Homework \#2

1 Let $f_{n}:(-1,1) \rightarrow \mathbb{R}$ be given by x^{n} for all $n \geq 0$. Prove that
(a) the sequence $\left(f_{n}\right)$ converges pointwise (and determine the function it converges to) and
(b) the sequence $\left(f_{n}\right)$ does not converge uniformly.

2 Suppose that the function $f:[0,1] \rightarrow \mathbb{R}$ is continuous and define the functions $g_{n}:[0,1] \rightarrow \mathbb{R}$ by $g_{n}(x)=x^{n} f(x)$. Prove that
(a) if the sequence $\left(g_{n}\right)$ converges uniformly then $f(1)=0$ and
(b) if $f(1)=0$ then the sequence $\left(g_{n}\right)$ converges uniformly.

