
MAP 2302 — Midterm 4 Review Problems 1

1 Find all singular points of the following differential equations.

a. (x2 − 1)y′′ + xy′ + 2y = 0.

Solution: When put in standard form, this equation is

y′′ +
x

x2 − 1
y′ +

2

x2 − 1
y = 0.

The functions x/(x2 − 1) and 2/(x2 − 1) are analytic everywhere except x = ±1, so those are
the singular points.

b. x3(x2 + 1)y′′ + xy′ − y = 0.

Solution: In standard form, this equation is

y′′ +
1

x2(x2 + 1)
y′ − 1

x3(x2 + 1)
y = 0,

so the only singular point is x = 0.

c. (x2 − 2)y′′ +
√
2y′ − (sinx)y = 0.

Solution: In standard form, this equation is

y′′ +

√
2

x2 − 2
y′

sinx

x2 − 2
y = 0,

so the singular points are x = ±
√
2.
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d. (sinx)y′′ + πy′ − (sin x)y = 0.

Solution: In standard form, this equation is

y′′ +
π

sinx
− y = 0,

so the singular points are x = πn for all integers n.

e. xy′′ + (sinx)y = 0.

Solution: In standard form, the equation is

y′′ +
sinx

x
y = 0.

While it might look like 0 is a singular point, it is actually a removable discontinuity, and
(sinx)/x is analytic near 0. Its power series is given by

sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · · =

∞
∑

n=0

(−1)n
x2n

(2n+ 1)!
.

2 Find the first four terms in a power series expansion at x = 0 for a general solution to the
given differential equation.

a. y′ + (x+ 2)y = 1.

Solution: Let
y = a0 + a1x+ a2x

2 + a3x
3 + · · · .

Then
y′ = a1 + 2a2x+ 3a3x

2 + · · · ,
so

y′ + (x+ 2)y = a1 + 2a2x+ 3a3x
2 + · · ·+ (x+ 2)(a0 + a1x+ a2x

2 + a3x
3 + · · · ),

= (2a0 + a1) + (a0 + 2a1 + 2a2)x+ (a1 + 2a2 + 3a3)x
2 + · · · .
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For this to equal 1 we see that

a1 = 1− 2a0,

a2 = −2a1 + a0
2

= −1 +
3

2
a0,

a3 = −2a2 + a1
3

=
1

3
− a0

3
.

Therefore the first four terms of y are

a0 + (1− 2a0)x+

(

−1 +
3

2
a0

)

x2 +

(

1

3
− a0

3

)

x3.

b. y′ − (sinx)y = 0.

Solution: Let
y = a0 + a1x+ a2x

2 + a3x
3 + · · · .

Then

y′ − (sinx)y = a1 + 2a2x+ 3a3x
2 + · · · −

(

x− x3

6
+ · · ·

)

(

a0 + a1x+ a2x
2 + a3x

3 + · · ·
)

,

= a1 + (2a2 − a0)x+ (3a3 − a1)x
2 + · · ·

so we see that
a1 = 0,

a2 =
a0
2
,

a3 =
a1
3

= 0.

The first four terms of y are then

a0 +
a0
2
x2.

c. e2xy′ − y = ex.
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Solution: We know that

ex = 1 + x+
1

2
x2 +

1

6
x3 + · · · ,

e2x = 1 + 2x+ 2x2 +
4

3
x3 + · · · ,

so letting y = a0 + a1x+ · · · , the lefthand of this equation side becomes

e2xy′ − y =

(

1 + 2x+ 2x2 +
4

3
x3 + · · ·

)

(a1 + 2a2x+ 3a3x
2 + · · · )−

(

a0 + a1x+ a2x
2 + a3x

3 + · · ·
)

= (−a0 + a1) + (a1 + 2a2)x+ (2a1 + 3a2 + 3a3)x
2 + · · · .

We want this to equal the first few terms of the expansion of ex, so we get

a1 = 1 + a0,

a2 =
1− a1

2
= −a0

2
,

a3 =
1

2
− 2a1 − 3a2

3
= −1

2
− a0

6
.

So the first four terms of the expansion of y are

a0 + (1 + a0)x− a0
2
x2 +

(

−1

2
− a0

6

)

x3.

d. y′′ − xy′ + x4y = sinx.

