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2.1 Open covers

We now come to the important notion of compactness.

Definition 2.1.1 (Compact set). Let (X, d) be a metric space and S ⊆ X

a set. An open cover of S is a family U of open sets such that

S ⊆
⋃

U∈U

U.

The set K is compact if for every open cover U of K, there is a finite

subfamily V ⊆ U such that The short way to describe com-

pactness is that every open cover

admits a finite subcover.
K ⊆

⋃

U∈V

U.

In this case, V is called a finite subcover of K.
Exercise 2.1.1 asks you to prove that fi-
nite sets are always compact.Sometimes we talk about a space itself being compact.

Definition 2.1.2 (Compact space). The metric space (X, d) is called

compact if the set X is compact in (X, d).

Example 2.1.3. The set K = {1, 1/2, 1/3, . . . , 1/n, . . . , 0} is compact in the

metric space (R, d). Example 2.1.3 is generalized by Exer-
cise 2.1.3. Exercise 2.1.4 implies that the
set K in this example is not compact in
(R, ddisc).

Proof. Let U be any open cover of K. Then there must be a set U0 ∈ U

with 0 ∈ U0. Since U0 is open, there is an ǫ > 0 such that Nǫ(0) ⊆ U0.

Choose N ∈ N so that 1/N < ǫ. Thus 1/n ∈ Nǫ(0) ⊆ U0 for all n ≥ N.

For each 1 ≤ n ≤ N − 1, there is some set Un ∈ U containing 1/n. It

follows that V = {U0, U1, U2, . . . , UN−1} ⊆ U is a finite subcover of K.

Therefore K is compact.
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Often it is convenient to view covers as an indexed family of sets.

In this case an open cover of the set S consists of an index set I and

a collection of open sets U = {Ui : i ∈ I} whose union contains S. A

subcover is then a collection V = {Uj : j ∈ J}, for some subset J ⊆ I.

A set K is compact if, for each collection {Ui : i ∈ I} such that

K ⊆
⋃

i∈I

Ui,

there is a finite subset J ⊆ I such that

K ⊆
⋃

j∈J

Uj.

To show that a set is not compact, we must exhibit an open cover

that does not admit a finite subcover.

Example 2.1.4. Show that the set (0, 1] in the metric space (R, d) is not

compact. For another non-example of compact-
ness, do Exercise 2.1.4, which states that
a subset K of a discrete metric space X is
compact if and only if K is finite.

Proof. Consider the family of sets defined by

Un =
(

2−n, 2
)

for all n ∈ N. It is readily checked that

(0, 1] ⊆
∞
⋃

n=0

Un,

and of course each Un is open. Thus U = {Un : n ∈ N} is an open

cover of (0, 1]. Why doesn’t our proof that (0, 1] is not
compact apply to the closed interval
[0, 1]? (We’ll see in the next section that
[0, 1] is compact.)

Now suppose that J ⊆ N is a finite set. This means that there is an

integer N such that J ⊆ {0, 1, 2, . . . , N}, and therefore

⋃

j∈J

Uj ⊆
N
⋃

j=0

Uj =
(

2−N , 2
)

.

Thus there is no finite subset J of the index set N such that

(0, 1] ⊆
⋃

{Uj : j ∈ J},

and we conclude that (0, 1] is not compact.

Our next result is frequently useful for establishing that a given set

is compact.

Proposition 2.1.5. In every metric space, every closed subset of a compact

set is compact.
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Proof. Let (X, d) be a metric space, let K ⊆ X be compact in (X, d),

and suppose that C is a closed set in (X, d) satisfying C ⊆ K.

Let U be an arbitrary open cover of C, so we need to find a finite

subcover. Since C is closed, its complement X \ C is open. Therefore,

U ∪ {X \ C}

is an open cover of X, and thus also of K. Because K is compact, there

is a finite subfamily V ⊆ U such that V ∪ {X \ C} covers K, and thus

also C. We certainly don’t need X \ C to cover C, so it follows that

V ⊆ U is a finite subcover of C, proving that C is indeed compact.

Our final result of the section shows that compactness is intrinsic

and thus, unlike with open and closed sets, we can speak of compact

sets without worrying about the ambient space (although we must still

worry about the metric, because changing metrics can change which

sets are compact).

Theorem 2.1.6. Let (X, d) be a metric space. The set K ⊆ Y ⊆ X is compact

in (Y, d|Y×Y) if and only if it is compact in (X, d).

Proof. First suppose that K is compact in the smaller space (Y, d|Y×Y).

