Midterm 3 will cover sections 7.2-7.8.
1 Solve for $\mathscr{L}\{y\}$ given the following initial value problems.
a. $y^{\prime \prime}-4 y^{\prime}+8 y=e^{2 t} \cos 3 t ; y(0)=1 ; y^{\prime}(0)=3$.

Solution: Let $Y(s)=\mathscr{L}\{y\}$. We have

$$
\begin{array}{lll}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y-1, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s(\mathscr{L}\{y\})-y^{\prime}(0) & =s^{2} Y-s-3,
\end{array}
$$

so

$$
\mathscr{L}\left\{y^{\prime \prime}-4 y^{\prime}+8 y\right\}=\left(s^{2} Y-s-3\right)-4(s Y-1)+8 Y=\left(s^{2}-4 s+8\right) Y+(-s+1) .
$$

For the righthand side, we first see that

$$
\mathscr{L}\{\cos 3 t\}=\frac{s}{s^{2}+9},
$$

so using the rule $\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)$, where $F(s)=\mathscr{L}\{f\}$, we see that

$$
\mathscr{L}\left\{e^{2 t} \cos 3 t\right\}=\frac{s-2}{(s-2)^{2}+9} .
$$

Putting these two together and solving for Y, we get

$$
Y(s)=\frac{\frac{s-2}{(s-2)^{2}+9}+s-1}{s^{2}-4 s+8} .
$$

b. $y^{\prime \prime}+2 y^{\prime}-3 y=e^{t}+t+1 ; y(0)=9 ; y^{\prime}(0)=-3$.

Solution: Letting $Y(s)=\mathscr{L}\{y\}$ we have

$$
\begin{array}{lll}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y-9, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s(\mathscr{L}\{y\})-y^{\prime}(0) & =s^{2} Y-9 s+3,
\end{array}
$$

$$
\mathscr{L}\left\{y^{\prime \prime}+2 y^{\prime}-3 y\right\}=\left(s^{2} Y-9 s+3\right)+2(s Y-9)-3 Y=\left(s^{2}+2 s-3\right) Y+(-9 s-15) .
$$

For the righthand side, we have

$$
\mathscr{L}\left\{e^{t}+t+1\right\}=\frac{1}{s-1}+\frac{1}{s^{2}}+\frac{1}{s} .
$$

Solving for Y, we get

$$
Y=\frac{\frac{1}{s-1}+\frac{1}{s^{2}}+\frac{1}{s}+9 s+15}{s^{2}+2 s-3}
$$

c. $y^{\prime \prime}-4 y=\left\{\begin{array}{ll}\sin t & 0<t<\pi, \\ -\sin t & t>\pi .\end{array} ; y(0)=y^{\prime}(0)=0\right.$.

Solution: Letting $Y(s)=\mathscr{L}\{y\}$ we have

$$
\begin{aligned}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s(\mathscr{L}\{y\})-y^{\prime}(0) & =s^{2} Y,
\end{aligned}
$$

so the lefthand side is transformed to

$$
\mathscr{L}\left\{y^{\prime \prime}-4 y\right\}=s^{2} Y-4 Y=\left(s^{2}-4\right) Y
$$

In order to transform the righthand side, we first convert it into Heaviside functions:

$$
\left\{\begin{array}{ll}
\sin t & 0<t<\pi, \\
-\sin t & t>\pi .
\end{array}=\sin t-2 u(t-\pi) \sin t\right.
$$

Now we use the rule that $\mathscr{L}\{u(t-a) f(t)\}=e^{-a s} \mathscr{L}\{f(t+a)\}$, so

$$
\begin{aligned}
\mathscr{L}\{\sin t-2 u(t-\pi) \sin t\} & =\frac{1}{s^{2}+1}-2 e^{-\pi s} \mathscr{L}\{\sin (t+\pi)\}, \\
& =\frac{1}{s^{2}+1}-2 e^{-\pi s} \mathscr{L}\{-\sin t\} \\
& =\frac{1}{s^{2}+1}+\frac{2 e^{-\pi s}}{s^{2}+1} \\
& =\frac{1+2 e^{-\pi s}}{s^{2}+1}
\end{aligned}
$$

Solving for Y, we get

$$
Y=\frac{1+2 e^{-\pi s}}{\left(s^{2}+1\right)\left(s^{2}-4\right)}
$$

d. $y^{\prime \prime}+y^{\prime}-2 y=f(t)$, where $f(t)$ is the fully-rectified sine wave below; $y(0)=y^{\prime}(0)=1$.

