Lecture 28 -March 23. 2020
Today we prove the theorem we discussed in the last lecture:

Theorem. Suppose that $f(z)$ is continuous on a domain D. If any of the following is true, then so are the others:
(a) $f(z)$ has an antiderivative $F(z)$ on D;
(b) for any contour C lying entirely in D and going from z_{1} to z_{2},

$$
\int_{C} f(z) d z=\left.F(z)\right|_{z_{1}} ^{z_{2}}=F\left(z_{2}\right)-F\left(z_{1}\right) \ldots
$$

we denote this value by $\int_{z_{1}}^{z_{2}} f(z) d z$;
(C) the integral of $f(z)$ along any closed contour lying entirely in D is 0 .

The standard way to prove such results is to prove

$$
\begin{equation*}
\text { (a) } \Rightarrow \text { is to prove } \Rightarrow(c) \Rightarrow \text { a } \tag{b}
\end{equation*}
$$

Step 1 of proof: © \Rightarrow (6).
Suppose (a) folds, so there is a function $F(z)$ defined on all of D such that

$$
F^{\prime}(z)=f(z)
$$

for all $z \in D$.
First we show that (b) holds for a single closed curve from z_{1} to z_{2} (for any choice of $z_{1}, z_{2} \in D$). Suppose such a curve has parametrization
$z(t)$ for $t \in[a, b]$.
By the chain rule, we have

$$
\begin{aligned}
\frac{d}{d t}(F(z(t))) & =F^{\prime}(z(t)) z^{\prime}(t) \\
& =f(z(t)) z^{\prime}(t)
\end{aligned}
$$

The definition of contour integrals sags that

$$
\int_{c} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t .
$$

Moreover, we can break this integral into real and imaginary parts:

$$
\begin{aligned}
& \int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
& =\operatorname{Re}\left[\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right]+i \cdot \operatorname{Im}\left[\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right] \\
& =\int_{a}^{b} \operatorname{Re}\left[f(z(t)) z^{\prime}(t)\right] d t+i \int_{a}^{b} \operatorname{Im}\left[f(z(t)) z^{\prime}(t)\right] d t .
\end{aligned}
$$

Both of these are real integrals, so we can apply the fundamental theorem of calculus to conclude that

$$
\begin{aligned}
& \int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
& =\left.\operatorname{Re}[F(z(t))]\right|_{a} ^{b}+\left.i \cdot \operatorname{Im}[F(z(t))]\right|_{a} ^{b} \\
& =\left.F(z(t))\right|_{a} ^{b}
\end{aligned}
$$

Therefore, we have

$$
\int_{c} f(z) d z=\left.F(z(t))\right|_{a} ^{b}=F\left(z_{2}\right)-F\left(z_{1}\right) .
$$

The above holds for any smooth curve C from z_{1} to z_{2} (and lying entirely within D).

Recall that a contour is a finite sequence of smooth curves, joined end to end. Suppose that the contour C can be written as

$$
C=C_{1}+C_{2}+\cdots+C_{n}
$$

Where each C_{k} is a smooth curve, lying entirely within D, from z_{k} to z_{k+1}.

By the above, this means that

$$
\int_{C_{k}} f(z) d z=F\left(z_{k+1}\right)-F\left(z_{k}\right)
$$

Therefore we have

$$
\begin{array}{rl}
\int_{C} & f(z) d z \\
= & \int_{C_{1}} f(z) d z+\cdots+\int_{C_{12}} f(z) d z \\
& =F\left(z_{2}\right)-F\left(z_{1}\right)+\cdots+F\left(z_{k+1}\right)-F\left(z_{k}\right) .
\end{array}
$$

This sum telescopes, leaving only

$$
\int_{c} f(z) d z=F\left(z_{k+1}\right)-F\left(z_{1}\right)
$$

which is what we want, since C goes from z_{1} to z_{k+1}.

Step 2 of proof: (6) \Rightarrow (c).
Assume not that (b) holds, meaning that the integral of $f(z)$ along any contour that lies entirely with D is independent of the path taken. meaning that it only depends an the endpoints.

