Homework #5

1. Let X be an infinite set and d be the discrete metric. Determine, with proof, the connected sets in the metric space (X, d).

2. Let (X, d) be an arbitrary metric space. Is the intersection of two connected sets in (X, d) necessarily connected? Prove or give a counterexample.

3. Prove that if S is a connected subset of the metric space (X, d) then its closure \overline{S} is also connected.

4. Let (X, d_X) be any metric space and (Y, d_Y) be any metric space with the discrete metric. Determine, with proof,

 (a) all continuous functions $f : Y \to X$ and

 (b) all continuous functions $f : \mathbb{R} \to Y$, where the metric on \mathbb{R} is the usual Euclidean one.