Solution: Making the usual substitution transforms the lefthand side into

y′′ − xy′ + x4y = 2a2 + (6a3 − a1)x+ · · · .

For this to equal sinx = x− x3/6 + · · · , we want

2a2 = 0,

6a3 − a1 = 1.

This shows that a2 = 0 and a3 = (1 + a1)/6, giving the first four terms as

a0 + a1x+
1 + a1

6
x3.
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3 Find the general solution for the following differential equations. (Your answer should contain
a recurrence relation for the power series coefficients.)

a. y′′ + 4y = 0.

Solution: We have

y =
∞
∑

n=0

anx
n,

y′′ =

∞
∑

n=2

n(n− 1)anx
n−2.

By reindexing, we can rewrite y′′ as

y′′ =
∞
∑

n=0

(n+ 2)(n + 1)an+2x
n.

We can now combine the two series:

y′′ + 4y =
∞
∑

n=0

((n + 2)(n + 1)an+2 + 4an)x
n = 0.

This shows that for n ≥ 0,

an+2 =
−4an

(n+ 2)(n + 1)
.

b. y′ + (x− 2)y = 0.

Solution: Here we begin with

y =
∞
∑

n=0

anx
n,

y′ =

∞
∑

n=1

nanx
n−1.
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Now we need to expand (x− 2)y:

(x− 2)y =
∞
∑

n=0

anx
n+1 +

∞
∑

n=0

−2anx
n.

We want to express each series in terms of xn. To do this for y′ we just reindex, but the xy
terms presents a different challenge. Expanding this out, we see

∞
∑

n=0

anx
n+1 = a0x+ a1x

2 + a2x
3 + · · · =

∞
∑

n=1

an−1x
n.

Now we need to make all of the summations start at the same value (n = 1). We do this by
expressing their n = 0 terms separately (after we reindex the y′ series):

(

a1 +

∞
∑

n=1

(n+ 1)an+1x
n

)

+

(

∞
∑

n=1

an−1x
n

)

+

(

−2a0 +

∞
∑

n=1

−2anx
n

)

= 0.

Immediately we see from the constants that a1 = 2a0. Combining the other terms, we have

∞
∑

n=1

((n+ 1)an+1 + an−1 − 2an) x
n = 0.

This shows that for n ≥ 1,

an+1 =
−an−1 + 2an

n+ 1
.

c. y′′ + x2y = 0.

Solution: We substitute

y =

∞
∑

n=0

anx
n,

y′′ =

∞
∑

n=2

n(n− 1)anx
n−2.

This means that

x2y =

∞
∑

n=0

anx
n+2 =

∞
∑

n=2

an−2x
n,
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while

y′′ =
∞
∑

n=0

(n+ 2)(n + 1)an+2x
n.

In order to combine these two series, we must separate off the first two terms of the series for
y′′:

(

2a2 + 6a3x+

∞
∑

n=2

(n+ 2)(n + 1)an+2x
n

)

+

(

∞
∑

n=2

an−2x
n

)

= 0.

This shows immediately that a2 = a3 = 0, and for n ≥ 2,

an+2 =
an−2

(n+ 2)(n + 1)
.

4 The function f(t) is said to be eventually bounded if there is a constantM such that |f(t)| < M
for all sufficiently large t. Use the mass-spring analogy to determine whether all solutions to
each of the following differential equations are eventually bounded.

a. y′′ + t2y = 0.

Solution: Yes. We can think of this as modeling a spring with stiffness t2. As t → ∞, this
stiffness increases, so the solutions are eventually bounded.

b. y′′ − t2y = 0.

Solution: No. As t → ∞, the stiffness factor −t2 decreases, thus there are solutions that
are not eventually bounded.

c. y′′ + y6 = 0.



MAP 2302 — Midterm 4 Review Problems 8

Solution: No. The stiffness constant here is y5. If y starts out negative, this will be a
negative number, forcing the “mass” further to the negative side of equilibrium. Therefore
there are solutions which are not eventually bounded.

d. y′′ + (4 + 2 cos t)y = 0 (Mathieu’s equation).

Solution: Yes. The stiffness factor is between 2 and 6 for all t.

