Lecture 25 - March 16, 2020

This wears that our curve
$$(z=3e^{i\theta})$$

intersects our branch cut, which
isn't great — our function isn't
defined there!
Anyway, we can still for the
make this work,
as we will see.
Evaluating $z'^{1/2}$ along the curve $C_{...}$ our branch
 zut
 $f(z(\theta)) = \exp(\frac{1}{2}(\ln 3 + i\theta))$
 $= 1/3 e^{i0/2}$.

We also have $z'(\theta) = 3ie^{i\theta}$, So our integrand is $f(z(\theta))z'(\theta) = 313ie^{3i\theta/2}$. The branch of z''^2 we have chosen is not defined at z = 3 (0=0 on our curve). But, we can compute this as a limit. Let $T = \int_C z'^2 dz.$ We claim (and worit justify) that for the branch of z'r we have chosen, $I = \lim_{d \to 0} \int_{a}^{\pi} 313 i e^{3i\theta/2} d\theta.$ Now we work the integral out: $\int_{-1}^{1} 3\sqrt{3} i e^{-3i\theta/2} d\theta$ $= 213 \left(\underbrace{3i\pi/a}_{-c} - \underbrace{2ia/a}_{-c} \right)$ = -2131 - 213 e 312/2

So we now have $I = \lim_{\substack{a \to 0}} -2\sqrt{3}i - 2\sqrt{3}e^{\frac{3}i\alpha/a}.$ We have nothing to warry about with that limit, since e^{2} is continuous (entire, even), so $I = -2\sqrt{3}i - 2\sqrt{3}.$ $= 2\sqrt{3}(-1-i).$

Ex 1, revisited. What if we just chose a better branch cut for z'2? Would our lives have been easier? YES!

that doesn't cut through C, like that shown above?

Before we do this, recall that taking a different branch of Z'12 amounts to taking a different branch of log Z which amounts to taking a different branch of arg Z.

-

where

$$-\pi < Arg z < \pi.$$

So the principal branch of z^{-1+i} is
 $z^{-1+i} = \exp((1+i) \log z).$

Our contour is parameterized by

$$Z(\theta) = e^{i\theta}$$
 for $\theta \in [-\pi, \pi]$.
EXCEPT at the endpoints
of this curve, we have
 $Arg \ Z(\theta) = \theta$.
 $HowEVER$, at the endpoints
 $Arg \ Z(\theta)$ is not defined.
BUT, we only need our integrand
 $f(Z(\theta)) \ Z'(\theta)$
to be piecewise continuous for
 $\theta \in (-\pi, \pi)$, so we're okay.

Repeating our calculations, we have $\log z(\theta) = \theta$, so P.V. $z^{-1+i} = e^{(-1+i)i\theta} = e^{-(1+i)\theta}$.

$$Z'(\Theta) = ie^{i\Theta}$$
, so
 $\int_{-\pi}^{\pi} f(z(\Theta)) z'(\Theta) d\Theta = \int_{-\pi}^{\pi} ie^{-\Theta} d\Theta$

