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The exam will cover sections 1.2, 1.3, 2.2, 2.3, 2.4, and 2.6. All topics from this review

sheet or from the suggested exercises are fair game.

1 Give explicit solutions to the initial value problem dy
dx = xy3 with y(0) = 1, y(0) = 1/2, and

y(0) = −2. Then determine the domains of each of these solutions.

Solution: First, we separate the differential equation and solve it:
∫

y−3 dy

dx
dx =

∫

x dx,

∫

y−3 dy =
x2

2
+ C,

y−2

−2
=

x2

2
+ C.

By our standard abuse of constants, we then get

y2 =
−1

x2 + C
,

so

y = ±

√

−1

x2 + C
.

Now we want to match the various initial conditions. For each, we need to decide whether to
take the + or the − of the ±, and then we need to determine C:

initial condition ± C solution

y(0) = 1 + C = −1 y(x) =
√

−1
x2−1

y(0) = 1/2 + C = −4 y(x) =
√

−1
x2−4

y(0) = −2 − C = −1/2 y(x) = −
√

−1
x2−1/4

We now need to determine the domains of these solutions. For all of them, we must be careful
not to get 0 in the denominator or to take the square root of a negative number. For example,
for the first solution, we have a problem when x = 1 (division by 0) or when |x| > 1 (square
root of a negative number), so the domain is |x| < 1.

solution domain

y(x) =
√

−1
x2−1 |x| < 1

y(x) =
√

−1
x2−4

|x| < 2

y(x) = −
√

−1
x2−1/4

|x| < 1/2
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2 Show that every separable first-order differential equation can easily be converted into an
exact equation.

Solution: A first-order differential equation is separable if it can be put in the form

dy

dx
= g(x)p(y).

To test for exactness, we put this equation into the form M(x, y) + N(x, y)dydx = 0. In this
case we see that

M(x, y) = −g(x) and N(x, y) =
1

p(y)
.

Now we only need that ∂M
∂y = ∂N

∂x , which is true because both partials are 0.

3 For each of the following differential equations, indicate whether they are separable, linear,
or can easily be converted into an exact equation. Note that some equations may be more

than one type, while others may not be any of these types. Then, solve the equations which
are separable, linear, or exact.

a. dy
dx = −2xy

x2+y2 .

Solution: This equation is not separable, because there is no way1 to write it in the form
dy
dx = g(x)p(y). The equation is also not linear, because the y2 term prevents us from putting

it in the form dy
dx + P (x)y = Q(x). To test for exactness we put the equation in the form

M(x, y) +N(x, y)dydx = 0:

2xy + (x2 + y2)
dy

dx
= 0.

Now we see that the relevant second partials are in fact equal:

∂M

∂y
= 2x =

∂N

∂x
,

so the equation is exact.

1If we wanted to, we could verify this by considering the four points (x, y) = (1, 1), (1, 2), (2, 1), (2, 2), but that
won’t be required on the midterm.
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We now proceed to solve the equation; remember that the solution will be an implicit solution
of the form F (x, y) = C where d

dxF (x, y) = M(x, y) +N(x, y)dydx . First we integrate M(x, y)
with respect to x:

F (x, y) =

∫

2xy dx = x2y + g(y).

Note that, as usual, our constant of integration is a function of y. Now we want to have

∂F

∂y
= N(x, y),

so we get

x2 +
dg

dy
= x2 + y2.

Therefore dg/dy = y2, so g(y) = y3/3 + C. Thus our solution can be written as

x2y +
y3

3
+ C = D,

where D is another arbitrary constant. Since we don’t need both of these constants, we can
also write this solution as

x2y +
y3

3
= C.

In this particular case, we could solve to get y as an explicit function of x, but there is no
need, so we might as well leave it in the implicit form above.

b. dy
dx = xy sinx.

Solution: This equation is separable, because we can write it as

1

y

dy

dx
= x sinx.

Therefore, by our previous problem, this equation is also exact. Furthermore, the equation is
also linear, because we can express it as

dy

dx
− (x sinx)y = 0.