To prove that K is compact in (X, d), let U be an open cover of K in

(X, d). Define

W = {U ∩ Y : U ∈ U}.

Each of the sets U ∩Y in W is relatively open with respect to Y because

it is the intersection of Y with an open set of (X, d), so each set U ∩ Y

in W is open in (Y, d|Y×Y). Moreover, since K ⊆ Y, it follows that

W is an open cover of K in (Y, d|Y×Y). By the compactness of K in

(Y, d|Y×Y), it follows that there is a finite subfamily V ⊆ U such that

K ⊆
⋃

U∈V

(U ∩ Y).

Thus V is a finite subcover for K in the space (X, d).

Conversely, suppose that K is compact in the larger space (X, d).

Let U be an open cover of K in (Y, d|Y×Y). For each set U ∈ U , since

it is open in (Y, d|Y×Y), there is an open set U′ in (X, d) such that

U = U′ ∩ Y. The family U ′ = {U′ : U ∈ U} is thus an open cover

of K in (X, d). Because K is compact in (X, d), there must be a finite

subcover of U ′. Thus there is a finite subfamily V ⊆ U such that

K ⊆
⋃

U∈V

U′.

Since K ⊆ Y, K ∩ Y = K, so intersecting both sides of the above inclu-

sion with Y, we obtain

K ⊆
⋃

U∈V

(U′ ∩ Y) =
⋃

U∈V

U.
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This shows that V is a finite subcover of K in the space (Y, d|Y×Y),

completing the proof.

Exercises

Exercise 2.1.1. Prove that in every metric space, finite sets are always compact.

Exercise 2.1.2. Prove that in every metric space, finite unions of compact sets

are always compact.

Exercise 2.1.3. Prove that if (X, d) is a metric space and (an)∞
n=1 is a sequence

in X that converges to a ∈ X, then the set {a1, a2, . . . , a} is compact.

Exercise 2.1.4. Show that a set in a discrete metric space (X, ddisc) is compact

if and only if it is finite.

Exercise 2.1.5 (The finite intersection property). Suppose that (X, d) is a com-

pact metric space and that C is a family of closed sets of X. Prove that if

⋂

C∈F

C 6= ∅

for each finite subfamily F ⊆ C, then in fact Consider taking complements in Exer-
cise 2.1.5.

⋂

C∈C

C 6= ∅.

Exercise 2.1.6 (The nested intersection property). Use the finite intersection

property to deduce the nested intersection property: if C1 ⊇ C2 ⊇ is a nested

decreasing sequence of non-empty compact sets in a metric space (X, d), then
⋂

Cn is non-empty as well.

Exercise 2.1.7. Give an example to show that the finite intersection property

of Exercise 2.1.5 does not necessarily hold if (X, d) is not compact.

Exercise 2.1.8. Suppose that the metric space (X, d) contains a (countable) Inspired by Exercise 2.1.8, can you give
an example of a metric space (X, d) that
is not a countable union of compact sets?

sequence K1, K2, . . . of compact subsets such that X = ∪Kn. Prove that every

open cover of X has a finite or countable subcover.
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2.2 Sequential compactness

We now introduce the notion of sequential compactness, which

we will prove is equivalent to compactness in this section. We be-

gin with the definition, which should remind readers of the Bolzano–

Weierstrass theorem (a connection we make explicit in the next sec-

tion).

Definition 2.2.1 (Sequentially compact sets). Let (X, d) be a metric

space. The set K ⊆ X is sequentially compact if every sequence in K has

a subsequence that converges to a limit in K. Expanding on the definition a bit, the set
K is sequentially compact if for every se-
quence (an) from K, there is some a ∈ K
for which there is a subsequence (ank

)
that converges to a.

Note that definition of sequential compactness is intrinsic in that it

depends only on the set K and the metric, not on the ambient space X.

We prove—one direction at a time—that compactness and sequential

compactness are equivalent for metric spaces.

Proposition 2.2.2. Every compact subset of a metric space is sequentially

compact.

Proof. Let (X, d) be a metric space and suppose that the set K ⊆ X is

compact. Further let (an)∞
n=0 be a sequence from K. For every x ∈ X

and ǫ > 0, we consider the set of indices

Iǫ(x) = {n ∈ N : d(an, x) < ǫ}

for which an is within ǫ of x.