Solution: Letting $Y(s)=\mathscr{L}\{y\}$ we have

$$
\begin{aligned}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y-1, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s(\mathscr{L}\{y\})-y^{\prime}(0) & =s^{2} Y-s-1,
\end{aligned}
$$

so

$$
\mathscr{L}\left\{y^{\prime \prime}+y^{\prime}-2 y\right\}=\left(s^{2} Y-s-1\right)+(s Y-1)-2 Y=\left(s^{2}+s-2\right) Y+(-s-2) .
$$

The righthand side is a periodic function, so we use the rule that

$$
\mathscr{L}\{f\}=\frac{\mathscr{L}\left\{f_{T}\right\}}{1-e^{-s T}},
$$

where T is the period of f (which in this case is π), and f_{T} is the function over one period, in this case,

$$
f_{T}=\left\{\begin{array}{ll}
\sin t & 0<t<\pi, \\
0 & t>\pi
\end{array}=\sin t-u(t-\pi) \sin t\right.
$$

Thus

$$
\mathscr{L}\left\{f_{T}\right\}=\mathscr{L}\{\sin t-u(t-\pi) \sin t\}=\frac{1}{s^{2}+1}-e^{-\pi s} \mathscr{L}\{\sin (t+\pi)\}=\frac{1+e^{-\pi s}}{s^{2}+1}
$$

so

$$
\mathscr{L}\{f\}=\frac{1+e^{-\pi s}}{\left(s^{2}+1\right)\left(1-e^{-\pi s}\right)} .
$$

Finally, we solve for Y :

$$
Y=\frac{\frac{1+e^{-\pi s}}{\left(s^{2}+1\right)\left(1-e^{-\pi s}\right)}+s+2}{s^{2}+s-2} .
$$

e. $y^{\prime \prime}-4 y^{\prime}+t y=0 ; y(0)=1 ; y^{\prime}(0)=0$. (Find a differential equation satisfied by $\mathscr{L}\{y\}$.)

Solution:

$$
\begin{array}{lll}
\mathscr{L}\{y\} & =Y, & \\
\mathscr{L}\left\{y^{\prime}\right\} & =s Y-y(0) & =s Y-1, \\
\mathscr{L}\left\{y^{\prime \prime}\right\} & =s(\mathscr{L}\{y\})-y^{\prime}(0) & =s^{2} Y-s .
\end{array}
$$

Now we need to use the rule $\mathscr{L}\{t f(t)\}=-\frac{d}{d s} \mathscr{L}\{f(t)\}$ to transform $t y$:

$$
\mathscr{L}\{t y\}=-\frac{d}{d s} \mathscr{L}\{y\}=-Y^{\prime} .
$$

Therefore the lefthand side transforms into

$$
\left(s^{2} Y-s\right)-4(s Y-1)-Y^{\prime}=\left(s^{2} Y-4 s\right) Y-Y^{\prime}+(-s+4)
$$

Since the righthand side transforms to 0 , we have

$$
\left(s^{2} Y-4 s\right) Y-Y^{\prime}=s-4
$$

Not that the problem asked for it, but this differential equation is very difficult (impossible?) to solve explicitly.
f. $y^{\prime \prime}+4 y=\delta(t-2) ; y(0)=y^{\prime}(0)=0$. (Here δ is the Dirac delta function.)

