
 

Lecture 25 March 18 2020

Later it will be important to bound
the moduli of contour integrals So
we will learn how to do that now

We want to establish results like
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where C is the semicircular arc

of the circle I 1 2 from z 2 to
z 2i

Our tool is the followingtheorem



Theorem Let C denote a contour of
arc length L and suppose that
the function fCz is piecewise
continuous on C If there is a

nonnegative real number M such that
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for all points z on C at which
fLz is defined then
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Proof Parameterize C as 2 ft
for t C a b so we are

interested in the modulus of
I Jaffe dz fabffe 2 Holt

Write I in polar form as
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We now have solving for III that
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Since III is real it is equal
to the real part of this integral
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we have
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This shows that
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M arc length of C
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To apply this theorem we need

A bound on I f fell for all
2 along the contour

The length of the contour



Example 1 Let C be the sector
of the circle 121 2

from 7 2 to z 2i in the first
quadrant Show without evaluating
the integral that
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Solution The contour C ai

is shown on Aiithe right Clearly the 1
length of C is 2
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Next we need to bound the
modulus of the function
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We do this by writing
HGH 771 12

21124 1
and then bounding the numerator
and denominator separately
For the numerator we have
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121 2 because 2 c C

For the denominator we want a

lower bound and we have
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We've shown that for all 2 c C
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so the theorem implies that
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Note Both of the bounds we used
can be improved For example

12 21 is the distance between
Z and the point 2 The point
of C that is farthest from 2
is 2i and we have
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This gives a bound of
2,52 it on the modulus of the integral



Our next example is much more

typical of how we will use the
theorem in the future
Example 2 Let Cp denote the

semicircle
2 Reit for C CO IT

oriented from R to R Show that
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Solution For Ze Cp we have
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The theorem now implies that
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so the limit as 12 200 of our
bounds on the moduli of these
integrals is 0

It follows that the limit as
R soo of these integrals
themselves must also be 0



We'll do one more that looks trickier

Exercise 3 Show that if C is the
triangle with vertices

0 3i and 4 oriented in that
order then
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Solution The contour
L nis shown on

The tight Its do I 141 no

length is 4
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Now we need to bound
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We have
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Letting 2 Xtiy we see that
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We maximize these two terms separately
Or C the maximum of ex occurs
when x O and it is 1 The
maximum of 171 occurs at z 4
and it is 4

This shows that Iftt E5 on C so
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