3

Homework #2

1 Let (X, d) be a metric space. Define the function d_* by

$$d_*(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Prove that (X, d_*) is also a metric space.

2 Determine (with justification) whether the set $\{(x, y) : x, y > 0\}$ is open and/or closed in the metric space (\mathbb{R}^2, d_2) .

Determine (with justification) whether the set $\{(x, y) : xy = 1\}$ is open and/or closed in the metric space (\mathbb{R}^2, d_2) .

4 Determine (with justification) whether the set $\{(x,y) : |x-y| > 1\}$ is open and/or closed in the metric space (\mathbb{R}^2, d_2) .