MAP 2302 — Midterm 4 Review Problems 1

Find all singular points of the following differential equations.

a. (22 —1)y" +ay +2y=0.

Solution: When put in standard form, this equation is

T n 2 _
217 T2 1Y T

Y+ 0.

The functions z/(x? — 1) and 2/(2% — 1) are analytic everywhere except x = +1, so those are
the singular points.

b. 232?24+ 1)y + 2y —y = 0.

Solution: In standard form, this equation is

1 ) 1

!
— — O’
Y +x2(w2+1)y w3(w2+1)y
so the only singular point is = 0.
c. (2 —2)y" + 2y — (sinz)y = 0.
Solution: In standard form, this equation is
V2 sinx
" /
———y =0
y+x2—2yw2—2y )

so the singular points are z = ++/2.
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d. (sinz)y” + 7wy’ — (sinz)y = 0.

Solution: In standard form, this equation is

!

so the singular points are x = 7n for all integers n.

e. xy” + (sinz)y = 0.

Solution: In standard form, the equation is

sinx

Y+ y = 0.

While it might look like O is a singular point, it is actually a removable discontinuity, and
(sinz)/x is analytic near 0. Its power series is given by

: 2 4 6 o 2n
ST X X X X
x TR n;)( ) (2n +1)!

Find the first four terms in a power series expansion at x = 0 for a general solution to the
given differential equation.

a. ¥+ (x+2)y =1

Solution: Let
y:ao—l—a1x+a2x2+a3x3+--- .

Then
Y = ay + 2a0x + 3azz® + -,

SO

Y+ (@x+2y = a1+ 2az+3a32> + - + (v +2)(ap + a17 + aga® + azz® + ),
= (2a0+ a1) + (ap + 2a1 + 2a2)z + (a1 + 2a2 +3a3)3:2 4+
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For this to equal 1 we see that

a; = 1-— 2&0,
2a1 + ag 3
e e
as 5 + 2&0,
- 2a9 + a1 B 1  ag
“@o= 3 3 3

Therefore the first four terms of y are

1
ap + (1 — 2ap)x + (—1 + gcm) z® + <§ - %) 3,

b. ¢y — (sinz)y = 0.

Solution: Let
y:ao—l—a1x+a2x2+a3x3+-~.
Then
/ . 2 a 2 3
y — (sinz)y = aj+2a9x+ 3agz”+ - — w—g—k--- (a0+a1m+a2x + azx +---),
= a1+(2a2—ao)w—i-(?)ag—al)xz—i—”'

so we see that

a = 0,
az = 9
ai
as = ? = 0.
The first four terms of y are then
ag + @wQ
2

c. 2y —y ="
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Solution: We know that

1 1
T _ 2 3,
e +;U—|—2;L" —1—6:1: + )
4
e = 1+2$+2$2+§ZL’3+"',
so letting y = ag + a1x + - - -, the lefthand of this equation side becomes
4
ey —y = <1+2$+2$2+§$3+--->(a1—|—2a2:13—|—3a3x2+'~)—(ao+a1x—|—a2x2—|—a3x3—|—---)

= (—ag+a1)+ (a1 + 2a2)x + (2a1 + 3ag + 3a3)z* + - - - .

We want this to equal the first few terms of the expansion of e*, so we get

ap = 1+ ayp,
0 1—a; _ @
2 = 2 - 27
N %—2&1—3&2 N 1 a
ay = ——F— = —= - —.
3 2 6

So the first four terms of the expansion of y are

a 1 a
ap+ (1 +ap)zr — ?sz + <—— — —0> x3.

d. v —zy + 2%y = sinx.

Solution: Making the usual substitution transforms the lefthand side into

Y —ay +a'y = 209+ (6az —a)x+ - .
For this to equal sinz =z — 23/6 + - - -, we want
2(12 = 0,
6(13—&1 =

This shows that as = 0 and a3z = (1 + a;)/6, giving the first four terms as
14+ a1

ag +a1x + z>.
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Find the general solution for the following differential equations. (Your answer should contain
a recurrence relation for the power series coefficients.)

a. y' +4y=0.

Solution: We have

oo

Yy = Z anpx",

n=0
oo

Yy = E n(n — 1)ap,z" 2
n=2
By reindexing, we can rewrite y” as

o0

y' = Z(n +2)(n + 1)ap22™.

n=0

We can now combine the two series:
o

V' +ay = (n+2)(n+ Danse +4a,) 2" = 0.
n=0

This shows that for n > 0,

a _ —4ay,
T )+ 1)

b. ¥+ (x—2)y =0.

Solution: Here we begin with



MAP 2302 — Midterm 4 Review Problems 6

Now we need to expand (x — 2)y:

[e.e] o0
(x —2)y = Z anx™ Tt 4 Z —2apz"
n=0 n=0

We want to express each series in terms of 2. To do this for 3’ we just reindex, but the zy
terms presents a different challenge. Expanding this out, we see

o0 o0
E anz" ™t = apz + a12? + agr® + -+ = E 12"

Now we need to make all of the summations start at the same value (n = 1). We do this by
expressing their n = 0 terms separately (after we reindex the 3’ series):

<a1 + Z(" + 1)an+1$"> + (Z an_lx"> + <—2ao + Z —2anx"> =0.
n=1 n=1

n=1

Immediately we see from the constants that a; = 2ag. Combining the other terms, we have
o
Z (n+ 1)aps1 + an—1 — 2a,) 2™ = 0.
n=1

This shows that for n > 1,

—Qp—1+ 2an
Gntl =" 1
7 2,
c. ¥y +z*y=0.
Solution: We substitute
o0
y = Z anxna
n=0
o0
"= Zn(n — Dayz"?
n=2
This means that -

n=2
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while

00
y” = Z(n + 2)(TL + 1)an+2$".
n=0

In order to combine these two series, we must separate off the first two terms of the series for

.
(2@2 + Gazx + Z(n +2)(n+ 1)an+2m"> + (Z an_gx”> =0.