Solution: The lefthand side transforms into

$$
\mathscr{L}\left\{y^{\prime \prime}+4 y\right\}=s^{2} Y+4 Y=\left(s^{2}+4\right) Y .
$$

The righthand side transforms into $e^{-2 s}$, so we get

$$
Y=\frac{e^{-2 s}}{s^{2}+4}
$$

(This differential equation models a spring of unit mass, no damping, and spring constant $k=4$ being hit by a hammer of unit force at time $t=2$.)
g. $y^{\prime \prime}+5 y^{\prime}-y=e^{\sin t} \delta(t-3) ; y(0)=0, y^{\prime}(0)=3$.

Solution: Let lefthand side transforms into

$$
\left(s^{2}+5 s-1\right) Y-3,
$$

where $Y(s)$ is the Laplace transform of $y(t)$. To transform the righthand side, note that $e^{\sin t} \delta(t-3)$ is nonzero only when $t=3$, and at $t=3$ it is $e^{\sin 3}$, so

$$
\mathscr{L}\left\{e^{\sin t} \delta(t-3)\right\}=\mathscr{L}\left\{e^{\sin 3} \delta(t-e)\right\}=e^{\sin 3} e^{-3 s}
$$

Therefore we have that

$$
Y=\frac{e^{\sin 3} e^{-3 s}+3}{s^{2}+5 s-1}
$$

2 Compute the following inverse Laplace transforms.
a. $\mathscr{L}^{-1}\left\{\frac{2 s^{2}-1}{s^{3}+s^{2}-6 s}\right\}$.

Solution: We begin by using partial fractions on the righthand side:

$$
\frac{2 s^{2}-1}{s^{3}+s^{2}-6 s}=\frac{2 s^{2}-1}{s\left(s^{2}+s-6\right)}=\frac{2 s^{2}-1}{s(s-2)(s+3)}=\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s+3} .
$$

Canceling denominators, we get

$$
2 s^{2}-1=A(s-2)(s+3)+B s(s+3)+C s(s-2) .
$$

Plugging in $s=0,2$, and -3 , we see:

$$
\begin{aligned}
-1 & =-6 A \\
7 & =10 B \\
17 & =15 C
\end{aligned}
$$

so

$$
A=\frac{1}{6}, \quad B=\frac{7}{10}, \quad C=\frac{17}{15},
$$

and thus

$$
\frac{2 s^{2}-1}{s^{3}+s^{2}-6 s}=\frac{1}{6 s}+\frac{7}{10(s-2)}+\frac{17}{15(s+3)}
$$

We now just need to invert this:

$$
y(t)=\mathscr{L}^{-1}\left\{\frac{1}{6 s}+\frac{7}{10(s-2)}+\frac{17}{15(s+3)}\right\}=\frac{1}{6}+\frac{7}{10} e^{2 t}+\frac{17}{15} e^{-3 s} .
$$

b. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}-8 s+17}\right\}$.

Solution: Because the fraction doesn't factor (over the real numbers), we need to complete the square:

$$
\frac{1}{s^{2}-8 s+17}=\frac{1}{(s-4)+1} .
$$

Therefore y is a shifted e^{s} times sin:

$$
y(t)=e^{4 s} \sin t .
$$

c. $\mathscr{L}^{-1}\left\{\frac{9-s^{2}}{\left(s^{2}+9\right)^{2}}\right\}$.

Solution: This one takes a bit of thought. What rule would give us that denominator? Well, we know that

$$
\mathscr{L}\{\sin 3 t\}=\frac{3}{s^{2}+9},
$$

so using the $\mathscr{L}\{t f(t)\}$ rule, we see that

$$
\mathscr{L}\{t \sin 3 t\}=-\frac{d}{d s} \frac{3}{s^{2}+9}=-\frac{6 s}{\left(s^{2}+9\right)^{2}} .
$$

This isn't quite what we were looking for, so let's try $t \cos 3 t$ instead:

$$
\mathscr{L}\{t \cos 3 t\}=-\frac{d}{d s} \frac{s}{s^{2}+9}=-\frac{9-s^{2}}{\left(s^{2}+9\right)^{2}}=\frac{s^{2}-9}{\left(s^{2}+9\right)^{2}} .
$$

The transform we were given is the negative us this, so

$$
\mathscr{L}^{-1}\left\{\frac{9-s^{2}}{\left(s^{2}+9\right)^{2}}\right\}=-t \cos 3 t .
$$

d. $\mathscr{L}^{-1}\left\{\frac{3 s}{s^{2}+4 s+6}\right\}$.

