
1 Metric spaces

We assume the reader has had ample experience with calculus on the

real line, including in-depth coverage of convergence, of open and

closed sets, and of continuous functions. In this chapter, we begin

the process of lifting these concepts to arbitrary metric spaces.
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1.1 Definitions and examples

Many of the concepts of analysis on the real line depend only on the

notion of closeness (convergence, for example). When we are working

on the real line, we usually take the distance between x, y ∈ R to be

|x − y|. However, many of the results of calculus hold for any set X

and any distance function d(x, y) that satisfies four axioms.

Definition 1.1.1. A metric space (X, d) consists of a set X and a metric

d : X × X → R such that, for all x, y, z ∈ X,

(i) d(x, y) ≥ 0; Items (i) and (ii) together are sometimes
expressed by saying that d is positive def-
inite.

(ii) d(x, y) = 0 if and only if x = y;

(iii) d(x, y) = d(y, x); and Item (iii) says that d is symmetric.

(iv) d(x, z) ≤ d(x, y) + d(y, z). Item (iv) is the triangle inequality, and is
usually the only metric space axiom that
requires much effort to verify.
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A set X can have a multitude of metrics placed on it, which is why

we must include the metric when we specify the metric space we are

considering. As a first example, consider X = R. We know that the

function d : R × R → R defined by

d(x, y) = |x − y|

is a metric on R, and it is called the standard metric on R. However, the

function d(x, y) = 2|x − y| would work just as well as a metric on R.

A more exotic metric is given below.

Example 1.1.2 (Discrete metric). Given any set X, the discrete metric on

X is the function ddisc : X × X → R defined by Exercise 1.1.2 asks the reader to verify
that the discrete metric is in fact a metric.

ddisc(x, y) =

{

0 if x = y,

1 if x 6= y.

A metric space equipped with the discrete metric is called a discrete Because we have the discrete metric, we
can turn every set into a metric space in
at least one way.

metric space.

We could invent quite a few more metrics on R. For example, the

function d : R × R → R defined by The reader is asked to verify that these
are metrics in Exercises 1.1.4 and 1.1.5.

d(x, y) = min{1, |x − y|},

or the function

d(x, y) =
|x − y|

1 + |x − y| .

Thus, even on our familiar set R, there are a number of choices for the

metric to use, although if a metric on R is not specified, the standard

metric is to be assumed.

Before continuing with more examples, we need to make two defi-

nitions.

Definition 1.1.3 (Subspace of a metric space). Let (X, d) be a metric

space and Y ⊆ X. The pair (Y, d|Y×Y) is itself a metric space (Exer-

cise 1.1.6), and is called a subspace of (X, d). With Definition 1.1.3, we can restrict any
metric on R to obtain a metric on [0, 1],
Q, Z, etc. Frequently we denote the re-
sulting metric simply by d, instead of by
d|Y×Y , if no confusion could result by
doing so.

Next we define neighborhoods. Except for the change in metric,

these are defined exactly how they were on the real line.

Definition 1.1.4 (Neighborhood). Let (X, d) be a metric space. Given

a real number ǫ > 0 and a point x0 ∈ X, the ǫ-neighborhood of x0 is the

set

Nǫ(x) = {x ∈ X : d(x, x0) < ǫ}.
In Definition 1.1.4, x0 is the center of the
neighborhood and ǫ is the radius of the
neighborhood. Neighborhoods always
contain their centers, because we insist
on radii being positive.

Neighborhoods are often called open balls, because of what they look

like in R2 with the Euclidean distance or Euclidean metric; given points
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x = (x1, x2) and y = (y1, y2) in the plane, the Euclidean distance

between them is

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Thus in this metric, the open neighborhood of the origin with radius 1 It is not entirely straight-forward to
prove that the Euclidean metric satisfies
the triangle inequality, which is why we
delay that proof until the end of the next
section.

is the open unit disc,

N1((0, 0)) = {(x, y) ∈ R2 : x2 + y2
< 1}.

This is very special metric on R2, and we will have a lot more to say

about it in the next section. Before that, we present two other metrics,

which are quite useful themselves, below. As we define further metrics, you should
ask yourself what the neighborhoods of
points look like.Definition 1.1.5 (The ℓ1 metric on R2). Given points x, y ∈ R2, the ℓ1

metric is the function d1 defined by

d1(x, y) = |x1 − y1|+ |x2 − y2|.
Exercises 1.1.7 and 1.1.8 ask the reader
to verify that the ℓ1 and ℓ∞ metrics are
metrics on R2.Definition 1.1.6 (The ℓ∞ metric on R2). Given points x, y ∈ R2, the ℓ∞

metric is the function d∞ defined by

d∞(x, y) = max{|x1 − y1|, |x2 − y2|}.

We consider metrics on one more set, the vector space C([0, 1]) of

continuous functions from [0, 1] to R. We have defined the ℓ1 metric (and the
ℓ∞ metric) on both R2 and C([0, 1]).
These are different functions (their do-
mains are different), but it should always
be clear which metric we are discussing.

Definition 1.1.7 (The ℓ1 metric on C([0, 1])). Given functions f , g ∈
C([0, 1]), the ℓ1 metric is the function d1 defined by

d1( f , g) =
∫ 1

0
| f (t)− g(t)| dt.

Exercises 1.1.9 and 1.1.10 ask the reader
to verify that the ℓ1 and ℓ∞ metrics are
metrics on C([0, 1]).Definition 1.1.8 (The ℓ∞ metric on C([0, 1])). Given functions f , g ∈

C([0, 1]), the ℓ∞ metric is the function d∞ defined by

d∞( f , g) = max{| f (t)− g(t)| : t ∈ [0, 1]}.

We conclude the section by proving a result.

Proposition 1.1.9. Let (X, d) be a metric space and x, y ∈ X. If d(x, y) < ǫ

for every ǫ > 0, then x = y.

Proof. Suppose that x 6= y. We know from part (i) of the definition of

a metric space that d(x, y) ≥ 0 always, and because x 6= y, part (ii)

shows that d(x, y) 6= 0. Therefore d(x, y) > 0. Letting ǫ = d(x, y), we

see that we cannot have d(x, y) < ǫ, proving the proposition.
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Exercises

Exercise 1.1.1. Let (X, d) be a metric space. Prove that if x1, . . . , xn ∈ X, then

d(x1, xn) ≤
n−1

∑
k=1

d(xk, xk+1).