Let C be any closed contour lying entirely in D_{1} and take $z_{1} \neq z_{2}$ to be any two distinct points along C.
As the picture on the right shows, C splits into two contours:
C_{1} from z_{1} to z_{2} and
 c_{2} from z_{2} to z_{1}.

Above we showed that $C=C_{1}+C_{2}$. By our properties of contours, we have that

$$
\int_{-c_{2}} f(z) d z=-\int_{c_{2}} f(z) d z
$$

where $-C_{2}$ is the oppositely oriented contour that runs from z_{1} to z_{2}.

Since we have assumed that (5) holds, we have

$$
\int_{c_{1}} f(z) d z=\int_{-c_{2}} f(z) d z
$$

Therefore,

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \\
& =\int_{C_{1}} f(z) d z-\int_{-C_{2}} f(z) d z \\
& =0
\end{aligned}
$$

by the above, establishing (e).

Step 3 of proof: © \Rightarrow © .
Suppose that (c) folds, so the integral of $f(z)$ along any closed contour in D is O. Let z_{0} and z denote any two points in D and suppose C_{1} and C_{2} are both contours in D from z_{0} to z, as on the right.

Let $C=C_{1}+\left(-C_{2}\right)$, So C is a closed contour. By our hypothesis that (c) holds and the properties of contour integrals,

$$
\begin{aligned}
0 & =\int_{c} f(z) d z \\
& =\int_{c_{1}} f(z) d z+\int_{-c_{2}} f(z) d z \\
& =\int_{c_{1}} f(z) d z-\int_{c_{2}} f(z) d z
\end{aligned}
$$

So

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

The above shows that integrals of $f(z)$ are independent of path, so in fact we have established (b), bot we wanted to establish (a).

Now fix some point $z_{0} \in D$. By the above, we see that we may define a function

$$
F(z)=\int_{z_{b}}^{z} f(w) d w,
$$

Where here we mean the integral of f on any contour in D from z_{0} to z. (We saw above that all such integrals have the same value.)

We need to compute $F^{\prime}(z)$. We have

$$
\begin{aligned}
F(z+\Delta z) & =\int_{z_{0}}^{z+\Delta z} f(w) d w \\
& =\int_{z_{0}}^{z} f(w) d w+\int_{z}^{z+\Delta z} f(w) d w
\end{aligned}
$$

So long as $z+\Delta z \in D$.

Therefore, again as long as $z+\Delta z \in D$,

$$
F(z+\Delta z)-F(z)=\int_{z}^{z+\Delta z} f(w) d \omega
$$

Since

$$
\int_{z}^{z+\Delta z} 1 d w=\Delta z
$$

we can write

$$
f(z)=\frac{f(z)}{\Delta z} \int_{z}^{z+\Delta z} 1 d w=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d w .
$$

Therefore, Note: constant in this integral

$$
\begin{aligned}
& \left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| \\
& =\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(w) d w-\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d w\right| \\
& =\frac{1}{|\Delta z|}\left|\int_{z}^{z+\Delta z}(f(w)-f(z)) d w\right| \\
& \leq \frac{1}{|\Delta z|} \int_{z}^{z+\Delta z}|f(w)-f(z)| d w
\end{aligned}
$$

Finally, we must use the continuity of f. Since f is continuous at z, for any $\varepsilon>0$ there is a $\delta>0$ such that

$$
|f(w)-f(z)|<\varepsilon \text { whenever }|w-z|<\delta \text {. }
$$

To bound

$$
\int_{z}^{z+\Delta z}|f(w)-f(z)| d z
$$

we may assume the integral is along the line segment from z to $z+\Delta z$ (we have path independence).

Therefore if $|\Delta z|<\delta$, we'll have $|w-z|<\delta$, so

$$
\begin{gathered}
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| \\
\quad \leq \frac{1}{|\Delta z|} \cdot \varepsilon \cdot|\Delta z|=\varepsilon
\end{gathered}
$$

It follows that

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z),
$$

completing our proof that (c) \Rightarrow (a), and thus completing our proof of the theorem.

