures:
C 3.00 3.00 0.00733
D 1.89 1.89 0.00733 Effective # of Nodes: 2.28
E 2.00 2.00 0.00489 Effective # of Flows: 2.36
F 2.00 2.00 0.00489 Effective Connectivity: 1.04
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from any direct reference to nodes while retaining a working
definition of the number of nodes; we have abstracted the
notion of a “node” to the point where it only makes sense to
talk about a node with respect to a flow, for any node
without attached flows makes no contribution to N.

At this point, one might object that this measure does
not correspond to the countable value of nodes for certain
equally weighted networks. This lack of correspondence
happens in some examples because, although the flows are
weighted equally, nodes have differing throughputs.

In Figure 5 there are only 2�2 � 2.82 effective nodes.
This happens because node A has twice the throughput of B
or C. When weighting is taken into account, the weight of A
is twice that of B or C. As a node is defined only in reference
to its adjacent flows, the nodes having greater throughputs
thus “count” for more. Reassuringly, in the case of equal

flows and equal throughputs for each node, the effective

number of nodes is equal to the countable number of

nodes.

Still, the objection that our idea of effective nodes is too

abstract and potentially flawed is a valid one. The impor-

tance of one node to a network can differ considerably from

its relative throughput. A complete theory of flow networks

must leave room for additional means of weighting the

nodes. This question will be thoroughly addressed later.

The main objection remaining is our choice of mean. It

may appear that our choice of the geometric mean is arbi-

trary. Given only the properties we have so far discussed, it

is; however, there is one more property that our measures

must satisfy. Our choice of mean is constrained by the

properties of roles; we want the number of roles to corre-

spond with our intuitive notions of a role. Notably, we

require that the number of roles in a network should remain

unchanged if we aggregate nodes that have the exact same

inflows and outflows.

The number of roles should be 2 for each network in

Figure 6. In Figure 6(a), A and B have unique roles; in Figure

6(b), A has a unique role, but B1 and B2 together fulfill one

role. Thus, although the right network has roughly 2.82

effective nodes, it has two effective roles. Note that there is

no issue of the two roles being weighted differently, as each

role has the same throughput.

To understand this situation thoroughly, quickly note all

the variables involved. T•• � 4, and Ti• and T•j are both 2 for A

and 1 for each B. Now, regardless of what mean we use, all

flows are equal, so F � 4. We can also look at the connectivity

of each node; A has connectivity 2 and each B has connectivity

1. Thus we have C � W�1�1
4
1, 1�1

4
1 , 2�1

2
� � W�1�1

2
, 2�1

2
�, which is

the unweighted mean of 1 and 2. If we can calculate C by some

other method, we will know what mean should be used. We

FIGURE 5

Even though the flows are equal in influence, the nodes are not. Node
A has more flows, and thus a greater relative throughput and greater
importance in the context of the whole network.

FIGURE 6

(a) This two-node network can be seen as a simplification of the 3-node system in 6b, in which nodes B1 and B2 have been grouped into one node, B;
(b) B1 and B2 are indistinguishable with respect to the source and destination of their flows and the distribution of flows among these sources and
destinations. Thus the B’s constitute one role, and the system only has two roles.
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know that C, R, and F are related by the formula R � F/C 2. But
we also know that R � 2.

Solving for C, we have C � �2, the geometric mean of 2
and 1. Thus, we must use the geometric mean. One can
derive expressions for F, N, and C that use other means, but
the introduction of roles constrains our options so that the
geometric mean is our only choice. We now have a unique
set of measures, and its fourth element:

R � N2 � F �
N
C

�
F

C2 � �
i,j

�TijT••

Ti •T •j
� �Tij/T••�

which is the effective number of roles.
The effective number of roles is vital to our understand-

ing of complexity, as it measures the degree to which the
system has become differentiated into distinct functions.
Note that our definition of role is process-based; it does not
correspond to a well-defined group of nodes fulfilling a role;
rather, it describes the number of different functions that
are occurring in the network. We can construct networks in
which the individual roles are well defined, but in general it
is difficult to pinpoint a specific role in a flow network
representing a natural system; while the measure is rooted
in our concrete notions of a role, it has been generalized
further. It is also interesting to note that the effective num-
ber of roles has an analog in information theory; taking the
logarithm of R yields