Exercise 1.1.2. Prove that if X is any set, then (X, ddisc) is indeed a metric

space.

Exercise 1.1.3. Describe the neighborhoods in a discrete metric space (X, ddisc).

Exercise 1.1.4. Prove that the function d : R × R → R defined by

d(x, y) = min{1, |x − y|},

is a metric on R.

Exercise 1.1.5. Prove that if (X, d) is a metric space, then the function d∗ : X × X → R

defined by Hint. To verify the triangle inequality in
Exercise 1.1.5, you might want to first
establish that if a and b are nonnega-
tive real numbers satisfying a ≤ b, then
a/(1 + a) ≤ b/(1 + b).

d∗(x, y) =
d(x, y)

1 + d(x, y)

is also metric on X.

Exercise 1.1.6. Let (X, d) be a metric space and Y ⊆ X. Prove that (Y, d|Y×Y)

is also a metric space.

Exercise 1.1.7. Prove that the ℓ1 metric from Definition 1.1.5 is indeed a metric

on the set R2.

Exercise 1.1.8. Prove that the ℓ∞ metric from Definition 1.1.6 is indeed a metric

on the set R2.

Exercise 1.1.9. Prove that the ℓ1 metric from Definition 1.1.7 is indeed a metric

on the set C([0, 1]).

Exercise 1.1.10. Prove that the ℓ∞ metric from Definition 1.1.8 is indeed a

metric on the set C([0, 1]).

Exercise 1.1.11. Let (X, d) be a metric space. Prove that if x, y, z ∈ X, then

|d(x, z)− d(y, z)| ≤ d(x, y).

Exercise 1.1.12. Suppose that (X, dX) and (Y, dY) are metric spaces. Define

d : (X × Y)× (X × Y) → R by

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY(y1, y2).

Prove that d is a metric on X × Y.

Exercise 1.1.13. Let (X, dX) be a metric space, let Y be any set, and let f : Y → X

be an injection. Define a function dY : Y × Y → R by

dY(a, b) = dX( f (a), f (b)).

Prove that dY is a metric on Y.
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1.2 Normed vector spaces

An important class of metric spaces arises from vector spaces. Of

course, Rn is the quintessential finite dimensional vector space, but the

results we establish here apply to any real vector space, even infinite Recall that a real vector space is one in
which the scalars are real numbers.dimensional spaces such as the vector space C([0, 1]) of continuous

functions from [0, 1] to R.

Definition 1.2.1 (Vector space norm). A norm on the real vector space

V is a function ‖ · ‖ : V → R such that, for all vectors x, y ∈ V and all

scalars c ∈ R,

(i) ‖x‖ ≥ 0,

(ii) ‖x‖ = 0 if and only if x = 0,

(iii) ‖cx‖ = |c| ‖x‖, and The last of the norm axioms is also
known as the triangle inequality.(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

If V is a real vector space and ‖ · ‖ : V → R is a norm on V, then the

pair (V, ‖ · ‖) is a normed vector space.

Example 1.2.2. The functions ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ mapping Rn to R

defined by

‖x‖1 =
n

∑
k=1

|xk|,

‖x‖2 =

√

n

∑
k=1

x2
k , and

Note that ‖x‖∞ ≤ ‖x‖1 for all x ∈ Rn.

‖x‖∞ = max{|xk| : 1 ≤ k ≤ n}

are norms on Rn. These are known as the 1-norm, 2-norm, and ∞-norm,

respectively. It is not difficult to verify that the triangle inequality

holds for the 1-norm and the ∞-norm. For the 2-norm it takes a bit

more work, and we leave this verification until the end of the section.

Our first result shows that we can turn every norm into a metric.

Proposition 1.2.3 (Norms induce metrics). If (V, ‖ · ‖) is a normed vector

space, then the function d : V × V → R defined by

d(x, y) = ‖x − y‖

is a metric on V.

Proof. With the exception of the triangle inequality, it is evident that d

satisfies the axioms of a metric. To prove that d satisfies the triangle

inequality, let x, y, z ∈ V be given. Using the triangle inequality for the
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norm, we have

d(x, z) = ‖x − z‖
= ‖(x − y) + (y − z)‖
≤ ‖x − y‖+ ‖y − z‖
= d(x, y) + d(y, z),

as desired.

When we view a normed vector space (V, ‖ · ‖) as a metric space,

our default is to use the metric induced by the norm, as in the previous

result.

We have just seen that norms induce metrics. Next we look at a

useful way to induce a norm.

Definition 1.2.4. Let V be a real vector space. The function

〈·, ·〉 : V × V → R

is an inner product on V if, for all vectors x, y, z ∈ V and all scalars Another term for an inner product is a
scalar product.c ∈ R,

(i) 〈x, x〉 ≥ 0,

(ii) 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x, y〉 = 〈y, x〉, and The fourth inner product axiom says that
the inner product is linear in its first
component, but by the symmetry axiom
we see that inner products must actually
be linear in both components.

(iv) 〈cx + y, z〉 = c〈x, z〉+ 〈y, z〉.

We present two examples of inner products next; the reader is asked

to verify that they satisfy the inner product axioms in Exercises 1.2.1

and 1.2.2.

Example 1.2.5. On Rn, the function 〈·, ·〉 defined by

〈x, y〉 =
n

∑
k=1

xkyk

is an inner product. When we consider R2 or R3, this is often called

the dot product.

Example 1.2.6. On the vector space C([0, 1]), the function 〈·, ·〉 defined

by

〈 f , g〉 =
∫ 1

0
f (t)g(t) dt

is an inner product.

Our next result is incredibly useful.

Theorem 1.2.7 (Cauchy–Schwarz inequality). Suppose that 〈·, ·〉 is an

inner product on a real vector space V. Then for all x, y ∈ V, we have

〈x, y〉2 ≤ 〈x, x〉 〈y, y〉.
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Proof. Take any two vectors x, y ∈ V and let t ∈ R an arbitrary real

number. By the nonnegativity property of inner products, we see that

〈tx + y, tx + y〉 ≥ 0.

