1 Find all singular points of the following differential equations.
a. $\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}+2 y=0$.

Solution: When put in standard form, this equation is

$$
y^{\prime \prime}+\frac{x}{x^{2}-1} y^{\prime}+\frac{2}{x^{2}-1} y=0 .
$$

The functions $x /\left(x^{2}-1\right)$ and $2 /\left(x^{2}-1\right)$ are analytic everywhere except $x= \pm 1$, so those are the singular points.
b. $x^{3}\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$.

Solution: In standard form, this equation is

$$
y^{\prime \prime}+\frac{1}{x^{2}\left(x^{2}+1\right)} y^{\prime}-\frac{1}{x^{3}\left(x^{2}+1\right)} y=0
$$

so the only singular point is $x=0$.
c. $\left(x^{2}-2\right) y^{\prime \prime}+\sqrt{2} y^{\prime}-(\sin x) y=0$.

Solution: In standard form, this equation is

$$
y^{\prime \prime}+\frac{\sqrt{2}}{x^{2}-2} y^{\prime} \frac{\sin x}{x^{2}-2} y=0
$$

so the singular points are $x= \pm \sqrt{2}$.
d. $(\sin x) y^{\prime \prime}+\pi y^{\prime}-(\sin x) y=0$.

Solution: In standard form, this equation is

$$
y^{\prime \prime}+\frac{\pi}{\sin x}-y=0
$$

so the singular points are $x=\pi n$ for all integers n.
e. $x y^{\prime \prime}+(\sin x) y=0$.

Solution: In standard form, the equation is

$$
y^{\prime \prime}+\frac{\sin x}{x} y=0 .
$$

While it might look like 0 is a singular point, it is actually a removable discontinuity, and $(\sin x) / x$ is analytic near 0 . Its power series is given by

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n+1)!}
$$

2 Find the first four terms in a power series expansion at $x=0$ for a general solution to the given differential equation.
a. $y^{\prime}+(x+2) y=1$.

Solution: Let

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Then

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
$$

so

$$
\begin{aligned}
y^{\prime}+(x+2) y & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+(x+2)\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right), \\
& =\left(2 a_{0}+a_{1}\right)+\left(a_{0}+2 a_{1}+2 a_{2}\right) x+\left(a_{1}+2 a_{2}+3 a_{3}\right) x^{2}+\cdots .
\end{aligned}
$$

For this to equal 1 we see that

$$
\begin{aligned}
& a_{1}=1-2 a_{0}, \\
& a_{2}=-\frac{2 a_{1}+a_{0}}{2}=-1+\frac{3}{2} a_{0}, \\
& a_{3}=-\frac{2 a_{2}+a_{1}}{3}=\frac{1}{3}-\frac{a_{0}}{3} .
\end{aligned}
$$

Therefore the first four terms of y are

$$
a_{0}+\left(1-2 a_{0}\right) x+\left(-1+\frac{3}{2} a_{0}\right) x^{2}+\left(\frac{1}{3}-\frac{a_{0}}{3}\right) x^{3} .
$$

b. $y^{\prime}-(\sin x) y=0$.

Solution: Let

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots .
$$

Then

$$
\begin{aligned}
y^{\prime}-(\sin x) y & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots-\left(x-\frac{x^{3}}{6}+\cdots\right)\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right) \\
& =a_{1}+\left(2 a_{2}-a_{0}\right) x+\left(3 a_{3}-a_{1}\right) x^{2}+\cdots
\end{aligned}
$$

so we see that

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2} \\
& a_{3}=\frac{a_{1}}{3}=0 .
\end{aligned}
$$

The first four terms of y are then

$$
a_{0}+\frac{a_{0}}{2} x^{2} .
$$

c. $e^{2 x} y^{\prime}-y=e^{x}$.

Solution: We know that

$$
\begin{aligned}
e^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots \\
e^{2 x} & =1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\cdots
\end{aligned}
$$

so letting $y=a_{0}+a_{1} x+\cdots$, the lefthand of this equation side becomes

$$
\begin{aligned}
e^{2 x} y^{\prime}-y & =\left(1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\cdots\right)\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots\right)-\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right) \\
& =\left(-a_{0}+a_{1}\right)+\left(a_{1}+2 a_{2}\right) x+\left(2 a_{1}+3 a_{2}+3 a_{3}\right) x^{2}+\cdots
\end{aligned}
$$

We want this to equal the first few terms of the expansion of e^{x}, so we get

$$
\begin{aligned}
& a_{1}=1+a_{0}, \\
& a_{2}=\frac{1-a_{1}}{2}=-\frac{a_{0}}{2}, \\
& a_{3}=\frac{\frac{1}{2}-2 a_{1}-3 a_{2}}{3}=-\frac{1}{2}-\frac{a_{0}}{6} .
\end{aligned}
$$

So the first four terms of the expansion of y are

$$
a_{0}+\left(1+a_{0}\right) x-\frac{a_{0}}{2} x^{2}+\left(-\frac{1}{2}-\frac{a_{0}}{6}\right) x^{3} .
$$

d. $y^{\prime \prime}-x y^{\prime}+x^{4} y=\sin x$.

