Lecture 25 -March 16, 2020
Tody were going to look at contour integrals involving branch cuts. These require practice!
Ex 1 (from Section 46 of Brown + Churchill)
Integrate $f(z)=z^{1 / 2}$ along the semicircular path

$$
z(\theta)=3 e^{i \theta} \quad(\theta \in[0, \pi]) .
$$

Solution As written, it is not clear what this example is asking for, since it does not specify which branch of $z^{1 / 2}$ we should choose.
However, we find out in the solution that we are to use the branch

$$
\begin{aligned}
z^{1 / 2} & =\exp \left(\frac{1}{2} \log z\right), \text { where } \\
\log z & =\ln |z|+i \arg z, \text { where } \\
0 & <\arg z<2 \pi
\end{aligned}
$$

This means that our curve $\left(z=3 e^{i \theta}\right)$ intersects our branch cut, which isnit great - our function is nit defined there!

Anyway, we can still make this work, as we will see.
Evaluating $z^{1 / 2}$ along the curve $C \ldots$

$$
\begin{aligned}
f(z(\theta)) & =\exp \left(\frac{1}{2}(\ln 3+i \theta)\right) \\
& =\sqrt{3} e^{i \theta / 2}
\end{aligned}
$$

We also have

$$
z^{\prime}(\theta)=3 i e^{i \theta},
$$

So our integrand is

$$
f(z(\theta)) z^{\prime}(\theta)=3 \sqrt{3} i e^{3 i \theta / 2}
$$

The branch of $z^{\prime \prime 2}$ we have chosen is not defined at $z=3 \quad(\sigma=0$ on our curve).

But, we can compute this as a limit.
Let

$$
I=\int_{c} z^{1 / 2} d z
$$

We claim (and wont justify) that for the branch of $z^{1 / 2}$ we have chosen,

$$
I=\lim _{\alpha \rightarrow 0} \int_{\alpha}^{\pi} 3 \sqrt{3} i e^{3 i \theta / 2} d \theta
$$

Now we work the integral out:

$$
\begin{aligned}
\int_{\alpha}^{\pi} 3 & \sqrt{3} i e^{3 i \theta / 2} d \theta \\
& =\left.(3 \sqrt{3} i)\left(\frac{2}{3 i}\right) e^{3 i \theta / 2}\right|_{\alpha} ^{\pi} \\
& =2 \sqrt{3}(\underbrace{3 i \pi / 2}_{-i}-e^{3 i \alpha / 2}) \\
& =-2 \sqrt{3} i-2 \sqrt{3} e^{3 i \alpha / 2}
\end{aligned}
$$

So we Now have

$$
I=\lim _{\alpha \rightarrow 0}-2 \sqrt{3} i-2 \sqrt{3} e^{3 i \alpha / 2}
$$

We have nothing to worry about with that limit, since e^{z} is continuous (entire, even), so

$$
\begin{aligned}
I & =-2 \sqrt{3} i-2 \sqrt{3} \\
& =2 \sqrt{3}(-1-i)
\end{aligned}
$$

Ex 1, revisited. What if we just Chose a better branch cut for $z^{1 / 2}$? Would our lives have been easier? YES!

Recall our situation...

We just did the integral with the branch cut at the end of the carve C.

But why not take a branch cut that doesn't cut through C, like that shown above?

Before we do this, recall that taking a different branch of $z^{1 / 2}$ amounts to taking a different branch of $\log z$ which amounts to taking a different branch of arg z.

Were going to cut along $\theta=\alpha$ for some angle $\alpha \in(-\pi, 0)$.

That means...
$z^{1 / 2}=\exp \left(\frac{1}{2} \log z\right)$, where $\log z=\ln |z|+i \arg z$, where

$$
\alpha<\arg z<\alpha+2 \pi
$$

(Note that along C, this is the principal value of the argument!)
The integrand stays the same, but now no limit! we just have...

$$
\begin{aligned}
& I=\int_{0}^{\pi} 3 \sqrt{3} i e^{3 i \theta / 2} d \theta \\
&=\left.(3 \sqrt{3} i)\left(\frac{2}{3 i}\right) e^{3 i \theta / 2}\right|_{0} ^{\pi} \\
&=2 \sqrt{3}(\underbrace{3 i \pi / 2}_{-i}-1) \\
&=-2 \sqrt{3} i-2 \sqrt{3} .
\end{aligned}
$$

Ex 2 (from Section 46 of Brown + Churchill).
Using the principal branch, integrate

$$
z^{-1+i}
$$

over the unit circle, oriented positively (counterclockwise) and starting at $z=-1$.
Solution. The principal branch of $\log z$ is

$$
\log z=\ln |z|+i \operatorname{Arg} z,
$$

where

$$
-\pi<\operatorname{Arg} z<\pi .
$$

So the principal branch of,
z^{-1+i} is

$$
z^{-1+i}=\exp ((1+i) \log z)
$$

Our contour is parameterized by

$$
z(\theta)=e^{i \theta} \text { for } \theta \in[-\pi, \pi] \text {. }
$$

EXCEPT at the endpoints of this curve, we have

$$
\operatorname{Arg} z(\theta)=\theta
$$

HOWEVER, at the endpoints
 $\operatorname{Arg} z(\theta)$ is not defined.
But, we only need our integrand

$$
f(z(\theta)) z^{\prime}(\theta)
$$

to be piecewise continuous for $\theta \in(-\pi, \pi)$, so were okay.

Repeating our calculations, we have
$\log z(\theta)=\theta$, so
p.v. $z^{-1+i}=e^{(-1+i) i \theta}=e^{-(1+i) \theta}$.

We also have

$$
\begin{aligned}
& z^{\prime}(\theta)=i e^{i \theta} \text {, so } \\
& \int_{-\pi}^{\pi} f(z(\theta)) z^{\prime}(\theta) d \theta=\int_{-\pi}^{\pi} i e^{-\theta} d \theta
\end{aligned}
$$

If we wanted t_{0},
we could simplify
this to this to
$2 i \sinh \pi$

$$
\begin{aligned}
& =-\left.i e^{-\pi}\right|_{-\pi} ^{\pi} \\
& =-i e^{-\pi}+i e^{\pi}
\end{aligned}
$$