Expanding the left-hand side of the above inequality using the sym-

metry and linearity properties of inner products shows that

t2〈x, x〉+ 2t〈x, y〉+ 〈y, y〉 ≥ 0.

Viewing x and y as fixed, the above inequality states that a certain

quadratic in the variable t is always nonnegative. Therefore the dis-

criminant of the quadratic (that is, the quantity b2 − 4ac in the quadratic

formula) must be non-positive. Thus we see that

4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0.

Upon simplification, this is precisely the inequality we sought to prove.

With the Cauchy–Schwarz inequality in hand, our final result of the

section shows how inner products induce norms (which then induce

metrics). This finally verifies that the 2-norm ‖ · ‖2 is a norm, and

therefore that Euclidean distance d2 is a metric on Rn.

Proposition 1.2.8 (Inner products induce norms). If 〈·, ·〉 is an inner

product on the real vector space V, then the function ‖ · ‖ : V → R defined

by With the norm defined in the Proposi-
tion 1.2.8, the Cauchy–Schwarz inequal-
ity says that

|〈x, y〉| ≤ ‖x‖ ‖y‖.

‖x‖ =
√

〈x, x〉

is a norm on V.

Proof. We verify the triangle inequality, leaving the other properties

of a norm to the gentle reader. Let x, y ∈ V be arbitrary. Using the

linearity of the inner product in both variables, we have that

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉.

Now we use the Cauchy–Schwarz inequality to bound the term 〈x, y〉,
giving us

‖x + y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

from which the triangle inequality follows by taking square roots.

This norm is our default when we are working in a vector space that

has an inner product (an inner product space). In the case of Rn with
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the usual inner product (defined in Example 1.2.5), the resulting norm

is the Euclidean norm ‖ · ‖2 that we have already introduced,

‖x‖2 =

√

n

∑
k=1

x2
k ,

and the resulting metric is the Euclidean distance or ℓ2 metric,

d2(x, y) = ‖x − y‖2 =

√

n

∑
k=1

(xk − yk)2.

The term Euclidean space refers to the metric space (Rn, d2) for some

value of n. Note that (Rn, d2) is, as a metric space, distinct from both

(Rn, d1) and (Rn, d∞). As mentioned above, d2 is the default metric on

Rn, because it is the metric that is induced by the inner product.

Exercises

Exercise 1.2.1. Verify the claim made in Example 1.2.5, that on Rn, the function

〈·, ·〉 defined by

〈x, y〉 =
n

∑
k=1

xkyk

is an inner product.

Exercise 1.2.2. Verify the claim made in Example 1.2.6, that in the vector space

C([0, 1]), the function

〈 f , g〉 =
∫ 1

0
f (t)g(t) dt

is an inner product.

Exercise 1.2.3. Prove that if V is a vector space with an inner product, then

the induced norm ‖x‖ =
√

〈x, x〉 satisfies the parallelogram law,

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2).

Exercise 1.2.4. The parallelogram law in plane geometry states that the sum of

the squares of the lengths of the four sides of a parallelogram equals the sum

of the squares of the lengths of the two diagonals. Explain why the equality

in Exercise 1.2.3 is called the parallelogram law.

Exercise 1.2.5. Is the 1-norm ‖ · ‖1 on Rn for n ≥ 2 induced by an inner

product? In other words, is there any inner product 〈·, ·〉 : Rn × Rn → R such

that

‖x‖1 =
√

〈x, x〉
for all vectors x ∈ Rn? Why or why not?

Exercise 1.2.6. Use the Cauchy–Schwarz inequality to prove that for all vectors

x ∈ Rn, we have ‖x‖1 ≤ √
n‖x‖2.
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Exercise 1.2.7. By Proposition 1.2.3,

d( f , g) =

(

∫ 1

0
| f − g|2dt

)1/2

defines a metric on the space of polynomials P . For n ∈ N, define

pn(t) =
√

2n + 1 tn.

Find d(pn, pm).
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1.3 Convergence and limits

Sequences of real numbers should be familiar to the reader now.

Sequences over arbitrary sets are a straight-forward generalization.

Definition 1.3.1. A sequence from X is a function with codomain X and

domain of the form {n ∈ Z : n ≥ n0} for some starting index n0 ∈ Z.

If a is a sequence, it is customary to denote a(n) by an, and to denote

the entire sequence by

(an), (an)n, or (an)
∞
n=n0

,

depending on the amount of clarity required. When X comes equipped

with a metric, we define convergence in the obvious way.

Definition 1.3.2 (Convergence in metric spaces). The sequence (an)

converges to a ∈ X in the metric space (X, d) if for every ǫ > 0, there is

an N ∈ N such that d(an, a) < ǫ for all n ≥ N.

The following result follows quickly from Proposition 1.1.9; we leave

its formal proof as Exercise 1.3.1.

Proposition 1.3.3 (Uniqueness of limits). Let (X, d) be a metric space. If

the sequence (an) from X converges to both a and a′ in (X, d), then a = a′.

Proposition 1.3.3 allows us to talk about the limit of a sequence in

the following definition.

Definition 1.3.4 (Convergence, further definitions). The sequence (an)

from X converges in the metric space (X, d) if there is some a ∈ X such

that (an) converges to a in (X, d). In this case, a is called the limit of

(an), and we write

lim an = a, lim
n→∞

an = a, or an → a.

If the sequence (an) does not converge, then it is said to diverge.

We begin with an easy limit.

Example 1.3.5. In the metric space (R, d), the sequence (1/n)∞
n=1 con-

verges to 0.

Proof. Let ǫ > 0 be given. By the Archimedean property, there is an

integer N ∈ N such that N > 1/ǫ, and thus for all n ≥ N, we have

d(an, 0) = |1/n| < ǫ.

However, this sequence can be made to diverge by changing the

metric on R. We leave the proof of the following to the reader as

Exercise 1.3.2.
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Example 1.3.6. In the metric space (R, ddisc), the sequence (1/n)∞
n=1

diverges.

It is frequently useful to recast convergence in arbitrary metric spaces

as convergence in (R, d), as the following result allows us to do.

Proposition 1.3.7. Let (X, d) be a metric space. The sequence (an) from X

converges to a in (X, d) if and only if the sequence (d(an, a)) converges to 0

in R (with the standard metric).