Therefore we have three methods available to solve the equation. Viewing it as a separable
equation, we separate to get

1

y

dy

dx
= x sinx.
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We then integrate both sides with respect to x,

∫

1

y

dy

dx
dx =

∫

x sinx dx,
∫

1

y
dy = sinx− x cos x+ C (obtained by integration by parts),

ln |y| = sinx− x cos x+ C,

y(x) = ±eCesinx−x cos x,

y(x) = Cesinx−x cos x.

Note that in going from the second-to-last line to the last line above, we have done our
standard abuse of constants, replacing ±eC by C. It is worth noting that C cannot be 0.

Important note: because we divided by y to put the equation in the desired (separable) form,
we must also consider the possible solution y ≡ 0 (y identically equal to 0). This equation
does happen to satisfy our differential equation, so it is also a solution.

c. dy
dx = sin(x+ y2).

Solution: The equation is not separable2. The equation is also not linear, because we
cannot express it in the form dy

dx + P (x)y = Q(x). Finally, the equation is not exact; to see

this, we express it in the form M(x, y) +N(x, y)dydx = 0, where we see that

M(x, y) = − sin(x+ y2) and N(x, y) = 1,

and the partials do not match:

∂M

∂y
= 2y cos(x+ y2) 6= 0 =

∂N

∂x
.

Since none of our methods apply to this equation, we cannot solve it (yet).

d. dy
dx = x−y

2x .

2Again, if we wanted to, we could verify this by considering the three points (x, y) = (0, 0), (π/2, 0), (0,
√

π/2), but
again, that won’t be required on the midterm.
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Solution: The equation is not separable (again this could be verified with a chart). The
equation is linear, however, because we can express it as

dy

dx
+

1

2x
y =

1

2
.

The equation is not exact, because if we express it as M(x, y) +N(x, y)dydx = 0, we see that

M(x, y) =
y

2x
−

1

2
and N(x, y) = 1,

and the partials do not match:

∂M

∂y
=

1

2x
6= 0 =

∂N

∂x
.

Therefore we can only solve this equation by use of an integrating factor. Recall that this
integrating factor is e

∫
P (x)dx when the equation is put in the form dy

dx + P (x)y = Q(x):

e
∫
P (x) dx = e

∫
1

2x
dx = e

1

2

∫
1

x
dx = elnx1/2

= x1/2.

Multiplying through by the integrating factor, we obtain

x1/2
dy

dx
+

1

2x1/2
y =

1

2
x1/2.

Now we integrate both sides with respect to x. We know that the left-hand side of this
equation is the derivative (with respect to x) of the integrating factor times y: x1/2y. On the
right-hand side, we have

∫

1

x1/2
dx =

1

2

(

2

3
x3/2

)

+C =
1

3
x3/2 + C,

so we obtain

x1/2y =
1

3
x3/2 + C,

and thus

y(x) =
1

3
x+

C

x1/2
.

It is important to note that the term on the right of this solution is a constant times a function

of x, and therefore we cannot replace this term by a simple constant.

e. dy
dx = 5x4

cos y+ey .



MAP 2302 — Midterm 1 Review Solutions 6

Solution: This equation is separable, because we can express it as

(cos y + ey)
dy

dx
= 5x4.

Therefore the equation is also exact. The equation is not linear, however, because ey term
prevents us from expressing it in the form dy

dx + P (x)y = Q(x).

To solve the equation, we integrate both sides of its separated form above (with respect to
x):

∫

cos y + ey
dy

dx
dx =

∫

5x4 dx,
∫

cos y + ey dy = x5 + C,

sin y + ey = x5 + C.

We have no way to solve this equation for y(x), so we have to be satisfied with this implicit
solution.

4 For each of the following initial value problems, determine if they have zero, one, or more
than one solution(s). You do not need to solve these equations.

a. y dy
dx + x = 0; y(1) = 0.

Solution: This equation has no solutions. Plugging in the initial conditions (x0, y0) = (1, 0)
gives

(0)
dy

dx
(1) + 1 = 0,

i.e., 1 = 0, which has no solution.

b. dy
dx = 3y2/3; y(0) = 0.

Solution: This solution has more than one solution. In particular, y ≡ 0 (y identically equal
to 0 solves the differential equation, and y(x) = x3 also solves the equation (this solution can
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be found by separating the equation). In fact, this equation has infinitely many solutions:
for every number a ≥ 0, the function

y(x) =

{

0 for x ≤ a,
(x− a)3 for x > a

solves the equation.

c. y dy
dx = arctan(x+ y); y(1) = 1.