First (in order to rule this case out), we assume that for every point

x ∈ K, there is an ǫx > 0 for which the set Iǫx (x) is finite. In this case,

the family

{Nǫx (x) : x ∈ K}

of neighborhoods is an open cover of K. Since K is compact, this cover

must admit a finite subcover. Therefore there must be a finite subset

F ⊆ K such that {Nǫx (x) : x ∈ F} covers K, and thus

K ⊆
⋃

x∈F

Nǫx (x).

Now since every term of the sequence (an) lies in K, every term of this

sequence must lie in at least one of these finitely many neighborhoods.

In other words, for every n ∈ N, there must be at least one point x ∈ F

such that n ∈ Iǫx (x). However, since there are only finitely many

points in F, this implies that at least one of the sets Iǫx (x) must be

infinite, a contradiction.
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Therefore we may now assume that there is at least one point x ∈ K

such that the set Iǫ(x) is infinite for every ǫ > 0. This condition guar-

antees the existence of a subsequence that converges to x, as we show

now.

Choose an index n1 so that d(an1
, x) < 1. This can be done because

there are infinitely many indices in the set I1(x). Now, because there

are infinitely many indices in the set I1/2(x), we can choose an index

n2 > n1 such that d(an2 , x) < 1/2. We can then find an index n3 > n2

such that d(an3 , x) < 1/3. Continuing in this manner, we construct a

subsequence of (an) that converges to x ∈ K, establishing that K is

indeed sequentially complete.

The remainder of this section is devoted to proving the converse of

Proposition 2.2.2. We begin with a lemma.

Lemma 2.2.3 (Lebesgue number lemma). Let (X, d) be a metric space. If

the set K ⊆ X is sequentially compact, then for every open cover U of K, there

is a number δ > 0 (depending only on U ) such that for every point x ∈ K

there is some set U ∈ U with Nδ(x) ⊆ U. Since U is an open cover of K, we know
that for every x ∈ K there is some δx > 0
and U ∈ U such that Nδx (x) ⊆ U.
However, the Lebesgue number lemma
shows that we can choose the same δ for
every point. This should be somewhat
surprising.

Proof. Suppose to the contrary that there is no such number δ > 0.

Thus for every integer n ≥ 1 there is a point xn ∈ K such that N1/n(xn)

is not a subset of any of the sets in U . Because K is sequentially com-

pact, the sequence (xn) has a subsequence that converges in K; sup-

pose that the subsequence (xnj
)∞

j=1 converges to x ∈ K.

There is some open set Ux ∈ U with x ∈ Ux, so there is some

ǫ > 0 such that Nǫ(x) ⊆ Ux. Choose k such that both 1/nk < ǫ/2 and

d(xnk
, x) < ǫ/2. Then

N1/nk
(xnk

) ⊆ Nǫ/2(xnk
) ⊆ Nǫ(x) ⊆ Ux,

but this is a contradiction to our assumption that N1/n(xn) is not a

subset of any of the sets in U , and this contradiction completes our

proof.

We can now complete the proof that compactness and sequential

compactness are equivalent (for metric spaces).

Proposition 2.2.4. Every sequentially compact subset of a metric space is

compact.

Proof. Let (X, d) be a metric space and suppose that the set K ⊆ X

is sequentially compact. Further let U be an arbitrary open cover of

K. From the Lebesgue number lemma, we know that there is some

number δ > 0 such that for every x ∈ K there is some set U ∈ U such

that Nδ(x) ⊆ U.
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If there were some finite subset F ⊆ K such that

K ⊆
⋃

x∈F

Nδ(x),

then we would be done, because each of the finite number of sets Nδ(x)

for x ∈ F is contained in one of the sets in U , so we could find a finite

subcover of K.

Now suppose to the contrary that the above does not hold. Choose

x0 ∈ K arbitrarily, and then for each n ∈ N, choose

xn+1 ∈ K \





n
⋃

j=0

Nδ(xj)



 .

We can always choose such a point xn+1 because we have assumed More generally, a set E is said to be to-
tally bounded if for every number ǫ > 0,
there is a finite subset F ⊆ E such that

E ⊆
⋃

x∈F

Nǫ(x).

Our proof shows that sequentially com-
pact sets are always totally bounded.

that

K *
n
⋃

j=0

Nδ(xj)

for every n ∈ N. Therefore we have found a sequence (xn)∞
n=1 such

that d(xj, xk) ≥ δ for all indices j 6= k. However this means that (xn)

cannot have a convergent subsequence, which contradictions our hy-

pothesis that K is sequentially compact. This contradiction shows that

there is a finite subset F ⊆ K such that

K ⊆
⋃

x∈F

Nδ(x),

and we have already shown how that implies that K is compact.