Proof. Suppose first that an → a in (X, d). Then for any ǫ > 0, there is

an N ∈ N such that d(an, a) = |d(an, a)| < ǫ for all n ≥ N, but this is

precisely the same as d(an, a) → 0 in R. Conversely, if d(an, a) → 0 in

R, then for every ǫ there is an N ∈ N such that d(an, a) = |d(an, a)| < ǫ

for all n ≥ N, and this is precisely what it means to have an → a in

(X, d).

Example 1.3.8. The sequence (an) defined by an = (1/n, 1/n) converges

to (0, 0) in the three metric spaces (R2, d1), (R
2, d2), and (R2, d∞).

Proof. We have

d1((1/n, 1/n), (0, 0)) = 2/n,

d2((1/n, 1/n), (0, 0)) =
√

2/n, and

d∞((1/n, 1/n), (0, 0)) = 1/n.

The result follows immediately from Proposition 1.3.7.

This is an example of a more general fact, that the ℓ1, ℓ2, and ℓ∞

metrics are in some sense equivalent on Rd. We begin with the follow-

ing consequence of the Cauchy–Schwarz inequality.

Proposition 1.3.9. For every vector x ∈ Rd, we have

‖x‖1 ≤
√

d‖x‖2 ≤ d‖x‖∞ ≤ d‖x‖1.
A reader who has done Exercise 1.2.6 has
already seen the hard part of the proof of
Proposition 1.3.9.Proof. Let x be an arbitrary vector in Rd. By taking e ∈ Rd to be the

all-1 vector and letting |x| denote the vector obtained by taking the

entry-wise absolute value of x, we see that

‖x‖1 =
d

∑
k=1

|xk| = 〈|x|, e〉.

By the Cauchy–Schwarz inequality, |〈|x|, e〉| ≤ ‖x‖2‖e‖2, and we know

that ‖e‖2 =
√

d, so

‖x‖1 = 〈|x|, e〉 = |〈|x|, e〉| ≤ ‖x‖2‖e‖2 =
√

d‖x‖2.
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Similarly, we have

‖x‖2 =
√

∑ x2
k ≤

√

∑ ‖x‖2
∞ =

√
d‖x‖∞

and

‖x‖∞ ≤ ∑ |xk| = ‖x‖1.

Putting these inequalities together yields the result.

We can now establish that convergence in Rd is the same under all

three of these metrics.

Theorem 1.3.10 (Equivalence of ℓ1, ℓ2, and ℓ∞). Let (an) denote a se-

quence from Rd and a ∈ Rd. The following are equivalent.

(i) The sequence (an) converges to a in (Rd, d1).

(ii) The sequence (an) converges to a in (Rd, d2).

(iii) The sequence (an) converges to a in (Rd, d∞).

Proof. By Proposition 1.3.7, it suffices to show that if any one of ‖an − a‖1,

‖an − a‖2, or ‖an − a‖∞ converges to 0 in (R, d), then the other two do

as well. This follows immediately from Proposition 1.3.9.

We conclude by relating convergence in Rd (under one of these three

metrics) to component-wise convergence.

Proposition 1.3.11. Let (an) denote a sequence from Rd where for each

n, an = (an,1, . . . , an,d). Then (an) converges in (Rd, d1), (Rd, d2), or

(Rd, d∞) if and only if, for every 1 ≤ k ≤ d, the sequence (an,k)n converges

in (R, d). Moreover, if (an) does converge in any of these three metric spaces,

then

lim
n→∞

an =
(

lim
n→∞

an,1, . . . , lim
n→∞

an,d

)

.

Proof. By our previous result, it suffices to consider a sequence (an)

that converges to converges to x = (x1, . . . , xd) in the metric space

(Rd, d∞). For every 1 ≤ k ≤ d, we have

|an,k − xk| ≤ ‖an − x‖∞.

Since we have assumed that ‖an − x‖∞ → 0, it follows that |an,k − xk| → 0

for every 1 ≤ k ≤ d.

Conversely, suppose that for every 1 ≤ k ≤ d, the sequence (an,k)

converges in (R, d) to xk and let x = (x1, . . . , xd). Then we have

‖an − x‖∞ = max{|an,k − xk| : 1 ≤ k ≤ d}.

Since we know that |an,k − xk| → 0 for every 1 ≤ k ≤ d, it follows that

‖an − x‖∞ → 0, proving that (an) → x in (Rd, d∞).
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Exercises

Exercise 1.3.1. Prove Proposition 1.3.3.

Exercise 1.3.2. Prove the result stated in Example 1.3.6: the sequence (1/n)

diverges in the metric space (R, ddisc).

Exercise 1.3.3. Let (X, d) be a metric space and (an) a sequence from X. Prove

that (an) converges to the point a ∈ X if and only the sequence (a1, a, a2, a, . . . )

converges to a.

Exercise 1.3.4. Define the function f : R → R by

f (x) =















π if x = 0,

0 if x = π,

x otherwise,

and define dπ : R × R → R by dπ(a, b) = | f (a) − f (b)|. The function dπ is

a metric on R by Exercise 1.1.13. Prove that in the metric space (R, dπ), the

sequence (1/n) converges to π.
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1.4 Open and closed sets

Open sets are of fundamental importance in all of what follows. We

begin with the definition.

Definition 1.4.1. A set U ⊆ X in a metric space (X, d) is open if and

only if for every x ∈ U there is an ǫ > 0 such that A set is open if every point in the set has
a neighborhood that is also in the set.

Nǫ(x) ⊆ U.

Closed sets are defined as the complements of open sets, so much

of what we prove for open sets can be translated to closed sets.

Definition 1.4.2. A set K ⊆ X in a metric space (X, d) is closed if and

only if its complement X \ K is open.

It is very important to keep in mind that open and closed are not

opposites. Some sets are both open and closed, while “most” sets are

neither. A few examples are in order.

Example 1.4.3. In every metric space (X, d), the sets ∅ and X are both

open and closed.

Proof. The set ∅ is vacuously open; there is no point x ∈ ∅ that could

fail the definition. Now consider the set X. For every x0 ∈ X and every

ǫ > 0, we have

Nǫ(x0) = {x ∈ X : d(x, x0) < ǫ},

so Nǫ(x0) ⊆ X by its very definition. Finally, since X \ ∅ = X is open,

∅ is closed, and since X \ X = ∅ is open, X is closed.

