1 Check that the function

$$
y_{h}=C(1+t)+D e^{t}
$$

solves the homogeneous equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=0
$$

Then find a general solution to the non-homogeneous equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}
$$

Solution: To check the solution, we just need to compute derivatives and substitute them into the equation.
We then use variation of parameters to find the solution to the non-homogeneous equation. This solution will have the form

$$
y=C(t) \underbrace{(1+t)}_{y_{1}}+D(t) \underbrace{e^{t}}_{y_{2}}
$$

where

$$
C(t)=\int \frac{-f y_{2}}{a\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)} d t \quad \text { and } \quad D(t)=\int \frac{f y_{1}}{a\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)} d t
$$

First we compute the denominator of these integrands:

$$
a\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)=t\left|\begin{array}{cc}
1+t & e^{t} \\
1 & e^{t}
\end{array}\right|=t\left(e^{t}+t e^{t}-e^{t}\right)=t^{2} e^{t}
$$

Thus we see that

$$
\begin{aligned}
C(t) & =\int \frac{\left(-t^{2} e^{2 t}\right) e^{t}}{t^{2} e^{t}} d t \\
& =\int-e^{2 t} d t \\
& =-\frac{e^{2 t}}{2}+E
\end{aligned}
$$

We also have

$$
\begin{aligned}
D(t) & =\int \frac{\left(t^{2} e^{2 t}\right)(1+t)}{t^{2} e^{t}} d t \\
& =\int e^{t}+t e^{t} d t \\
& =t e^{t}+F .
\end{aligned}
$$

Therefore the general solution to the non-homogeneous equation is

$$
y=\left(-\frac{e^{2 t}}{2}+E\right)(1+t)+\left(t e^{t}+F\right) e^{t} .
$$

2 In an initial value problem, you are given a differential equation, together with a value of y and a value of y^{\prime}. In a boundary value problem, on the other hand, you are given a differential equation and two values of y (we think of these as the values of y "on the boundary"). The following questions concern the boundary value problem

$$
y^{\prime \prime}+\lambda^{2} y=\sin t ; \quad y(0)=0 ; \quad y(\pi)=1 .
$$

a. Find the general solution to the given differential equation for all $\lambda \neq \pm 1$ (ignoring the boundary conditions for now).

Solution: No matter what the value of λ is, the solution to the homogeneous equation is

$$
y_{h}=C \cos \lambda t+D \sin \lambda t .
$$

For $\lambda \neq \pm 1$, our guess for the particular solution is

$$
y_{p}=A \cos t+B \sin t
$$

Computing derivatives shows

$$
\begin{aligned}
y_{p}^{\prime} & =-A \sin t+B \cos t \\
y_{p}^{\prime \prime} & =-A \cos t-B \sin t
\end{aligned}
$$

Substituting this into the differential equation gives

$$
(-A \cos t-B \sin t)+\lambda^{2}(A \cos t+B \sin t)=\sin t
$$

and simplifying this shows that

$$
\left(\lambda^{2} A-A\right) \cos t+\left(\lambda^{2} B-B\right) \sin t=\sin t
$$

So we want $A=0$ and $\lambda^{2} B-B=1$, which means $B\left(\lambda^{2}-1\right)=1$, so $B=1 /\left(\lambda^{2}-1\right)$. Therefore in this case the general solution is

$$
y=C \cos \lambda t+D \sin \lambda t+\frac{\sin t}{\lambda^{2}-1}
$$

b. Find the general solution to the given differential equation when $\lambda= \pm 1$ (again ignoring the boundary conditions).

Solution: When $\lambda= \pm 1$, our initial guess for the particular solution overlaps with the homogeneous solution, so we have to multiply by t :

$$
\begin{aligned}
y_{p} & =A t \cos t+B t \sin t \\
y_{p}^{\prime} & =A \cos t-A t \sin t+B \sin t+B t \cos t \\
y_{p}^{\prime \prime} & =-A \sin t-A \sin t-A t \cos t+B \cos t+B \cos t-B t \sin t \\
& =-2 A \sin t-A t \cos t+2 B \cos t-B t \sin t
\end{aligned}
$$

Next we substitute these values into the differential equation:

$$
(-2 A \sin t-A t \cos t+2 B \cos t-B t \sin t)+(A t \cos t+B t \sin t)=\sin t
$$

This simplifies to

$$
-2 A \sin t+2 B \cos t=\sin t
$$

so we want to set $A=-1 / 2$ and $B=0$. This gives the general solution

$$
y=C \cos t+D \sin t-\frac{t \sin t}{2}
$$

c. Show that the boundary value problem has a solution if and only if λ is not an integer.

Solution: In both cases, if λ is an integer then substituting $t=0$ into the equation we have for y shows that we need

$$
B \cos (\lambda 0)=0
$$

so we must have $B=0$. But then, again because λ is an integer, when we substitute $t=\pi$, we see that $y(\pi)=0$, while we want it to equal 1 .

On the other hand, when λ is not an integer, $\sin (\lambda \pi) \neq 0$, which allows us to choose D to satisfy the boundary value condition $y(\pi)=1$.