log R � �
i,j

Tij

T••
log

TijT••

Ti •T•j
� AMI

This is the average mutual information (AMI) contained in
the organization of flows in the network [10, 19]. This mea-
sure has been derived independently by measuring the in-
formation contained in the deviation of the observed prob-
abilities of flows from the reference state of a network of
random flows (equal, but scaled by the throughput of each
node) [10]. To think of a network from this probabilistic
perspectiveTij/T••, can be seen as an estimate of the prob-
ability that a quantum of currency would flow from i to j in
a given time period. AMI has been proposed as a measure of
complexity [10], but it has not met with much success in the
scientific community because of its lack of a direct inter-
pretation. Now the significance of the AMI is clear; it is the
logarithm of the number of roles. Just as one exponentiates
a traditional information measure to retrieve the number of
choices that generated an entropy term, in flow networks
one exponentiates the AMI to retrieve the number of roles.
Although many have criticized information measures as
arbitrary and meaningless, we now see that they are directly
related to the specialization of a system.

APPLICATIONS
The four variables F, N, C, and R form a toolbox for analyz-

ing complex systems from a new perspective. One obvious

application is the study of stability, or adaptability, in terms

of these variables. It has been argued that C is correlated

with the stability of ecosystems and has an upper bound of

�3.015 in natural ecosystems [18]; extensive testing of this

hypothesis as well as applications of these measures to the

stability of economics or neural networks remains to be

done. Other questions also arise: can these measures tell us

anything about nonliving complex systems, such as convec-

tion cells or self-organizing chemical reactions? Or can

these measures be applied to individual organisms or sys-

tems within organisms?

We first note that these measures can easily be applied to

open systems. Our discussions so far have revolved around

closed systems, but the extension to open systems is not

difficult. The simplest way is to treat the context of the

system as a node. Interestingly, this makes a linear flow

network equivalent to a cyclic one; it is as if the system were

participating in a cycle that extended beyond its bound-

aries. For example, the open system in Figure 7(a) could be

represented as the closed system in Figure 7(b). This tech-

nique is adequate for describing systems in which inputs

and outputs constitute a relatively small portion of TST;

when this is not the case, adjustments must be made so that

the external flows do not dominate the measures [18].

One potential weakness of the measures we have devel-

oped is that they depend on arbitrary choices of what con-

stitutes a node. For instance, in an ecosystem, does one

treat each species as a separate node? If not, which species

does one group together? Viewed another way, however,

these weaknesses are a potential strength, for it has been

argued that measures of complexity must be dependent on

the level of detail [20], and these measures certainly are. By

looking at different scales, we can use these measures to

evaluate the complexity present in different levels of orga-

nization of the system. A way to assess the effect of group-

ings is built into our measure R. When we aggregate nodes,

R will decrease or stay constant. A small decrease means

that the species have similar roles and little information is

lost in the aggregation [21]. A large decrease is a sign that

information is lost in the aggregation.

One can also categorize nodes in response to a specific

question. For example, if we wanted to evaluate the re-

sponse of an ecosystem to changing conditions (for exam-

ple, varying rainfall, temperatures, or salinity levels), we

could break up species into categories based on their sus-

ceptibility to one variable. A high value of C would then

represent a greater diversity of flows per node with respect

to categories of different susceptibility to that variable, and

thus should correspond to the system’s adaptability in re-

sponse to that variable.
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To demonstrate the application of these measures to real
networks, Figures 8 and 9 show data from 44 ecosystem
networks of varying sizes [22]. Most networks measure car-
bon or energy flows, but some measure nitrogen or other
elements. Figure 8 shows a strong correlation between ef-
fective nodes and effective flows. This correlation can be
recast in terms of a restriction of the ratio F/N, which is C.
Figure 9 demonstrates that, although the countable number
of nodes and flows varies widely, natural ecosystems lie in a
small window of vitality with respect to the variables C and
R. Interestingly, the effective number of nodes and flows
take on values less than 15 and 45, respectively, in spite of
the fact that many of the networks have over 30 countable
nodes and over 100 countable flows. There may be a con-
nection between the bounds on C and others’ observations
of an upper bound about 3 for food web connectivity [23,
24], and similarly, a connection between the bounds on R
and proposed upper bounds of about 5 for ecosystem tro-

phic levels [25–28], although these diagrams are by no
means a rigorous demonstration.