Example 1.4.4. In R2 with the Euclidean metric, the set

E = {(x1, x2) : x1, x2 > 0}

is open.

Proof. Let (x1, x2) ∈ E be arbitrary and define ǫ = min{x1, x2}. By the

definition of E, we have ǫ > 0. For any (y1, y2) ∈ Nǫ((x1, x2)), we have

ǫ > d2((y1, y2), (x1, x2))

=
√

(y1 − x1)2 + (y2 − x2)2

≥ max{|y1 − x1|, |y2 − x2|}.

It follows that y1 > x1 − ǫ ≥ 0 and y2 > x2 − ǫ ≥ 0, so (y1, y2) ∈ E,

completing the proof.
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Example 1.4.5. In R with the standard metric, the set [0, 1) is neither

open nor closed.

Proof. This set is not open because for every ǫ > 0, the set Nǫ(0) =

(−ǫ, ǫ) contains negative numbers and thus is not contained in [0, 1).

This set is not closed because R \ [0, 1) = (−∞, 0) ∪ [1, ∞) is not open;

for every ǫ > 0, the set Nǫ(1) = (1 − ǫ, 1 + ǫ) contains numbers less

than 1.

Next we show that neighborhoods are open in every metric space

(though what neighborhoods look like depends on the metric).

Proposition 1.4.6 (Neighborhoods are open). If (X, d) is a metric space,

x0 ∈ X, and r > 0, then the set Open balls are indeed open sets.

Nr(x0) = {x ∈ X : d(x, x0) < r}

is an open set.

Proof. We must show, for every x ∈ Nr(x0), that there is an ǫ > 0

(depending on x) such that

Nǫ(x) ⊆ Nr(x0).

Accordingly, let x ∈ Nr(x0) be given, so d(x, x0) < r. Set

ǫ = r − d(x, x0) > 0.

Suppose now that y ∈ Nǫ(x), so d(x, y) < ǫ. Using the triangle in-

equality, we have

d(x0, y) ≤ d(x0, x) + d(x, y) < d(x0, x) + ǫ = r.

Therefore y ∈ Nr(x0), and we have shown that Nǫ(x) ⊆ Nr(x0), com-

pleting the proof.

Proposition 1.4.7 (Finite sets are closed). If (X, d) is a metric space and

A is a finite set, then A is closed.

Proof. Let (X, d) be a metric space and suppose that A = {a1, a2, . . . , an} ⊆ X.

We need to prove that the complement X \ A is open. Let x ∈ X \ A

be arbitrary. Because x /∈ A, d(x, ak) > 0 for all 1 ≤ k ≤ n (by part (ii)

of the definition of metric spaces). Therefore, the quantity

ǫ = min{d(x, ak) : 1 ≤ k ≤ n}

is greater than 0. Because Nǫ(x) ⊆ X \ A, it follows that X \ A is open

and therefore A is closed.

We conclude by considering unions and intersections of open sets.
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Proposition 1.4.8 (Unions of open sets). In any metric space, the union of

any number of open sets is open.

Proof. Let (X, d) be a metric space containing the family U of open

sets. Consider an arbitrary point x in the union of these sets, By “family of open sets”, we mean that
the elements of U are sets themselves,
and each of them is open in (X, d).x ∈

⋃

U∈U
U.

Because x lies in this union, there is some U ∈ U such that x ∈ U.

Then because U is open, there is some ǫ such that

Nǫ(x) ⊆ U ⊆
⋃

U∈U
U,

and this proves that the union is open. A corollary of Propositions 1.4.6 and
1.4.8 is that a set is open if and only if
it can be expressed as a union of neigh-
borhoods.

Proposition 1.4.9 (Intersections of open sets). In any metric space, the

intersection of any finite number of open sets is open.

Proof. Let (X, d) be a metric space containing the open sets U1, U2, . . . ,

Un. Consider an arbitrary point x in the intersection of these sets,

x ∈
n
⋂

k=1

Uk.

Because x lies in this intersection, it lies in every Uk. Thus for every k

we can find a number ǫk > 0 such that Nǫk
(x) ⊆ Uk. Setting

ǫ = min{ǫ1, ǫ2, . . . , ǫk} > 0,

it follows that

Nǫ(x) ⊆
n
⋂

k=1

Uk,

completing the proof.
Note the difference between Proposi-
tions 1.4.8 and 1.4.9. We are allowed
arbitrary unions but only finite intersec-
tions. For closed sets this is reversed; see
Exercises 1.4.4 and 1.4.5.Exercises

Exercise 1.4.1. Show that the set E = {(x, y) ∈ R2 : x 6= y} is open in (R2, d2).

Exercise 1.4.2. Show that the set E = {(x, y) ∈ R2 : x, y ≥ 0} is closed in

(R2, d2).

Exercise 1.4.3. Let (X, d) be a metric space, x0 ∈ X, and r > 0. Prove that the

closed neighborhood

Nr(x0) = {x ∈ X : d(x, x0) ≤ r}
is indeed closed in (X, d). Deduce—without using Proposition 1.4.7—that sin- Pay close attention to the overline in

Nr(x0); we will see in the next section
that Nr(x0) is a potentially different set.

gleton sets are always closed.
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Exercises 1.4.3 and 1.4.4 provide another
proof that finite sets are closed.

Exercise 1.4.4. Prove that in any metric space, the union of any finite number

of closed sets is closed.

Exercise 1.4.5. Prove that in any metric space, the intersection of any number

of closed sets is closed.

Exercise 1.4.6. Determine (with justification) the open subsets of a discrete

metric space (X, ddisc).

Exercise 1.4.7. Determine (with justification) whether the set

{(x, y) : xy = 1}

is open and/or closed in the metric space R2 with the Euclidean metric.

Exercise 1.4.8. The metrics d and d′ on the set X are said to be strongly equiva-

lent if there are real numbers c, C > 0 such that

cd(x, y) ≤ d′(x, y) ≤ Cd(x, y)

for all x, y ∈ X. Prove that if d and d′ are strongly equivalent on the set X,

then the metric spaces (X, d) and (X, d′) have the same open sets.