5 The following differential equations represent the movement of a mass-spring system. For
each, determine if it is underdamped, overdamped, or critically damped.

a. y′′ + 5y′ + 6y = 0.

Solution: The characteristic polynomial

r2 + 5r + 6 = (r + 2)(r + 3)

has roots at r = −2,−3, so the differential equation is overdamped.

b. y′′ + 12y′ + 36y = 0.

Solution: The characteristic polynomial

r2 + 12r + 36 = (r + 6)2

has a repeated root at r = −6, so the differential equation is critically damped.

c. y′′ + 9

2
y′ + 2y = 0.
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Solution: The characteristic polynomial

r2 +
9

2
r + 2 =

(r + 4)(2r + 1)

2

has roots at r = −4,−1/2, so the differential equation is overdamped.

d. y′′ + 4y′ + 13y = 0.

Solution: The characteristic polynomial

r2 + 4r + 13

has complex roots r = −2± 3i, so the system is underdamped.

6 A 1/8 kg mass is attached to a spring with stiffness 16 N/m. The damping constant (friction
coefficient) for the system is 2 N-sec/m. If the mass is moved 3/4 m to the left of equilibrium
and given an initial leftward (negative) velocity of 2 m/sec, determine the equation of motion
of the mass and give its damping factor, quasiperiod, and quasifrequency.

Solution: The corresponding differential equation is

1

8
y′′ + 2y′ + 16y = 0,

with initial conditions y(0) = −3/4, y′(0) = −2. The general solution to this equation is

y = Ce−8t cos 8t+De−8t sin 8t.

solving for the constants C and D gives the equation

y = −3

4
e−8t cos 8t− e−8t sin 8t.

The damping factor is e−8t, the amplitude is
√
13/4, the quasiperiod is 2π/β = π/4, and the

quasifrequency is 4/π.
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7 At what time does the mass in the previous problem first return to equilibrium?

Solution: To answer the question we need to convert the answer in the previous problem
to the form

y = Aeαt sin(βt+ φ) = Aeαt cos βt sinφ+Aeαt sin βt cosφ.

The above equation shows that we have

A =

√

(

3

4

)2

+

(

1

2

)2

=

√
13

4
,

and

tan φ =
3

2
.

Because we need both sinφ and cosφ to be negative, φ is not arctan 3/2, but actually

φ = π + arctan 3/2.

Thus y(t) = 0 when

8t+ π + arctan 3/2 = nπ

for an integer n. The first time this happens is at

t =
π − arctan 3/2

8
.

8 A 10 kg weight is attached to a vertical spring with damping constant 2 kg-s/m. At rest,
the spring is stretched 2 m. What is the spring constant of this spring? (Acceleration due to
gravity near the surface of the Earth is approximately 9.8 m/s2.)

Solution: A vertical spring system will hang at equilibrium mg/k. Therefore in this system,
98/k = 2, so k = 49.
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9 Determine the equation of motion for an undamped system at resonance governed by

y′′ + 16y = 2cos 4t, y(0) = 1, y′(0) = 0.

Solution: This question is just asking us to solve an IVP. The homogeneous solution is

yh = C cos 4t+D sin 4t.

For the particular solution, we guess yp = At cos 4t+Bt sin 4t. We then compute:

yp = At cos 4t+Bt sin 4t,

y′p = (A+ 4Bt) cos 4t+ (B − 4At) sin 4t,

y′′p = (8B − 16At) cos 4t+ (−8A− 16Bt) sin 4t.

Substituting into the differential equation, we get

8B cos 4t− 8A sin 4t = 2cos 4t,

so we want A = 0 and B = 1/4.

Our solution (so far) is

y = C cos 4t+D sin 4t+
t

4
sin 4t,

and we just have to match the initial conditions. This requires C = 1 and D = 0, so the final
solution is

y = cos 4t+
t

4
sin 4t.

10 A 1 kg mass is attached to a horizontal spring with damping constant 2 kg-s/m and spring
constant 1 N/m. Does this system have a resonance frequency?

Solution: The corresponding differential equation is

y′′ + 2y′ + y = 0.

The solution is therefore y = Ce−t+Dte−t. This is a critically damped system, and we know
that only underdamped systems can have resonance frequencies, so the answer is no.