Yy
n=2

This shows immediately that as = ag = 0, and for n > 2,

Gy = — In=2
T+ 2)(n+ 1)

The function f(t) is said to be eventually bounded if there is a constant M such that | f(¢)] < M
for all sufficiently large t. Use the mass-spring analogy to determine whether all solutions to
each of the following differential equations are eventually bounded.

a. Yy +t2y =0.

Solution: Yes. We can think of this as modeling a spring with stiffness t2. As ¢t — oo, this
stiffness increases, so the solutions are eventually bounded.

b. 3" —t?y = 0.

Solution: No. As t — o0, the stiffness factor —t? decreases, thus there are solutions that
are not eventually bounded.

c. ¥y +95=0.
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Solution: No. The stiffness constant here is y°. If y starts out negative, this will be a
negative number, forcing the “mass” further to the negative side of equilibrium. Therefore
there are solutions which are not eventually bounded.

d. ¥+ (4+2cost)y =0 (Mathieu’s equation).

Solution: Yes. The stiffness factor is between 2 and 6 for all ¢.

The following differential equations represent the movement of a mass-spring system. For
each, determine if it is underdamped, overdamped, or critically damped.

a. ¥y’ + 5y + 6y =0.

Solution: The characteristic polynomial
2 457 + 6= (r+2)(r+3)

has roots at r = —2, —3, so the differential equation is overdamped.

b. " + 12y + 36y = 0.

Solution: The characteristic polynomial
r® +12r + 36 = (r 4 6)

has a repeated root at »r = —6, so the differential equation is critically damped.

c. ¥y + %y’—|—2y =0.
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Solution: The characteristic polynomial

4)(2 1
702 + 27" + 2 — (T—i_)(—r—’_)
2 2
has roots at »r = —4, —1/2, so the differential equation is overdamped.

d. o' + 4y +13y = 0.

Solution: The characteristic polynomial
r? 4+ 4r + 13

has complex roots r = —2 =+ 3i, so the system is underdamped.

E A 1/8 kg mass is attached to a spring with stiffness 16 N/m. The damping constant (friction
coefficient) for the system is 2 N-sec/m. If the mass is moved 3/4 m to the left of equilibrium
and given an initial leftward (negative) velocity of 2 m/sec, determine the equation of motion
of the mass and give its damping factor, quasiperiod, and quasifrequency.

Solution: The corresponding differential equation is

1
¥ + 2/ +16y =0,

with initial conditions y(0) = —3/4, y/(0) = —2. The general solution to this equation is
y = Ce 8 cos 8t + De 5 sin 8t.
solving for the constants C' and D gives the equation

3
Y= —Ze_& cos 8t — e 8 sin 8t.

The damping factor is e~ the amplitude is v13/1, the quasiperiod is 27/3 = 7/4, and the
quasifrequency is 4/x.
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At what time does the mass in the previous problem first return to equilibrium?

Solution: To answer the question we need to convert the answer in the previous problem
to the form

y = Ae® sin(Bt 4 ¢) = Ae® cos Bt sin ¢ + Ae™ sin ft cos .

The above equation shows that we have

OO

3
tan ¢ = —.
an ¢ 5

Because we need both sin ¢ and cos ¢ to be negative, ¢ is not arctan3/2, but actually

and

¢ = 7 + arctan 3/2.

Thus y(¢) = 0 when
8t + 7 + arctan 3/2 = nw

for an integer n. The first time this happens is at

7 — arctan 3/2
8

t =

A 10 kg weight is attached to a vertical spring with damping constant 2 kg-s/m. At rest,
the spring is stretched 2 m. What is the spring constant of this spring? (Acceleration due to
gravity near the surface of the Earth is approximately 9.8 m/s?.)

Solution: A vertical spring system will hang at equilibrium mg/k. Therefore in this system,
98/k =2, so k = 49.
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@ Determine the equation of motion for an undamped system at resonance governed by

Y’ + 16y = 2cos4t, y(0)=1, %' (0)=0.

Solution: This question is just asking us to solve an IVP. The homogeneous solution is
yp = Ccosdt + D sin 4t.
For the particular solution, we guess y, = At cos 4t + Btsin4t. We then compute:

yp = Atcosdt+ Btsindt,
y; = (A+4Bt)cos4t + (B — 4At)sin 4t,
y, = (8B —16At)cos4t+ (—8A — 16Bt)sin 4t.

Substituting into the differential equation, we get
8B cos 4t — 8 Asin 4t = 2 cos 4t,
so we want A =0 and B = 1/4.

Our solution (so far) is
t
y = Ccos4dt + Dsin4dt + Zsin4t,
and we just have to match the initial conditions. This requires C' =1 and D = 0, so the final

solution is ;
y = cos 4t + 1 sin 4¢.

A 1 kg mass is attached to a horizontal spring with damping constant 2 kg-s/m and spring
constant 1 N/m. Does this system have a resonance frequency?

Solution: The corresponding differential equation is
y' +2y +y=0.

The solution is therefore y = Ce~t + Dte~t. This is a critically damped system, and we know
that only underdamped systems can have resonance frequencies, so the answer is no.