Exercise 1.4.9. Using Proposition 1.3.9, prove that the metrics d1, d2, and d∞

are all strongly equivalent on Rd.
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1.5 Interior, exterior, boundary, and closure

Here we study further aspects of point-set topology. In addition to

being useful on their own, these concepts offer alternative ways to

look at open and closed sets.

Definition 1.5.1 (Interior). Let (X, d) be a metric space and E ⊆ X. The

interior of E is the set of points that have a neighborhood contained in

E, and is denoted by E◦ or int E. Thus,

E◦ = int E = {x ∈ X : there is an ǫ > 0 for which Nǫ(x) ⊆ E}.

Proposition 1.5.2 (Properties of interiors). Let (X, d) be a metric space

and E ⊆ X. The following all hold.

(a) We have E◦ ⊆ E.

(b) The interior E◦ is an open set.

(c) We have E◦ = E if and only if E is itself open.

Proof. Part (a) is straight-forward: if x ∈ E◦ then there is some ǫ > 0

so that x ∈ Nǫ(x) ⊆ E.

To prove part (b), consider an arbitrary point x ∈ E◦. By definition,

there is some ǫ > 0 so that Nǫ(x) ⊆ E. We claim that this implies

that Nǫ/2(x) ⊆ E◦. To prove this, let y ∈ Nǫ/2(x) be arbitrary. Since

Nǫ/2(y) ⊆ Nǫ(x) ⊆ E, we see that y ∈ E◦, as claimed.

Part (c) now follows easily from the other two parts. If E = E◦, then

since E◦ is open by part (b), E is open. Conversely, suppose that E is

open and let x ∈ E be arbitrary. Since E is open, there is some ǫ > 0 so

that Nǫ(x) ⊆ E. This shows that x ∈ E◦, and since x was an arbitrary

element of E, we see that E ⊆ E◦. Since part (a) gives us the reverse

inclusion (E◦ ⊆ E), we conclude that E◦ = E.

By parts (a) and (b) of Proposition 1.5.2, E◦ is an open set contained

in E. Our next result shows that it can be characterized as the largest

open set contained in E.

Proposition 1.5.3. Let (X, d) be a metric space and E ⊆ X. If the set U ⊆ E

is open, then U ⊆ E◦.

Proof. Suppose that the set U ⊆ E is open and let x ∈ U be arbitrary.

Because U is open, there is some ǫ > 0 so that Nǫ(x) ⊆ U ⊆ E, which

means that x ∈ E◦, proving the result.

The exterior of a set can be defined as the interior of its complement.

Definition 1.5.4 (Exterior). Let (X, d) be a metric space and E ⊆ X. The

exterior of E is the set of points that have a neighborhood contained in

X \ E, and is denoted by ext E. Thus,

ext E = {x ∈ X : there is an ǫ > 0 for which Nǫ(x) ⊆ X \ E}.
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Because ext E = int(X \ E), the following properties follow imme-

diately from Proposition 1.5.2 applied to X \ E.

Proposition 1.5.5 (Properties of exteriors). Let (X, d) be a metric space

and E ⊆ X. The following all hold.

(a) We have ext E ⊆ X \ E.

(b) The exterior ext E is an open set.

(c) We have ext E = X \ E if and only if E is itself closed.

Note that because E◦ ⊆ E and ext E ⊆ X \ E, no point can lie in

both the interior and the exterior of a set. Points may lie in neither the

interior nor the exterior, however.

Definition 1.5.6 (Boundary). Let (X, d) be a metric space and E ⊆ X. It follows from the definition that

∂E = ∂(X \ E).The boundary of E is the set of points that lie neither in the interior nor

the exterior of E, and is denoted by ∂E.

We know that the interior of E is contained in E and the exterior of

E is contained in its complement X \ E. The boundary points may or

may not be contained in E, but in either case we have

E ⊆ (E◦ ∪ ∂E) and X \ E ⊆ (ext E ∪ ∂E) .

By negating the definitions of interior and exterior, we arrive at the

following result. We leave its proof to the reader as Exercise 1.5.6.

Proposition 1.5.7 (Characterization of boundary points). Let (X, d) be

a metric space and E ⊆ X. We have x ∈ ∂E if and only if for every ǫ > 0,

the neighborhood Nǫ(x) contains both a point of E and a point of X \ E.

The notion of boundary allows us to give an alternative characteri-

zation of open and closed sets.

Proposition 1.5.8 (Open and closed in terms of boundary). Let (X, d)

be a metric space and E ⊆ X. Then we have the following.

(a) The set E is open if and only if it contains none of its boundary:

E ∩ ∂E = ∅.

(b) The set E is closed if and only if it contains all of its boundary:

∂E ⊆ E.

Proof. By Proposition 1.5.2 (c), the set E is open if and only if E = E◦.

Since every point of E lies either in the interior of E or on its boundary,

we have E = E◦ if and only if E ∩ ∂E = ∅, proving part (a).

By Proposition 1.5.5 (c), the set E is closed if and only if ext E =

X \ E. Since every point of X \ E lies either in the exterior of E or on

its boundary, we have ext E = X \ E if and only if ∂E ⊆ E, proving

part (b).

Finally we come to the closure of a set. Just as the interior of a set

can be defined as its largest open subset, the closure can be defined as

its smallest closed superset.
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Definition 1.5.9 (Closure). Let (X, d) be a metric space and E ⊆ X.

The closure of E, denoted by E, is defined as In some other mathematical contexts, E
is used to denote the complement of E,
but in analysis we generally reserve E to
denote its closure. We use X \ E to de-
note the complement of the set E.

E = E ∪ ∂E = X \ ext E.

There are several equivalent definitions of the closure. The reader

is asked to prove the following analogue of Proposition 1.5.7 in Exer-

cise 1.5.7.

Proposition 1.5.10 (Characterization of closure). Let (X, d) be a metric

space and E ⊆ X. We have x ∈ E if and only if for every ǫ > 0, the

neighborhood Nǫ(x) contains a point of E.

We also have an analogue of Propositions 1.5.2 and 1.5.5 for clo-

sures.

Proposition 1.5.11 (Properties of closures). Let (X, d) be a metric space

and E ⊆ X. The following all hold.

