Homework 5

Prove that if $f:[0,1] \rightarrow \mathbb{R}$ is bounded and the lower integral of f is positive then there is an open interval on which $f>0$.

2 Define the functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}n & \text { if } 0<x \leq 1 / n, \text { and } \\ 0 & \text { otherwise (if } x=0 \text { or } x>1 / n) .\end{cases}
$$

Explain why each f_{n} is Reimann integrable, the sequence $\left(f_{n}\right)$ converges pointwise to a Riemann integrable function, but

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} d x \neq \int_{0}^{1} f d x
$$

even though the limit on the left hand side exists.