Solution: To use the Existence and Uniqueness Theorem for first-order differential
equations, we must first put this equation in the form

dy

dx
= f(x, y).

In this case we get
dy

dx
=

arctan(x+ y)

y
.

Now we test whether f and ∂f/∂y are continuous in some neighborhood of (x0, y0) = (1, 1).
The only discontinuity of f is along the line y = 0, so f is certainly continuous in a
neighborhood of (1, 1). Using the quotient rule, we see that ∂f/∂y is

∂f

∂y
=

y
(x+y)2+1

− arctan(x+ y)

y2
=

1

y((x+ y)2 + 1)
−

arctan(x+ y)

y2
.

This function is also continuous except along the line y = 0, and so it is continuous in a
neighborhood of (1, 1). We can then conclude, via the Existence and Uniqueness Theorem,
that the given IVP has a unique solution.

5 Make an appropriate substitution in order to solve the following differential equations.

a. dy
dx = 2y

x − x2y2.
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Solution: This equation is of the form

a(x)
dy

dx
= b(x)y + c(x)yn

(here n = 2), so it is Bernoulli. To solve a Bernoulli equation we divide by the greatest power
of y and then let our substitution v equal the second smallest power of y in the remaining
equation. So in this case we have

y−2 dy

dx
=

2

x
y−1 − x2.

We set v = y−1, and then have

v = −y−2 dy

dx

by the Chain Rule. Therefore we have

−
dv

dx
=

2

x
v − x2.

This is a linear equation (all Bernoulli equations transform into linear equations), so we put
it in standard form,

dv

dx
+

2

x
v = x2.

Our integrating factor is then

µ(x) = e
∫

2

x
dx = e2 ln |x| = e|x|

2

= |x|2 = x2.

After multiplying through by x2, we have

x2
dv

dx
+ 2xv = x4.

We now integrate both sides by x. We know that the left-hand side will become µ(x)v, while
the right-hand side is just x5/5 + C, so

x2v =
x5

5
+ C,

v =
x3

5
+

C

x2
,

1

y
=

x3

5
+

C

x2
,

y(x) =
1

x3

5 + C
x2

.

Important note: y ≡ 0 is also a solution. (We didn’t find that solution above because in the
beginning we divided by y2.)
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b. x2 dy
dx = xy − y2.

Solution: This is a homogeneous equation3, that is, an equation of the form dy
dx = G(y/x),

so we make the substitution v = y/x. First we need to translate the dy
dx into these terms:

y = xv, so

dy

dx
= x

dv

dx
+ v by the product rule.

Maying this substitution, we transform the equation into

x
dv

dx
+ v = v − v2,

which separates (after canceling a v on each side) as

−v−2 dv

dx
= x−1.

Integrating both sides, we obtain

∫

−v−2 dv

dx
dx =

∫

x−1 dx,

v−1 = ln |x|+ C,

v =
1

ln |x|+ C
.

Finally we put this back in terms of y(x):

y

x
=

1

ln |x|+ C
,

so
y(x) =

x

ln |x|+ C
.

Important note: when we separated this equation we divided by v2, so we should check the
solution v ≡ 0. This is the same as y ≡ 0, which you can see is a solution to the original
differential equation. Therefore y ≡ 0 is also a solution.

3This equation is also a Bernoulli equation, so you could solve it by dividing by y2 and then setting v = y−1.
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c. dy
dx = 1

(2x+y)e2x+y − 2.

Solution: This is an equation of the form dy
dx = G(ax + by), so we make the substitution

v = 2x+ y. We then see that
dv

dx
= 2 +

dy

dx
,

so the equation transforms into
dv

dx
− 2 =

1

vev
− 2.

After canceling the −2s and separating, we just need to integrate both sides:

∫

vev
dv

dx
dx =

∫

1 dx,
∫

vev dv = x+ C,

ev(v − 1) = x+ C (integration by parts).

Finally, we replace v by 2x+ y to obtain the solution

e2x+y(2x+ y − 1) = x+ C.

Because we can’t solve this equation for y(x), we have to be satisfied with it in implicit form.


