
MAP 2302 — Midterm 3 Review Problems 1

Midterm 3 will cover sections 7.2–7.8.

1 Solve for L {y} given the following initial value problems.

a. y′′ − 4y′ + 8y = e2t cos 3t; y(0) = 1; y′(0) = 3.

Solution: Let Y (s) = L {y}. We have

L {y} = Y,
L

{

y′
}

= sY − y(0) = sY − 1,
L

{

y′′
}

= s(L {y})− y′(0) = s2Y − s− 3,

so

L
{

y′′ − 4y′ + 8y
}

= (s2Y − s− 3)− 4(sY − 1) + 8Y = (s2 − 4s+ 8)Y + (−s+ 1).

For the righthand side, we first see that

L {cos 3t} =
s

s2 + 9
,

so using the rule L
{

eatf(t)
}

= F (s− a), where F (s) = L {f}, we see that

L
{

e2t cos 3t
}

=
s− 2

(s − 2)2 + 9
.

Putting these two together and solving for Y , we get

Y (s) =

s−2
(s−2)2+9 + s− 1

s2 − 4s+ 8
.

b. y′′ + 2y′ − 3y = et + t+ 1; y(0) = 9; y′(0) = −3.

Solution: Letting Y (s) = L {y} we have

L {y} = Y,
L

{

y′
}

= sY − y(0) = sY − 9,
L

{

y′′
}

= s(L {y})− y′(0) = s2Y − 9s+ 3,
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so

L
{

y′′ + 2y′ − 3y
}

= (s2Y − 9s + 3) + 2(sY − 9)− 3Y = (s2 + 2s− 3)Y + (−9s − 15).

For the righthand side, we have

L
{

et + t+ 1
}

=
1

s− 1
+

1

s2
+

1

s
.

Solving for Y , we get

Y =
1

s−1 +
1
s2

+ 1
s
+ 9s + 15

s2 + 2s − 3
.

c. y′′ − 4y =

{

sin t 0 < t < π,
− sin t t > π.

; y(0) = y′(0) = 0.

Solution: Letting Y (s) = L {y} we have

L {y} = Y,
L

{

y′
}

= sY − y(0) = sY,
L

{

y′′
}

= s(L {y})− y′(0) = s2Y,

so the lefthand side is transformed to

L
{

y′′ − 4y
}

= s2Y − 4Y = (s2 − 4)Y.

In order to transform the righthand side, we first convert it into Heaviside functions:

{

sin t 0 < t < π,
− sin t t > π.

= sin t− 2u(t− π) sin t

Now we use the rule that L {u(t− a)f(t)} = e−asL {f(t+ a)}, so

L {sin t− 2u(t− π) sin t} =
1

s2 + 1
− 2e−πs

L {sin(t+ π)} ,

=
1

s2 + 1
− 2e−πs

L {− sin t} ,

=
1

s2 + 1
+

2e−πs

s2 + 1
,

=
1 + 2e−πs

s2 + 1
.



MAP 2302 — Midterm 3 Review Problems 3

Solving for Y , we get

Y =
1 + 2e−πs

(s2 + 1)(s2 − 4)
.

d. y′′ + y′ − 2y = f(t), where f(t) is the fully-rectified sine wave below; y(0) = y′(0) = 1.

π 2π 3π 4π 5π 6π

1

−1

Solution: Letting Y (s) = L {y} we have

L {y} = Y,
L

{

y′
}

= sY − y(0) = sY − 1,
L

{

y′′
}

= s(L {y})− y′(0) = s2Y − s− 1,

so

L
{

y′′ + y′ − 2y
}

= (s2Y − s− 1) + (sY − 1)− 2Y = (s2 + s− 2)Y + (−s− 2).

The righthand side is a periodic function, so we use the rule that

L {f} =
L {fT }
1− e−sT

,

where T is the period of f (which in this case is π), and fT is the function over one period,
in this case,

fT =

{

sin t 0 < t < π,
0 t > π.

= sin t− u(t− π) sin t.

Thus

L {fT } = L {sin t− u(t− π) sin t} =
1

s2 + 1
− e−πs

L {sin(t+ π)} =
1 + e−πs

s2 + 1
,

so

L {f} =
1 + e−πs

(s2 + 1)(1 − e−πs)
.
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Finally, we solve for Y :

Y =

1+e
−πs

(s2+1)(1−e−πs)
+ s+ 2

s2 + s− 2
.

e. y′′ − 4y′ + ty = 0; y(0) = 1; y′(0) = 0. (Find a differential equation satisfied by L {y}.)

