In-class review for Sections 7.2-7.5— Solutions

1 Find the Laplace transform of the solution y to the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\left\{\begin{array}{ll}
1 & \text { for } 0 \leq t \leq 7, \\
t & \text { for } t>7 .
\end{array} \quad ; \quad y(0)=2, \quad y^{\prime}(0)=1 .\right.
$$

Solution: Let $Y=\mathscr{L}\{y\}$. For the lefthand side, we have the following transforms:

$$
\begin{aligned}
\mathscr{L}\{y\} & =Y, \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s \mathscr{L}\left\{y^{\prime}\right\}-y^{\prime}(0)
\end{aligned}=s^{2} Y-2 s-1 .
$$

For the righthand side, we just have to do the integral:

$$
\begin{aligned}
\mathscr{L}\left\{\left\{\begin{array}{ll}
1 & \text { for } 0 \leq t \leq 7, \\
t & \text { for } t>7 .
\end{array}\right\}\right. & =\int_{0}^{7} e^{-s t} d t+\int_{7}^{\infty} t e^{-s t} d t \\
& =\left[-\frac{1}{s} e^{-s t}\right]_{0}^{7}+\lim _{N \rightarrow \infty}\left[-\frac{t}{s} e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right]_{7}^{N} \\
& =-\frac{e^{-7 s}}{s}+\frac{1}{s}+\lim _{N \rightarrow \infty}\left(-\frac{N e^{-N s}}{s}-\frac{e^{-N s}}{s^{2}}+\frac{7 e^{-7 s}}{s}+\frac{e^{-7 s}}{s^{2}}\right), \\
& =\frac{6 e^{-7 s}}{s}+\frac{1}{s}+\frac{e^{-7 s}}{s^{2}} .
\end{aligned}
$$

Now we need to put this all together. Taking the Laplace transform of both sides, we have

$$
\mathscr{L}\left\{y^{\prime \prime}+2 y^{\prime}+2 y\right\}=\mathscr{L}\left\{\left\{\begin{array}{ll}
1 & \text { for } 0 \leq t \leq 7, \\
t & \text { for } t>7,
\end{array}\right\}\right.
$$

so

$$
\left(s^{2} Y-2 s-1\right)+2(s Y-2)+2 Y=\frac{6 e^{-7 s}}{s}+\frac{1}{s}+\frac{e^{-7 s}}{s^{2}}
$$

Solving for Y, we get

$$
Y=\frac{\left(\frac{6 e^{-7 s}}{s}+\frac{1}{s}+\frac{e^{-7 s}}{s^{2}}\right)+2 s+5}{s^{2}+2 s+2}
$$

There is no need to simplify this any further.

2 Suppose that

$$
\mathscr{L}\{y\}=\frac{2 s-7}{\left(s^{2}-2 s+5\right)(s-1)} .
$$

What is y ?
Solution: We first need to use partial fractions on the righthand side:

$$
\frac{2 s-7}{\left(s^{2}-2 s+5\right)(s-1)}=\frac{A s+B}{s^{2}-2 s+5}+\frac{C}{s-1} .
$$

Canceling denominators, we see that we need

$$
(A s+B)(s-1)+C\left(s^{2}-2 s+5\right)=2 s-7 .
$$

We can now expand the lefthand side and match coefficients of s, or we can plug in three particular values for s to get three equations in A, B, and C. With either method, we get that

$$
\mathscr{L}\{y\}=\frac{\frac{5}{4} s+\frac{3}{4}}{s^{2}-2 s+5}+\frac{-\frac{5}{4}}{s-1} .
$$

In order to undo the Laplace transform of the first fraction, we need to complete the square in the denominator. We do this by matching the first two terms, $s^{2}-2 s$ to a square. In this case we get the first two terms from $(s-1)^{2}$, and then need to add 4 to get the right constant term; in other words,

$$
s^{2}-2 s+5=(s-1)^{2}+4 .
$$

Now we have

$$
\mathscr{L}\{y\}=\frac{\frac{5}{4} s+\frac{3}{4}}{(s-1)^{2}+4}+\frac{-\frac{5}{4}}{s-1} .
$$

