1 Check that the function

$$
y_{h}=C(1+t)+D e^{t}
$$

solves the homogeneous equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=0
$$

Then find a general solution to the non-homogeneous equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}
$$

2 In an initial value problem, you are given a differential equation, together with a value of $y$ and a value of $y^{\prime}$. In a boundary value problem, on the other hand, you are given a differential equation and two values of $y$ (we think of these as the values of $y$ "on the boundary"). The following questions concern the boundary value problem

$$
y^{\prime \prime}+\lambda^{2} y=\sin t ; \quad y(0)=0 ; \quad y(\pi)=1 .
$$

a. Find the general solution to the given differential equation for all $\lambda \neq \pm 1$ (ignoring the boundary conditions for now).
b. Find the general solution to the given differential equation when $\lambda= \pm 1$ (again ignoring the boundary conditions).
c. Show that the boundary value problem has a solution if and only if $\lambda$ is not an integer.