Solution:

L {y} = Y,
L

{

y′
}

= sY − y(0) = sY − 1,
L

{

y′′
}

= s(L {y})− y′(0) = s2Y − s.

Now we need to use the rule L {tf(t)} = − d

ds
L {f(t)} to transform ty:

L {ty} = − d

ds
L {y} = −Y ′.

Therefore the lefthand side transforms into

(s2Y − s)− 4(sY − 1)− Y ′ = (s2Y − 4s)Y − Y ′ + (−s+ 4).

Since the righthand side transforms to 0, we have

(s2Y − 4s)Y − Y ′ = s− 4.

Not that the problem asked for it, but this differential equation is very difficult (impossible?)
to solve explicitly.

f. y′′ + 4y = δ(t− 2); y(0) = y′(0) = 0. (Here δ is the Dirac delta function.)

Solution: The lefthand side transforms into

L
{

y′′ + 4y
}

= s2Y + 4Y = (s2 + 4)Y.

The righthand side transforms into e−2s, so we get

Y =
e−2s

s2 + 4
.

(This differential equation models a spring of unit mass, no damping, and spring constant
k = 4 being hit by a hammer of unit force at time t = 2.)
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g. y′′ + 5y′ − y = esin tδ(t− 3); y(0) = 0, y′(0) = 3.

Solution: Let lefthand side transforms into

(s2 + 5s− 1)Y − 3,

where Y (s) is the Laplace transform of y(t). To transform the righthand side, note that
esin tδ(t− 3) is nonzero only when t = 3, and at t = 3 it is esin 3, so

L
{

esin tδ(t− 3)
}

= L
{

esin 3δ(t− e)
}

= esin 3e−3s.

Therefore we have that

Y =
esin 3e−3s + 3

s2 + 5s − 1
.

2 Compute the following inverse Laplace transforms.

a. L −1

{

2s2 − 1

s3 + s2 − 6s

}

.

Solution: We begin by using partial fractions on the righthand side:

2s2 − 1

s3 + s2 − 6s
=

2s2 − 1

s(s2 + s− 6)
=

2s2 − 1

s(s− 2)(s + 3)
=

A

s
+

B

s− 2
+

C

s+ 3
.

Canceling denominators, we get

2s2 − 1 = A(s− 2)(s + 3) +Bs(s+ 3) + Cs(s− 2).

Plugging in s = 0, 2, and −3, we see:

−1 = −6A,

7 = 10B,

17 = 15C,
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so

A =
1

6
, B =

7

10
, C =

17

15
,

and thus
2s2 − 1

s3 + s2 − 6s
=

1

6s
+

7

10(s − 2)
+

17

15(s + 3)
.

We now just need to invert this:

y(t) = L
−1

{

1

6s
+

7

10(s − 2)
+

17

15(s + 3)

}

=
1

6
+

7

10
e2t +

17

15
e−3s.

b. L −1

{

1

s2 − 8s+ 17

}

.

Solution: Because the fraction doesn’t factor (over the real numbers), we need to complete
the square:

1

s2 − 8s+ 17
=

1

(s− 4) + 1
.

Therefore y is a shifted es times sin:

y(t) = e4s sin t.

c. L −1

{

9− s2

(s2 + 9)2

}

.

Solution: This one takes a bit of thought. What rule would give us that denominator?
Well, we know that

L {sin 3t} =
3

s2 + 9
,

so using the L {tf(t)} rule, we see that

L {t sin 3t} = − d

ds

3

s2 + 9
= − 6s

(s2 + 9)2
.
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This isn’t quite what we were looking for, so let’s try t cos 3t instead:

L {t cos 3t} = − d

ds

s

s2 + 9
= − 9− s2

(s2 + 9)2
=

s2 − 9

(s2 + 9)2
.

The transform we were given is the negative us this, so

L
−1

{

9− s2

(s2 + 9)2

}

= −t cos 3t.

d. L −1

{

3s

s2 + 4s+ 6

}

.

Solution: The denominator doesn’t factor, so we need to complete the square:

3s

s2 + 4s+ 6
=

3s

(s+ 2)2 + 2
.