Now we also need the numerator of the first fraction expressed in terms of $s-1$:

$$
\frac{5}{4} s+\frac{3}{4}=\frac{5}{4}(s-1)+2 .
$$

Putting this all together, we have

$$
\mathscr{L}\{y\}=\frac{5}{4} \frac{s-1}{(s-1)^{2}+4}+\frac{2}{(s-1)^{2}+4}-\frac{5}{4} \frac{1}{s-1} .
$$

We can now look these transforms up, and see that

$$
y=\frac{5}{4} e^{t} \cos 2 t+e^{t} \sin 2 t-\frac{5}{4} e^{t} .
$$

3 Find a first-order differential equation for the Laplace transform of the solution y to the initial value problem

$$
y^{\prime \prime}+t y^{\prime}+2 y=e^{3 t} ; \quad y(0)=y^{\prime}(0)=0 .
$$

Hint: let $Y(s)$ denote the Laplace transform of y. Your answer will include $Y(s)$ and $Y^{\prime}(s)$.

Solution: Let $Y=\mathscr{L}\{y\}$. For the lefthand side, let's start with the standard transforms:

$$
\begin{array}{lll}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s \mathscr{L}\left\{y^{\prime}\right\}-y^{\prime}(0) & =s^{2} Y .
\end{array}
$$

However, on the lefthand side of the differential equation we have $t y^{\prime}$, which we need to figure out how to transform. One of our rules states that

$$
\mathscr{L}\{t f(t)\}=-\frac{d}{d s} \mathscr{L}\{f(t)\},
$$

so,

$$
\mathscr{L}\left\{t y^{\prime}\right\}=-\frac{d}{d s} \mathscr{L}\left\{y^{\prime}\right\}=-\frac{d}{d s}(s Y)=-Y-s Y^{\prime} .
$$

The righthand side is easy,

$$
\mathscr{L}\left\{e^{3 t}\right\}=\frac{1}{s-3},
$$

and so we see that the Laplace transform of both sides,

$$
\mathscr{L}\left\{y^{\prime \prime}+t y^{\prime}+2 y\right\}=\mathscr{L}\left\{e^{2 t}\right\},
$$

is given by

$$
s^{2} Y-Y-s Y^{\prime}+2 Y=\frac{1}{s-3}
$$

We can simplify this a bit into

$$
Y-\frac{s}{s^{2}+1} Y^{\prime}=\frac{1}{(s-3)\left(s^{2}+1\right)}
$$

Note that this is a linear first-order differential equation, so we could use an integrating factor to solve for Y. Theoretically, we could then undo the Laplace transform and find y. Best of luck to all who try that.

4 Suppose that

$$
\mathscr{L}\{y\}=\frac{s^{2}-s+1}{s^{4}-s^{3}+s^{2}-s} .
$$

What is y ?
Solution: The only real challenge here is factoring that quartic in the denominator of the fraction. We see immediately that s is a factor:

$$
s^{4}-s^{3}+s^{2}-s=s\left(s^{3}-s^{2}+s-1\right)
$$

Now we need to find one more factor. If we plug in $s=1$ then $s^{3}-s^{2}+s-1=0$, so $s-1$ is a factor of this cubic. Dividing by $s-1$ gives a quotient of $s^{2}+1$, so our factorization is

$$
s^{4}-s^{3}+s^{2}-s=s(s-1)\left(s^{2}+1\right) .
$$

Next we compute the partial fraction decomposition:

$$
\frac{s^{2}-s+1}{s^{4}-s^{3}+s^{2}-s}=\frac{A}{s}+\frac{B}{s-1}+\frac{C s+D}{s^{2}+1} .
$$

Canceling denominators shows that

$$
s^{2}-s+1=A(s-1)\left(s^{2}+1\right)+B s\left(s^{2}+1\right)+(C s+D) s(s-1) .
$$

Any way you solve this equation, you should get that $A=-1$ and $B=C=D=1 / 2$. Therefore

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{\frac{1}{2} s+\frac{1}{2}}{s^{2}+1}+\frac{\frac{1}{2}}{s-1}-\frac{1}{s}, \\
& =\frac{1}{2} \frac{s}{s^{2}+1}+\frac{1}{2} \frac{1}{s^{2}+1}+\frac{1}{2} \frac{1}{s-1}-\frac{1}{s} .
\end{aligned}
$$

These are all easy transforms to undo, and we see that

$$
y=\frac{1}{2} \cos t+\frac{1}{2} \sin t+\frac{1}{2} e^{t}-1 .
$$