Solution: The denominator doesn't factor, so we need to complete the square:

$$
\frac{3 s}{s^{2}+4 s+6}=\frac{3 s}{(s+2)^{2}+2} .
$$

This shows that y will be a linear combination of $e^{-2 t} \cos \sqrt{2} t$ and $e^{-2 t} \sin \sqrt{2} t$. We just need to get it in the right form. Be careful here; for the term that corresponds to $e^{-2 t} \cos \sqrt{2} t$ we need to get an $s+2$ in the numerator:

$$
\frac{3 s}{(s+2)^{2}+2}=3 \frac{s+2}{(s+2)^{2}+2}-3 \sqrt{2} \frac{\sqrt{2}}{(s+2)^{2}+2}
$$

We then see that

$$
y=3 e^{-2 t} \cos \sqrt{2} t-3 \sqrt{2} e^{-2 t} \sin \sqrt{2} t
$$

e. $\mathscr{L}^{-1}\left\{\frac{\left(1-e^{-s}\right)^{2}}{s^{3}}\right\}$.

Solution: We are going to end up with Heaviside functions here because of the e^{-s} term in the numerator. To start, we want to expand that numerator:

$$
\frac{\left(1-e^{-s}\right)^{2}}{s^{3}}=\frac{1-2 e^{-s}+e^{-2 s}}{s^{3}}=\frac{1}{s^{3}}-2 \frac{e^{-s}}{s^{3}}+\frac{e^{-2 s}}{s^{3}} .
$$

The first fraction just gives us $t^{2} / 2$. We have to work a bit harder for the second fraction:

$$
e^{-s}\left(-\frac{2}{s^{3}}\right)=\mathscr{L}\{u(t-1) f(t)\}=e^{-s} \mathscr{L}\{f(t+1)\},
$$

so $f(t+1)=-t^{2}$, and thus $f(t)=-(t-1)^{2}$, so

$$
\mathscr{L}^{-1}\left\{e^{-s}\left(-\frac{2}{s^{3}}\right)\right\}=-(t-1)^{2} u(t-1) .
$$

The third fraction is similar:

$$
\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}=\frac{1}{2}(t-2)^{2} u(t-2) .
$$

Therefore,

$$
y=\frac{t^{2}}{2}-(t-1)^{2} u(t-1)+\frac{1}{2}(t-2)^{2} u(t-2) .
$$

f. $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+2 s+5}\right\}$.

Solution: Again with the Heaviside functions! We will need to complete the square at some point, so let's do it first:

$$
\frac{e^{-\pi s}}{s^{2}+2 s+5}=\frac{e^{-\pi s}}{(s+1)^{2}+2^{2}}
$$

Now we know we'll have a $u(t-\pi)$ because of the $e^{-\pi s}$, so

$$
\frac{e^{-\pi s}}{(s+1)^{2}+2^{2}}=\mathscr{L}\{u(t-\pi) f(t)\}=e^{-\pi s} \mathscr{L}\{f(t+\pi)\} .
$$