(a) We have E ⊆ E.

(b) The closure E is a closed set.

(c) We have E = E if and only if E is itself closed.

Proof. Part (a) is immediately from the definition of E. Part (b) follows

because X \ E = ext E is open by Proposition 1.5.5 (b). Part (c) follows

immediately from the other two parts.

Exercises

Exercise 1.5.1. Determine the interior, closure and boundary of an interval

(a, b] in R. What is the boundary of (0, 1] as a subset of the metric space (0, ∞)

with the standard metric?

Exercise 1.5.2. Let E be a set in a discrete metric space (X, ddisc). Determine

the interior, boundary and closure of E.

Exercise 1.5.3. Let (X, d) be a metric space and E ⊆ X. Prove that the point x

lies in E if and only if there is a sequence (an) from E that converges to x.

Exercise 1.5.4. Let (X, d) be a metric space and E ⊆ X. Prove that

E◦ =
⋃

{U ⊆ E : U is open}.

Exercise 1.5.5. Let (X, d) be a metric space and E ⊆ X. Prove that

E =
⋂

{K ⊇ E : K is closed}.

Exercise 1.5.6. Prove Proposition 1.5.7.

Exercise 1.5.7. Prove Proposition 1.5.10.
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Exercise 1.5.8. Let X be a nonempty set and d the discrete metric. Fix a point

x0 ∈ X. Is it true that In Exercise 1.4.3 we defined

N1(x0) = {x ∈ X : d(x, x0) ≤ 1}.

The notation N1(x0) in Exercise 1.5.8 de-
notes instead the closure of the open
neighborhood N1(x0).

N1(x0) = {x ∈ X : d(x, x0) ≤ 1}?

Exercise 1.5.9. Determine ∂∂(0, 1] in (R, d).

Exercise 1.5.10. Let

S = {(x, 0) ∈ R2 : 0 < x < 1}.

Find ∂S and ∂∂S in (R2, d2).
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1.6 Relative topology

No matter what metric space we are working with, finite sets are al-

ways closed (Proposition 1.4.7). Beyond this, though, the choice of

metric space affects which sets are open and closed, and therefore

also affects the definitions of interior, exterior, boundary, and closure.

When we change the metric on a space, all bets are off. The discrete

metric on a set behaves very differently from other metrics. However,

we can say something about what happens when we keep the metric

the same, but change the space.

First we consider a few examples. The first is trivial, but worth

keeping in mind.

Example 1.6.1. Let (X, d) be a metric space and E ⊆ X. By restricting

the metric d to E, we obtain the metric space (E, d|E×E). No matter

what topological properties E had in the metric space (X, d), in the

metric space (E, d|E×E), the set E is both open and closed.

For a more interesting example, we consider the difference between

the real line on its own and the real line embedded in the plane.

Example 1.6.2. Let Y = {(0, y) : y ∈ R} denote the y-axis in the plane

with the Euclidean metric d2. By restricting this metric to Y, we obtain

the subspace (Y, d2|Y×Y). This space is, essentially, the real line with (Y, d2|Y×Y) and (R, d) are not literally
the same metric space, but they are iso-
metric.

the standard metric, (R, d). Now consider the open line segment from

(0, 0) to (0, 1),

E = {(0, y) : 0 < y < 1}.

When we view E as set in the metric space (Y, d2|Y×Y), we see that it is

open (it is essentially the same as the open interval (0, 1) in R with the

standard metric). However, in the metric space (R2, d2), every point of

E is a boundary point, so E is not open. (It is also not closed; why?)

We now introduce some terminology for this.

Definition 1.6.3 (Relative topology). Let (X, d) be a metric space, and

E ⊆ Y ⊆ X. We say that E is relatively open with respect to Y if E is open

in the metric space (Y, d|Y×Y). We analogously say that E is relatively

closed with respect to Y if E is closed in the metric space (Y, d|Y×Y).

The main result of this section gives us an alternative characteriza-

tion of relatively open and closed sets.

Proposition 1.6.4 (Characterization of relatively open/closed sets). Let

(X, d) be a metric space and E ⊆ Y ⊆ X.

(a) The set E is relatively open with respect to Y if and only if there is a

set U ⊆ X that is open in (X, d) such that E = U ∩ Y. For example, in Example 1.6.2, one could
take U = N1/2((0, 1/2)). This is an open
set in (R2, d2) and U ∩ Y = E.
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(b) The set E is relatively closed with respect to Y if and only if there is a

set K ⊆ X that is closed in (X, d) such that E = K ∩ Y.

Proof. We prove part (a), leaving part (b) for Exercise 1.6.1. In our

proof we need to consider neighborhoods in both (X, d) and (Y, d|Y×Y),

so for any point z and any ǫ > 0, we define

NX
ǫ (z) = {x ∈ X : d(x, z) < ǫ} and

NY
ǫ (z) = {y ∈ Y : d|Y×Y(y, z) < ǫ} = NX

ǫ (z) ∩ Y.

Suppose first that E = U ∩ Y for some set U ⊆ X that is open in

(X, d). This implies that E ⊆ U, and since U is open in (X, d), for every

point z ∈ E there must be some radius ǫz > 0 for which NX
ǫz
(z) ⊆ U.

This implies that

NY
ǫz
(z) = NX

ǫz
(z) ∩ Y ⊆ U ∩ Y = E,

and this implies that E is open in (Y, d|Y×Y).

Conversely, suppose that E is open in (Y, d|Y×Y). This means that

for each point z ∈ E, there is some radius ǫz > 0 such that NY
ǫz
(z) ⊆ E,

and from this we see that

E =
⋃

z∈E

NY
ǫz
(z).

Now define

U =
⋃

z∈E

NX
ǫz
(z).

Since U is a union of neighborhoods, it is open in (X, d). Moreover, A union of neighborhoods is always
open because Proposition 1.4.6 states
that neighborhoods are open, and
Proposition 1.4.8 states that the union of
any number of open sets is open.

we have

U ∩ Y =

(

⋃

z∈E

NX
ǫz
(z)

)

∩ Y =
⋃

z∈E

NY
ǫz
(z) = E,

completing the proof of this direction.

Exercises

Exercise 1.6.1. Prove part (b) of Proposition 1.6.4.