Solution: Making the usual substitution transforms the lefthand side into

$$
y^{\prime \prime}-x y^{\prime}+x^{4} y=2 a_{2}+\left(6 a_{3}-a_{1}\right) x+\cdots .
$$

For this to equal $\sin x=x-x^{3} / 6+\cdots$, we want

$$
\begin{aligned}
2 a_{2} & =0 \\
6 a_{3}-a_{1} & =1
\end{aligned}
$$

This shows that $a_{2}=0$ and $a_{3}=\left(1+a_{1}\right) / 6$, giving the first four terms as

$$
a_{0}+a_{1} x+\frac{1+a_{1}}{6} x^{3} .
$$

3 Find the general solution for the following differential equations. (Your answer should contain a recurrence relation for the power series coefficients.)
a. $y^{\prime \prime}+4 y=0$.

Solution: We have

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} .
\end{aligned}
$$

By reindexing, we can rewrite $y^{\prime \prime}$ as

$$
y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

We can now combine the two series:

$$
y^{\prime \prime}+4 y=\sum_{n=0}^{\infty}\left((n+2)(n+1) a_{n+2}+4 a_{n}\right) x^{n}=0 .
$$

This shows that for $n \geq 0$,

$$
a_{n+2}=\frac{-4 a_{n}}{(n+2)(n+1)} .
$$

b. $y^{\prime}+(x-2) y=0$.

Solution: Here we begin with

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}, \\
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} .
\end{aligned}
$$

Now we need to expand $(x-2) y$:

$$
(x-2) y=\sum_{n=0}^{\infty} a_{n} x^{n+1}+\sum_{n=0}^{\infty}-2 a_{n} x^{n} .
$$

We want to express each series in terms of x^{n}. To do this for y^{\prime} we just reindex, but the $x y$ terms presents a different challenge. Expanding this out, we see

$$
\sum_{n=0}^{\infty} a_{n} x^{n+1}=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n} .
$$

Now we need to make all of the summations start at the same value $(n=1)$. We do this by expressing their $n=0$ terms separately (after we reindex the y^{\prime} series):

$$
\left(a_{1}+\sum_{n=1}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\left(-2 a_{0}+\sum_{n=1}^{\infty}-2 a_{n} x^{n}\right)=0 .
$$

Immediately we see from the constants that $a_{1}=2 a_{0}$. Combining the other terms, we have

$$
\sum_{n=1}^{\infty}\left((n+1) a_{n+1}+a_{n-1}-2 a_{n}\right) x^{n}=0 .
$$

This shows that for $n \geq 1$,

$$
a_{n+1}=\frac{-a_{n-1}+2 a_{n}}{n+1} .
$$

c. $y^{\prime \prime}+x^{2} y=0$.

Solution: We substitute

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}, \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} .
\end{aligned}
$$

This means that

$$
x^{2} y=\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

while

$$
y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

In order to combine these two series, we must separate off the first two terms of the series for $y^{\prime \prime}$:

$$
\left(2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)=0 .
$$

This shows immediately that $a_{2}=a_{3}=0$, and for $n \geq 2$,

$$
a_{n+2}=\frac{a_{n-2}}{(n+2)(n+1)} .
$$

4 The function $f(t)$ is said to be eventually bounded if there is a constant M such that $|f(t)|<M$ for all sufficiently large t. Use the mass-spring analogy to determine whether all solutions to each of the following differential equations are eventually bounded.
a. $y^{\prime \prime}+t^{2} y=0$.

Solution: Yes. We can think of this as modeling a spring with stiffness t^{2}. As $t \rightarrow \infty$, this stiffness increases, so the solutions are eventually bounded.
b. $y^{\prime \prime}-t^{2} y=0$.

Solution: No. As $t \rightarrow \infty$, the stiffness factor $-t^{2}$ decreases, thus there are solutions that are not eventually bounded.
c. $y^{\prime \prime}+y^{6}=0$.

Solution: No. The stiffness constant here is y^{5}. If y starts out negative, this will be a negative number, forcing the "mass" further to the negative side of equilibrium. Therefore there are solutions which are not eventually bounded.
d. $y^{\prime \prime}+(4+2 \cos t) y=0$ (Mathieu's equation).

Solution: Yes. The stiffness factor is between 2 and 6 for all t.

5 The following differential equations represent the movement of a mass-spring system. For each, determine if it is underdamped, overdamped, or critically damped.
a. $y^{\prime \prime}+5 y^{\prime}+6 y=0$.

Solution: The characteristic polynomial

$$
r^{2}+5 r+6=(r+2)(r+3)
$$

has roots at $r=-2,-3$, so the differential equation is overdamped.
b. $y^{\prime \prime}+12 y^{\prime}+36 y=0$.

