Homework #5

- 1 Let X be an infinite set and d be the discrete metric. Determine, with proof, the connected sets in the metric space (X, d).
- 2 Let (X, d) be an arbitrary metric space. Is the intersection of two connected sets in (X, d) necessarily connected? Prove or give a counterexample.
- 3 Prove that if S is a connected subset of the metric space (X, d) then its closure \overline{S} is also connected.
- 4 Let (X, d_X) be any metric space and (Y, d_Y) be any metric space with the discrete metric. Determine, with proof,
 - (a) all continuous functions $f: Y \to X$ and
 - (b) all continuous functions $f : \mathbb{R} \to Y$, where the metric on \mathbb{R} is the usual Euclidean one.