Lecture 26 - March 18, 2020
Later, it will be important to bound the moduli of contour integrals, so we will learn how to do that now.

We wont to establish results like:

$$
\left|\int_{C} \frac{z-2}{z^{4}+1} d z\right| \leq \frac{4 \pi}{15}, \quad \text { (Example 1) }
$$

where C is the semicircular are of the circle $|z|=2$ from $z=2$ to $z=2 i$.

Dor tool is the following theorem...

Theorem. Let C denote a contour of (arc) length L, and suppose that the function $f(z)$ is piecewise continuous on C. If there is a nonnegative real number M such that

$$
|f(z)| \leq M
$$

for call points z on C at which $f(z)$ is defined, then

$$
\left|\int_{C} f(z) d z\right| \leq M_{L} .
$$

Proof. Parameterize C as $z(t)$ for $t \in[a, b]$, so we are interested in the modulus of

$$
I=\int_{c} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Write I in polar form as

$$
I=|I| e^{i \alpha}, \quad(\text { If } I=0, \text { just choose } \alpha=0 .)
$$

We now have, solving for |I|, that

$$
\begin{aligned}
|I| & =e^{-i \alpha} \int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
& =\int_{a}^{b} e^{-i \alpha} f(z(t)) z^{\prime}(t) d t
\end{aligned}
$$

Since $|I|$ is real, it is equal to the real part of this integral:

$$
\begin{aligned}
|I| & =\operatorname{Re}\left[\int_{a}^{b} e^{-i \alpha} f(z(t)) z^{\prime}(t) d t\right] \\
& =\int_{a}^{b} \operatorname{Re}\left[e^{-i \alpha} f(z(t)) z^{\prime}(t)\right] d t .
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \operatorname{Re}\left[e^{-i \alpha} f(z(t)) z^{\prime}(t)\right] \\
& \leq\left|e^{-i \alpha} f(z(t)) z^{\prime}(t)\right| \\
& =\left|e^{-i \alpha}\right| \cdot|f(z(t))| \cdot\left|z^{\prime}(t)\right| \\
& \leq 1 \cdot M \cdot\left|z^{\prime}(t)\right| \text {. }
\end{aligned}
$$

This shows that

$$
\begin{aligned}
|I| & \leq \int_{a}^{b} M\left|z^{\prime}(t)\right| d t \\
& =M \int_{a}^{b}\left|z^{\prime}(t)\right| d t \\
& =M \cdot(\text { arc length of } C) \\
& =M L \cdot
\end{aligned}
$$

To apply this theorem, we need:
(1) A bound on $|f(z)|$ for all z along the contour.
(2) The length of the contour.

Example 1. Let C be the sector of the circle $|z|=2$ from $z=2$ to $z=2 i$ in the first quadrant. Show (without evaluating the integral!) that

$$
\left|\int_{c} \frac{z-2}{z^{4}+1} d z\right| \leq \frac{4 \pi}{15}
$$

Solution. The contour C is shown on the right. Clearly the length of C is

$$
L=\frac{1}{4} \cdot \pi 2^{2}=\pi .
$$

Next we need to bound the modulus of the functions

$$
f(z)=\frac{z-2}{z^{4}+1}
$$

for all $z \in C$.

We do this by writing

$$
|f(z)|=\left|\frac{z-2}{z^{4}+1}\right|=\frac{|z-2|}{\left|z^{4}+1\right|}
$$

and then bounding the numerator and denominator seperately.
For the numerator, we have.

$$
|z-2|=|z+(-2)| \leq \underbrace{|z|}_{|z|=2}+|-2|=2+2 \text { because } z \in C .
$$

For the denominator, we want a lower bound, and we have

We've shown that for all $z \in C$,

$$
|f(z)| \leq \frac{4}{15}
$$

so the theorem implies that

$$
\begin{aligned}
&\left|\int_{C} \frac{z-2}{z^{4}+1} d z\right| \leqslant \frac{4}{15} \pi \\
& \tau_{\text {length }} \\
& \text { bound on of } C \\
&|f(z)|
\end{aligned}
$$

Note. Both of the bounds we used can be improved. For example, $|z-2|$ is the distance between z and the point 2. The point of C that is farthest from 2 is $2 i$, and we have.

$$
|2 i-2|=2 \sqrt{2}
$$

This gives a bound of, $\frac{2 \sqrt{2}}{15} \pi$ on the modulus of the integral.

Our next example is much more. typical of how we will use the theorem in the future.
Example 2. Let C_{R} denote the. semicircle

$$
z=R e^{i \theta} \text { for } \theta \in[0, \pi] \text {, }
$$

oriented from R to $-R$. Show that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{(z+1)}{\left(z^{2}+4\right)\left(z^{2}+9\right)} d z=0
$$

Solution. For $z \in C_{R}$, we haves

$$
\begin{aligned}
& |z+1| \leq|z|+|1|=R+1 \\
& \left|z^{2}+4\right| \geq\left|\left|z^{2}\right|-|4|\right|=R^{2}-4 . \\
& \left|z^{2}+9\right| \geq\left|\left|z^{2}\right|-|9|\right|=R^{2}-9 .
\end{aligned}
$$

The theorem now implies that

$$
\left|\int_{C_{R}} \frac{(z+1)}{\left(z^{2}+4\right)\left(z^{2}+9\right)} d z\right| \leqslant \frac{R+1}{\left(R^{2}-4\right)\left(R^{2}-9\right)} \cdot \pi R .
$$

This quantity simplifies as length $\begin{aligned} & \text { of }\end{aligned}$

$$
\frac{R^{4}}{R^{4}} \cdot \frac{\frac{\pi}{R^{2}}+\frac{\pi}{R^{3}}}{\left(1-\frac{4}{R^{2}}\right)\left(1-\frac{9}{R^{2}}\right)}
$$

so the limit as $R \rightarrow \infty$ of our bounds on the Moduli of these integrals is 0 .
It follows that the limit as $R \rightarrow \infty$ of these integrals themselves must also be 0 .

Well do one more that looks trickier.
Exercise 3. Show that if C is the triangle with vertices $0,3 i$, and -4 , oriented in that order, then

$$
\left|\int_{c}\left(e^{z}-\bar{z}\right) d z\right| \leq 60
$$

Solution. The contour is shown on the right. Its length is

$$
3+\underset{\sqrt{3^{2}+4^{2}}}{5}+4=12
$$

Now we need to bound

$$
|f(z)|=\left|e^{z}-\bar{z}\right|
$$

on C.

We have

$$
\begin{aligned}
|f(z)| & =\left|e^{z}-\bar{z}\right| \\
& \leq\left|e^{z}\right|+|-\bar{z}| \\
& =\left|e^{z}\right|+|z|
\end{aligned}
$$

Letting $z=x+i y$, we see that

$$
\begin{aligned}
|f(z)| & \leq\left|e^{x+i y}\right|+|z| \\
& =e^{x}+|z|
\end{aligned}
$$

We maximize these two terms seperately. On C, the maximum of e^{x} occurs when $x=0$, and it is 1 . The maximum of $|z|$ occurs at $z=-4$, and $i z$ is 4 .

This shows that $|f(z)| \leq 5$ on C, so

$$
\left|\int_{C}\left(e^{z}-\bar{z}\right) d z\right| \leqq 5.12=60
$$