To demonstrate that this “window of vitality” is signifi-
cant and not just an artifact of our mathematics, we gener-
ated and analyzed 100 random networks. These networks
were constructed with a random number of nodes between
0 and 100, a random density of 0s in the connection matrix,
and flows with random values between 0 and 1. Figure 10
shows the role and connectivity distribution of the random
networks. Figure 11 compares the ecosystem networks to
the random networks; the window of vitality that ecosystem
networks are found in comprises a very small portion of the
distribution of the randomly generated networks.

We mentioned earlier an additional problem that must
be addressed: implicit in all of our measures is the assump-
tion that the importance of a node is proportional solely to
its throughput (Ti•T•j/T••

2 ). We can discard this assumption

FIGURE 7

(a) An example of an open system described by a network; (b) The same system, recast as a closed system, with the system’s context as a node.

FIGURE 8

Effective # of nodes and flows for various ecosystem networks.

FIGURE 9

# of roles and connectivity for the same networks.
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and generalize our measures even further. We weight each
node according to some importance; call it Bi for node i. We
set these weights according to any other knowledge we have
of the system. This technique has been used to account for
biomass in ecosystems [29], but the weighting can be done
on whatever basis one desires. The result is a new set of
measures that incorporates this additional information.
These generalized measures are presented in the Appendix.

CONCLUSION
The countable properties of unweighted flow networks can
be successfully generalized to apply to weighted networks.
The central measures are the numbers of flows and nodes,
connectivity in flows per node, and the number of roles as
measured by nodes divided by connectivity. Provided one
makes reasonable assumptions regarding the weighting and

the behavior of roles in special cases, these measures are
unique, and are equivalent to information-theoretic mea-
sures previously used in ecosystem network analysis. These
measures depend upon the level of observation and have
the potential to measure the complexity of a wide variety of
natural systems. Additional information about the system
can be incorporated in the form of arbitrary weightings of
the nodes. When we compare ecosystem networks to ran-
domly generated networks, we find that ecosystems inhabit
a narrow window of parameter space, with C between 1 and
3.25 and R between 2 and 5, whereas randomly generated
networks often lie far outside this window. Complexity sci-
ence has recently embraced the network approach, but the
analysis of weighted networks has been uncommon. Now,
however, we have the core of a quantitative theory of the
organization of weighted flow networks— one that is con-
sistent with information theory and common sense, and
helps illuminate empirical data from ecology. By providing
a glimpse of the analytical power that this theory has to
offer, we hope to convince others that weighting leads in the
end to a more elegant and fruitful analysis of networks in
complex systems.
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APPENDIX

Formulae
F is the number of flows and N is the number of nodes,
and connectivity C � F/N is measured in flows/node.

Effective flows:

F � �
i, j

�Tij

T••
���Tij/T••�

.

Effective number of nodes:

N � �
i, j

� T••
2

Ti•T•j
��1/ 2���Tij/T••�

.

Effective connectivity:

CTotal � �
i, j

� Tij
2

Ti•T•j
���1/ 2���Tij/T••�

.

Number of roles:

R � �
i, j

�TijT••

Ti•T•j
��Tij/T••�

.

ln R is the average mutual information (AMI) of the network.
ln F is the Shannon entropy of the normalized flows.
ln C � �/2, where � is the overhead, as defined by

Ulanowicz and Norden [30].

Generalized
Let Bi be the importance of node i. Let B• � ¥i Bi. To derive
these, we replace T••

2 /Ti•T•j (previously used as the impor-
tance of each node) with B •

2 /BiBj. Note that BiBj/B �
2 repre-

sents the flow from i to j in a “reference” network; this
network yields the same values for these variables that an
unweighted network would yield using the conventional
measures.

Effective number of flows:

F � �
i, j

�Tij

T••
���Tij/T••�

.

Effective number of nodes:

N � �
i, j

� B•
2

BiBj
��1/ 2���Tij/T••�

.

Effective connectivity:

CTotal � �
i, j

� T••
2 B•

2

Tij
2BiBj

���1/ 2���Tij/T••�

.

Effective number of roles:

R � �
i, j

� TijB•
2

T••BiBj
��Tij/T••�

.
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