Exercises

Exercise 2.2.1. Let (X, d) be a metric space and suppose that there is a number

r > 0 and a sequence (an) from X such that d(an, am) ≥ r for n 6= m. Prove

that X is not compact.

Exercise 2.2.2. Prove that every compact subset of a metric space is complete. For Exercise 2.2.2, recall that if a Cauchy
sequence has a subsequence that con-
verges to the point x, then the entire se-
quence converges to x.

Exercise 2.2.3. The metric space (X, d) is called separable if there is a finite or

countable set S ⊆ X such that S = X, and in this case the set S is called dense.

For example, the real line under the usual metric is separable because Q is

countable and Q = R. Prove that every compact metric space is separable. For Exercise 2.2.3, use the fact estab-
lished in our proof of Proposition 2.2.4
that (sequentially) compact sets are to-
tally bounded. Thus for every integer
n ≥ 1, there is a finite set Fn ⊆ X such
that

X ⊆
⋃

x∈Fn

N1/n(x).

Then set F =
⋃

Fn and argue that F = X.
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2.3 Heine–Borel and completeness

Now that we know that compactness and sequential compactness

are equivalent (for metric spaces), we relate sets that satisfy these prop-

erties to other concepts we have seen. First we show that all compact

sets are closed and bounded. Then we show that the converse is true

in Rd for our usual metrics. First, we must define what we mean by a

bounded set in a general metric space.

Definition 2.3.1. The set E in the metric space (X, d) is bounded if there You should convince yourself that this
definition of bounded sets agrees with
our previous definition when we restrict
it to R with the usual metric. What are
the bounded subsets of a discrete metric
space?

is a point x0 ∈ X and a real number r > 0 such that E ⊆ Nr(x0). A

sequence (an) from X is bounded if the set {an : n ∈ N} is bounded.

We use the definition of sequential compactness in our proof of the

following result, but the reader may want to think about the definition

of compactness could be used instead.

Theorem 2.3.2. In every metric space, all compact sets are closed and bounded.

Proof. Suppose that K is a compact subset of the metric space (X, d).

First we show that K is bounded. Fix an arbitrary point x0 ∈ X. We

then have

K ⊆ X =
∞
⋃

n=1

Nn(x0).

Since each neighborhood Nn(x0) is open, the family {Nn(x0) : n ≥ 1}

is an open cover of K. By the compactness of K, this cover admits a

finite subcover, so there must be an N ∈ N such that

K ⊆
N
⋃

n=1

Nn(x0) = NN(x0),

which shows that K is bounded.

Next we prove that K is closed. Let a ∈ K be arbitrary. We know (by The fact that K is closed in Theorem 2.3.2
also follows easily from Exercise 1.5.3.Proposition 1.5.10) that for every n ∈ N there is a point an ∈ K ∩ N1/n(a).

The sequence (an) clearly converges to a, and thus every subsequence

of it must also converge to a. Because K is sequentially compact, this

proves that a ∈ K, so K ⊆ K, and thus K is closed.

Next we recall (and extend) the Bolzano–Weierstrass theorem.

Theorem 2.3.3 (The Bolzano–Weierstrass theorem for R). In R with the

usual metric, every bounded sequence contains a convergent subsequence.

We begin by extending Bolzano–Weierstrass to Rd with any of the

standard metrics. The biggest difficult in this proof is notational.
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Theorem 2.3.4 (The Bolzano–Weierstrass theorem for Rd). In (Rd, d1),

(Rd, d2), or (Rd, d∞), every bounded sequence contains a convergent subse-

quence.

Proof. Let (an) denote a bounded sequence in Rd under any of the

three metrics d1, d2, or d∞. Express the terms as an = (an,1, . . . , an,d),

where the an,i ∈ R are the components of an. Because (an) is bounded,

the real-valued sequence (an,1)n is bounded, and thus the Bolzano–

Weierstrass theorem for R implies that it has a convergent subse-

quence. Denote this subsequence by (an1(k),1
)k. Next consider the

bounded real-valued sequence (an1(k),2
)k. By the Bolzano–Weierstrass

theorem, this sequence has a convergence sub-subsequence, say (an2(k),2
)k.

Continuing in this manner, we find convergent (sub-· · · -sub-)subsequences

(an3(k),3
)k, · · · , and (and(k),d

)k.

It follows that each of the components of the subsequence

(and(k)
)k = (and(k),1

, and(k),2
, . . . , and(k),d

)k

converges, and thus (by Proposition 1.3.11), so does the subsequence

itself, completing the proof.