Solution: The characteristic polynomial

$$
r^{2}+12 r+36=(r+6)^{2}
$$

has a repeated root at $r=-6$, so the differential equation is critically damped.
c. $y^{\prime \prime}+\frac{9}{2} y^{\prime}+2 y=0$.

Solution: The characteristic polynomial

$$
r^{2}+\frac{9}{2} r+2=\frac{(r+4)(2 r+1)}{2}
$$

has roots at $r=-4,-1 / 2$, so the differential equation is overdamped.
d. $y^{\prime \prime}+4 y^{\prime}+13 y=0$.

Solution: The characteristic polynomial

$$
r^{2}+4 r+13
$$

has complex roots $r=-2 \pm 3 i$, so the system is underdamped.

6 A $1 / 8 \mathrm{~kg}$ mass is attached to a spring with stiffness $16 \mathrm{~N} / \mathrm{m}$. The damping constant (friction coefficient) for the system is 2 N -sec $/ \mathrm{m}$. If the mass is moved $3 / 4 \mathrm{~m}$ to the left of equilibrium and given an initial leftward (negative) velocity of $2 \mathrm{~m} / \mathrm{sec}$, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency.

Solution: The corresponding differential equation is

$$
\frac{1}{8} y^{\prime \prime}+2 y^{\prime}+16 y=0
$$

with initial conditions $y(0)=-3 / 4, y^{\prime}(0)=-2$. The general solution to this equation is

$$
y=C e^{-8 t} \cos 8 t+D e^{-8 t} \sin 8 t
$$

solving for the constants C and D gives the equation

$$
y=-\frac{3}{4} e^{-8 t} \cos 8 t-e^{-8 t} \sin 8 t
$$

The damping factor is $e^{-8 t}$, the amplitude is $\sqrt{13} / 4$, the quasiperiod is $2 \pi / \beta=\pi / 4$, and the quasifrequency is $4 / \pi$.

7 At what time does the mass in the previous problem first return to equilibrium?

Solution: To answer the question we need to convert the answer in the previous problem to the form

$$
y=A e^{\alpha t} \sin (\beta t+\phi)=A e^{\alpha t} \cos \beta t \sin \phi+A e^{\alpha t} \sin \beta t \cos \phi .
$$

The above equation shows that we have

$$
A=\sqrt{\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{13}}{4},
$$

and

$$
\tan \phi=\frac{3}{2} .
$$

Because we need both $\sin \phi$ and $\cos \phi$ to be negative, ϕ is not $\arctan 3 / 2$, but actually

$$
\phi=\pi+\arctan 3 / 2 .
$$

Thus $y(t)=0$ when

$$
8 t+\pi+\arctan 3 / 2=n \pi
$$

for an integer n. The first time this happens is at

$$
t=\frac{\pi-\arctan 3 / 2}{8}
$$

8 A 10 kg weight is attached to a vertical spring with damping constant $2 \mathrm{~kg}-\mathrm{s} / \mathrm{m}$. At rest, the spring is stretched 2 m . What is the spring constant of this spring? (Acceleration due to gravity near the surface of the Earth is approximately $9.8 \mathrm{~m} / \mathrm{s}^{2}$.)

Solution: A vertical spring system will hang at equilibrium mg / k. Therefore in this system, $98 / k=2$, so $k=49$.

9 Determine the equation of motion for an undamped system at resonance governed by

$$
y^{\prime \prime}+16 y=2 \cos 4 t, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

Solution: This question is just asking us to solve an IVP. The homogeneous solution is

$$
y_{h}=C \cos 4 t+D \sin 4 t
$$

For the particular solution, we guess $y_{p}=A t \cos 4 t+B t \sin 4 t$. We then compute:

$$
\begin{aligned}
y_{p} & =A t \cos 4 t+B t \sin 4 t \\
y_{p}^{\prime} & =(A+4 B t) \cos 4 t+(B-4 A t) \sin 4 t \\
y_{p}^{\prime \prime} & =(8 B-16 A t) \cos 4 t+(-8 A-16 B t) \sin 4 t .
\end{aligned}
$$

Substituting into the differential equation, we get

$$
8 B \cos 4 t-8 A \sin 4 t=2 \cos 4 t,
$$

so we want $A=0$ and $B=1 / 4$.
Our solution (so far) is

$$
y=C \cos 4 t+D \sin 4 t+\frac{t}{4} \sin 4 t
$$

and we just have to match the initial conditions. This requires $C=1$ and $D=0$, so the final solution is

$$
y=\cos 4 t+\frac{t}{4} \sin 4 t .
$$

10 A 1 kg mass is attached to a horizontal spring with damping constant $2 \mathrm{~kg}-\mathrm{s} / \mathrm{m}$ and spring constant $1 \mathrm{~N} / \mathrm{m}$. Does this system have a resonance frequency?

Solution: The corresponding differential equation is

$$
y^{\prime \prime}+2 y^{\prime}+y=0 .
$$

The solution is therefore $y=C e^{-t}+D t e^{-t}$. This is a critically damped system, and we know that only underdamped systems can have resonance frequencies, so the answer is no.