Exercise 1.6.2. State and prove a characterization of relatively clopen sets akin

to Proposition 1.6.4.
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1.7 Cauchy sequences and completeness

The definition of Cauchy sequences in general metric spaces is a

straightforward generalization of their definition on the real line.

Definition 1.7.1. A sequence (an) in a metric space (X, d) is Cauchy

if for every ǫ > 0 there is an N ∈ N such that d(am, an) < ǫ for all

m, n ≥ N. Exercise 1.7.1 asks you to characterize
the Cauchy sequences of discrete metric
spaces.Proposition 1.7.2. Convergent sequences are Cauchy; that is, if (an) is a

convergent sequence in the metric space (X, d), then (an) is Cauchy.

Proof. Suppose that (an) is a convergent sequence in the metric space

(X, d) and set a = lim an. Let ǫ > 0 be arbitrary. There is an N ∈ N

such that d(an, a) < ǫ/2 for all n ≥ N. Therefore for m, n ≥ N we have

(by the triangle inequality)

d(am, an) ≤ d(am, a) + d(a, an) <
ǫ

2
+

ǫ

2
= ǫ,

proving the result.

Importantly, Cauchy sequences do not necessarily converge.

Example 1.7.3. Consider the sequence of successively better decimal

approximations of π,

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . .

Viewed as a sequence in (R, d), this sequence is Cauchy (why?) and

converges to π. However, viewed as a sequence in (Q, d), this sequence

is still Cauchy, but no longer converges (why?).

In some sense, the Cauchy sequences are the sequences that “should

converge”. The metric spaces where every sequence that “should con-

verge” actually does are special.

Definition 1.7.4. The metric space (X, d) is complete if every Cauchy

sequence in X converges (in X).
Exercise 1.7.2 asks you to prove that ev-
ery discrete metric space is complete.We just saw that the metric space (Q, d) is not complete. We assume

that the reader has already seen that (R, d) is complete.

Theorem 1.7.5. The metric space (R, d) is complete. Many proofs of of Theorem 1.7.5 use
the least upper bound property: every
nonempty bounded subset of R has a
least upper bound. Proofs of complete-
ness for other metric spaces will be very
different, since most spaces don’t have
notions of “least” or “upper bound”.

Next we consider subsequences, for which we give the formal defi-

nition below.



advanced calculus ii 25

Definition 1.7.6. Suppose that (an) is a sequence of points in the metric

space (X, d). For any choice of indices

1 ≤ n1 < n2 < n3 < · · · ,

the sequence (anj
)∞

j=1 is a subsequence of (an).

Proposition 1.7.7. Let (an) be a Cauchy sequence in the metric space (X, d).

If some subsequence of (an) converges in (X, d) to the point a, then (an)

converges in (X, d) to a.

Proof. See Exercise 1.7.3

Complete metric spaces have nice properties, as we will see through-

out these notes. For now, we note that these spaces are intrinsically

closed—no matter what larger space you embed a complete metric

space in, it will always be closed.

Proposition 1.7.8 (Complete sets are closed). Let (X, d) be a metric space,

and Y ⊆ X. If (Y, d|Y×Y) is complete, then Y is closed in (X, d).

Proof. Recall that a set is closed if and only if it contains its boundary

(Proposition 1.5.8 (b)). Let x ∈ ∂Y be an arbitrary boundary point of

Y in (X, d). Because x is a boundary point, for every ǫ > 0, the neigh-

borhood Nǫ(x) intersects both Y and X \ Y (by Proposition 1.5.7). We

can therefore construct a sequence (an) by choosing, for every integer

n ≥ 1,

an ∈ N1/n(x) ∩ Y.

This sequence converges in the space (X, d) to the point x. Therefore it

is a Cauchy sequence, so since (Y, d|Y×Y) is complete, (an) must also

converge in Y. Since limits of sequences are unique, (an) can only

possibly converge to x in (Y, d|Y×Y), and thus we must have x ∈ Y.

This proves that ∂Y ⊆ Y, and so Y is closed.

Conversely, we have the following result.

Proposition 1.7.9. Suppose that (X, d) is a complete metric space. If the set

Y is closed in (X, d), then the subspace (Y, d|Y×Y) is complete. Proposition 1.7.9 says that every closed
subset of a complete space is complete.

Proof. Let Y be a closed set in the complete metric space (X, d) and

consider an arbitrary Cauchy sequence (an) in Y. Because (an) is

Cauchy, it converges in (X, d), say to the point a ∈ X.

The definition of convergence says that for every ǫ > 0, there is

some N ∈ N such that d(an, a) < ǫ for all n ≥ N. Therefore, for every

radius ǫ > 0, the neighborhood Nǫ(a) contains at least one point of

Y (it contains all the points an with n ≥ N, but they might all be the

same). This means that a ∈ Y (by Proposition 1.5.10). Since Y = Y Proposition 1.5.10 states that x ∈ E if and
only if for every ǫ > 0, the neighborhood
Nǫ(x) contains a point of E.

(because Y is closed), we have that a ∈ Y, and so the sequence (an) also

converges in (Y, d|Y×Y). This proves that (Y, d|Y×Y) is complete.
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Exercises

Exercise 1.7.1. Prove that a sequence (an) in a discrete metric space (X, ddisc)

is Cauchy if and only if it is eventually constant.

Exercise 1.7.2. Prove that every discrete metric space (X, ddisc) is complete.

Exercise 1.7.3. Prove Proposition 1.7.7.

Exercise 1.7.4. The diameter of a nonempty set E in a metric space (X, dX) is

defined as

diam(E) = sup{dX(x, y) : x, y ∈ E}.

(If the set of values dX(x, y) is not bounded, then we define diam(E) = +∞.)

Prove that if (X, dX) is a complete metric space, C1 ⊇ C2 ⊇ · · · is a

nested decreasing sequence of nonempty closed sets in X, and the sequence

(diam(Cn))∞
n=1 converges to 0 in R (with the usual metric), then

∞
⋂

n=1

Cn

contains precisely one point.

Exercise 1.7.5. Show that the result in Exercise 1.7.4 fails if any of the hypotheses—

completeness, closedness of the sets Cn, or that the diameters tend to 0—are

removed.
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