Homework #2

- 1 By negating the definition of convergence of a sequence, state what it means for the sequence (a_n) from the metric space (X, d) to not converge.
- 2 Using only the definition of convergence, show that the sequence (a_n) given by $a_n = (-1)^n$ does not converge in (\mathbb{R}, d_1) .
- 3 Suppose (a_n) is a sequence from \mathbb{R} . Show that if (a_n) converges to L then the sequence (of Cesaro means) (s_n) defined by

$$s_n = \frac{1}{n+1} \sum_{j=0}^n a_j$$

also converges to L. Does the converse also hold?