The Bolzano–Weierstrass theorem leads to a characterization of the

compact subsets of Rd, (under the usual metrics), a result that is typi-

cally called the Heine–Borel theorem. Note that the Heine–Borel theo-

rem specializes to include the real line under the usual metric.

Theorem 2.3.5 (The Heine–Borel theorem for Rd). In (Rd, d1), (R
d, d2),

or (Rd, d∞), a set is compact if and only if it is closed and bounded.

Proof. We know (by Theorem 2.3.2) that all compact sets in every met-

ric space are closed and bounded, so it suffices to prove the converse.

We also know (by Propositions 2.2.2 and 2.2.4) that compactness and

sequential compactness are equivalent (for metric spaces). Thus is suf-

fices to prove that a closed and bounded set in any of these metric

spaces is sequentially compact.

Suppose that the set K ⊆ Rd is closed and bounded in (Rd, d1),

(Rd, d2), or (Rd, d∞), and let (an) be a sequence from K. By the

Bolzano–Weierstrass theorem for Rd, (an) has a convergent subse-

quence, say (ank
)k. Let a = lim ank

. We know that a ∈ K by Propo-

sition 1.5.10, because every neighborhood of a contains some point

ank
∈ K. Furthermore, since K is closed we must have K = K, so a ∈ K.

This proves that K is sequentially compact.

The Heine–Borel theorem is a special property of Rd (under the

usual metrics) and does not hold in general. For example, in a dis-

crete metric space (X, ddisc), every set is closed and bounded, but Ex-

ercise 2.1.4 shows that sets are compact if and only if they are finite.

Other (non-)examples are described in Exercises 2.3.1 and 2.3.4.
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We conclude our discussion of compactness by considering its re-

lation to completeness. The proof of the following result was already

requested in Exercise 2.2.2.

Proposition 2.3.6. Every compact subset of a metric space is complete.

Even though we know that (R, d) is complete, Proposition 2.3.6 does

not immediately imply this, because (R, d) is not a compact space.

However, this line of argument can still be made to work.

Corollary 2.3.7. The metric space (R, d) is complete.

Proof. Let (an) be a Cauchy sequence from R. Cauchy sequences are

necessarily bounded, so there is some number r > 0 such that all the To see that Cauchy sequences are always
bounded, suppose that (an) is a Cauchy
sequence in the metric space (X, d). Let
N ∈ N be such that d(am, an) < 1 for all
m, n ≥ N. Set

r = max{1, d(a1, aN), . . . , d(aN−1, aN)}.

It follows that

{an : n ∈ N} ⊆ Nr(aN).

terms of (an) are contained in the interval [−r, r]. Since this interval is

closed and bounded, the Heine–Borel theorem tells us that it is com-

pact. Thus by Proposition 2.3.6, the sequence (an) must converge in

[−r, r], and thus it must converge in (R, d) as well.

Exercise 2.3.2 asks the reader to extend this result to Rd.

Corollary 2.3.8. The metric spaces (Rd, d1), (R
d, d2), and (Rd, d∞) are all

complete.

Exercises

Exercise 2.3.1. Prove that in the metric space (Q, d), where d is the usual metric

(on R), the set [0, π) is closed and bounded, but not compact.

Exercise 2.3.2. Prove Corollary 2.3.8, that the metric spaces (Rd, d1), (R
d, d2),

and (Rd, d∞) are all complete.

Exercise 2.3.3. Suppose that the metric space (X, d) has the property that every

closed and bounded subset of X is compact. Prove that (X, d) is complete.

Exercise 2.3.4. Define the metric d∗ on R by The metric d∗ here is an instance of the
construction from Exercise 1.1.5.

d∗(x, y) =
|x − y|

1 + |x − y|
.

For every x ∈ R, we have

d∗(x, 0) =
|x|

1 + |x|
< 1,

so

R ⊆ Nd∗
1 (0) = {x ∈ R : d∗(x, 0) < 1},

and thus in the metric space (R, d∗), the set R is bounded. It is also closed. It may be helpful to prove that the spaces
(R, d) and (R, d∗) have the same open
sets.

Prove, however, that R is not compact in this space.

Exercise 2.3.5. Prove that any open cover of (R, d) has a finite or countably

infinite subcover. Exercises 2.3.5 and 2.3.6 are instances of
Exercise 2.1.8.

Exercise 2.3.6. Prove that any open cover of (Rd, d2) has a finite or countably

infinite subcover.
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