We see therefore that

$$
f(t+\pi)=\mathscr{L}^{-1}\left\{\frac{1}{(s+1)^{2}+2^{2}}\right\}=\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{2}{(s+1)^{2}+2^{2}}\right\}
$$

and thus $f(t+\pi)=\frac{1}{2} e^{-t} \sin 2 t$, so

$$
f(t)=\frac{1}{2} e^{-t-\pi} \sin (2(t-\pi)) .
$$

We could at this point notice that $\sin (2 t-2 \pi)=\sin 2 t$ (\sin is periodic of period 2π), which would show us that

$$
y=\frac{1}{2} u(t-\pi) e^{-t-\pi} \sin 2 t
$$

$$
\text { g. } \mathscr{L}^{-1}\{7\} .
$$

Solution: The Laplace transform of the Dirac delta function $\delta(t-a)$ is $e^{-a s}$, so $\mathscr{L}^{-1}\{7\}=7 \delta(t)$.
h. $\mathscr{L}^{-1}\left\{\frac{s^{2}+2 s}{s^{2}+4}\right\}$.

Solution: First we want to reduce the degree of the numerator:

$$
\frac{s^{2}+2 s}{s^{2}+4}=\frac{\left(s^{2}+4\right)+(2 s-4)}{s^{2}+4}=1+\frac{2 s-4}{s^{2}+4} .
$$

Now, since the denominator is already in the form of a complete square, we see that

$$
y=\mathscr{L}^{-1}\{1\}+2 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}-2 \mathscr{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\delta(t)+2 \cos 2 t-2 \sin 2 t .
$$

i. $\mathscr{L}^{-1}\left\{\frac{s \mathscr{L}\{g\}}{s^{2}+4}\right\}$.

Solution: We can write the Laplace transformation as a product:

$$
\frac{s \mathscr{L}\{g\}}{s^{2}+4}=\left(\frac{s}{s^{2}+4}\right) \mathscr{L}\{g\} .
$$

We see that $s /\left(s^{2}+4\right)$ is the Laplace transform of $\cos 2 t$, so by the Convolution Theorem,

$$
\mathscr{L}^{-1}\left\{\frac{s \mathscr{L}\{g\}}{s^{2}+4}\right\}=(\cos 2 t) * g=\int_{0}^{t}(\cos 2(t-v)) g(v) d v .
$$

i. $\mathscr{L}^{-1}\left\{\frac{\mathscr{L}\{g\}+s}{s}\right\}$.

Solution: We first simplify the Laplace transform:

$$
\frac{\mathscr{L}\{g\}+s}{s}=\frac{\mathscr{L}\{g\}}{s}+1=\left(\frac{1}{s}\right) \mathscr{L}\{s\}+1 .
$$

The 1 on the right is the Laplace transform of $\delta(t)$, while the other term follows from the Convolution Theorem:

$$
\mathscr{L}^{-1}\left\{\left(\frac{1}{s}\right) \mathscr{L}\{g\}+1\right\}=1 * g+\delta(t)=\left(\int_{0}^{t} g(v) d v\right)+\delta(t) .
$$

Thus we could also write this answer as

$$
G(t)+\delta(t)
$$

where $G(t)$ is the antiderivative of $g(t)$.

3 Solve the integro-differentential equation

$$
y(t)+\int_{0}^{t} e^{t-v} y(v) d v=\sin t
$$

Solution: Let $Y(s)=\mathscr{L}\{y\}$. The integral on the lefthand side is the convolution $e^{t} * y$, so its Laplace transform is given by

$$
\mathscr{L}\left\{\int_{0}^{t} e^{t-v} y(v) d v\right\}=\mathscr{L}\left\{e^{t}\right\} \mathscr{L}\{y\}=\frac{Y}{s-1} .
$$

The Laplace transform of $\sin t$ is then $1 /\left(s^{2}+1\right)$. Putting these together, the Laplace transform of the entire equation is given by

$$
Y+\frac{Y}{s-1}=\frac{1}{s^{2}+1}
$$

We then see that

$$
\frac{s Y}{s-1}=\frac{1}{s^{2}+1}
$$

so

$$
Y=\frac{s-1}{s\left(s^{2}+1\right)}=\frac{2}{s+1}-\frac{1}{s},
$$

where the last equality is obtained via partial fractions. It follows that

$$
y(t)=2 e^{-t}-1 .
$$