This shows that y will be a linear combination of e−2t cos
√
2t and e−2t sin

√
2t. We just need

to get it in the right form. Be careful here; for the term that corresponds to e−2t cos
√
2t we

need to get an s+ 2 in the numerator:

3s

(s+ 2)2 + 2
= 3

s+ 2

(s+ 2)2 + 2
− 3

√
2

√
2

(s+ 2)2 + 2

We then see that

y = 3e−2t cos
√
2t− 3

√
2e−2t sin

√
2t.

e. L −1

{

(1− e−s)2

s3

}

.
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Solution: We are going to end up with Heaviside functions here because of the e−s term in
the numerator. To start, we want to expand that numerator:

(1− e−s)2

s3
=

1− 2e−s + e−2s

s3
=

1

s3
− 2

e−s

s3
+

e−2s

s3
.

The first fraction just gives us t2/2. We have to work a bit harder for the second fraction:

e−s

(

− 2

s3

)

= L {u(t− 1)f(t)} = e−s
L {f(t+ 1)} ,

so f(t+ 1) = −t2, and thus f(t) = −(t− 1)2, so

L
−1

{

e−s

(

− 2

s3

)}

= −(t− 1)2u(t− 1).

The third fraction is similar:

L
−1

{

e−2s

s3

}

=
1

2
(t− 2)2u(t− 2).

Therefore,

y =
t2

2
− (t− 1)2u(t− 1) +

1

2
(t− 2)2u(t− 2).

f. L −1

{

e−πs

s2 + 2s+ 5

}

.

Solution: Again with the Heaviside functions! We will need to complete the square at some
point, so let’s do it first:

e−πs

s2 + 2s+ 5
=

e−πs

(s+ 1)2 + 22
.

Now we know we’ll have a u(t− π) because of the e−πs, so

e−πs

(s + 1)2 + 22
= L {u(t− π)f(t)} = e−πs

L {f(t+ π)} .

We see therefore that

f(t+ π) = L
−1

{

1

(s+ 1)2 + 22

}

=
1

2
L

−1

{

2

(s+ 1)2 + 22

}

,
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and thus f(t+ π) = 1
2e

−t sin 2t, so

f(t) =
1

2
e−t−π sin(2(t− π)).

We could at this point notice that sin(2t − 2π) = sin 2t (sin is periodic of period 2π), which
would show us that

y =
1

2
u(t− π)e−t−π sin 2t

g. L −1 {7}.

Solution: The Laplace transform of the Dirac delta function δ(t − a) is e−as, so
L −1 {7} = 7δ(t).

h. L −1

{

s2 + 2s

s2 + 4

}

.

Solution: First we want to reduce the degree of the numerator:

s2 + 2s

s2 + 4
=

(s2 + 4) + (2s− 4)

s2 + 4
= 1 +

2s− 4

s2 + 4
.

Now, since the denominator is already in the form of a complete square, we see that

y = L
−1 {1}+ 2L −1

{

s

s2 + 4

}

− 2L −1

{

2

s2 + 4

}

= δ(t) + 2 cos 2t− 2 sin 2t.

i. L −1

{

sL {g}
s2 + 4

}

.
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Solution: We can write the Laplace transformation as a product:

sL {g}
s2 + 4

=

(

s

s2 + 4

)

L {g} .

We see that s/(s2 + 4) is the Laplace transform of cos 2t, so by the Convolution Theorem,

L
−1

{

sL {g}
s2 + 4

}

= (cos 2t) ∗ g =

∫

t

0
(cos 2(t− v))g(v) dv.

i. L −1

{

L {g} + s

s

}

.

Solution: We first simplify the Laplace transform:

L {g} + s

s
=

L {g}
s

+ 1 =

(

1

s

)

L {s}+ 1.

The 1 on the right is the Laplace transform of δ(t), while the other term follows from the
Convolution Theorem:

L
−1

{(

1

s

)

L {g}+ 1

}

= 1 ∗ g + δ(t) =

(
∫

t

0
g(v) dv

)

+ δ(t).

Thus we could also write this answer as

G(t) + δ(t),

where G(t) is the antiderivative of g(t).

3 Solve the integro-differentential equation

y(t) +

∫

t

0
et−vy(v) dv = sin t.
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Solution: Let Y (s) = L {y}. The integral on the lefthand side is the convolution et ∗ y, so
its Laplace transform is given by

L

{
∫

t

0
et−vy(v) dv

}

= L
{

et
}

L {y} =
Y

s− 1
.

The Laplace transform of sin t is then 1/(s2+1). Putting these together, the Laplace transform
of the entire equation is given by

Y +
Y

s− 1
=

1

s2 + 1
.

We then see that
sY

s− 1
=

1

s2 + 1
,

so

Y =
s− 1

s(s2 + 1)
=

2

s+ 1
− 1

s
,

where the last equality is obtained via partial fractions. It follows that

y(t) = 2e−t − 1.


