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3.1 The definition of continuity

Recall that a function f : R → R is continuous at the point a ∈ R if

for every ǫ > 0, there is a δ > 0 such that | f (x)− f (a)| < ǫ whenever

|x − a| < δ. Generalizing this definition is straightforward.

Definition 3.1.1. Suppose that (X, dX) and (Y, dY) are metric spaces.

The function f : X → Y is continuous at the point a ∈ X if for every ǫ >

0, there is a δ > 0 such that dY( f (x), f (a)) < ǫ whenever dX(x, a) < δ.

A function is simply called continuous if it is continuous on its entire

domain.

Definition 3.1.2. Suppose (X, dX) and (Y, dY) are metric spaces. The

function f : X → Y is continuous if and only if it is continuous at every

point a ∈ X.

We pause to consider a few examples.

Example 3.1.3. Let (X, dX) and (Y, dY) be metric spaces and suppose

that f : X → Y is a constant function, so there is some y0 ∈ Y so that

f (x) = y0 for all x ∈ X. Then f is continuous.

Proof. For every x, a ∈ X and every ǫ > 0 we have dY( f (x), f (a)) =

dY(y0, y0) = 0 < ǫ.

Example 3.1.4. Let (X, dX) be a metric space and fix a point x0 ∈ X.

Define the function f : X → R by f (x) = dX(x, x0), where the metric

on R is the usual one. Then f is continuous.



advanced calculus ii 42

Proof. Let a ∈ X and ǫ > 0 be arbitrary. For every x ∈ X, we have (by

the triangle inequality) that

| f (x)− f (a)| = |dX(x, x0)− dX(a, x0)| ≤ |dX(x, a)| = dX(x, a).

Thus if dX(x, a) < ǫ, then | f (x)− f (a)| < ǫ. Since ǫ > 0 was arbitrary,

this proves that f is continuous at a, and since a was arbitrary, that

proves that f is continuous on all of X.

Example 3.1.5. Let (X, dX) and (Y, dY) be metric spaces and f : X → Y.

Suppose that there is a constant c ∈ (0, ∞) such that for all x1, x2 ∈ X,

we have Functions satisfying the conditions of
Example 3.1.5 are called Lipschitz con-
tinuous, and more can and will be said
about them.

dY( f (x1), f (x2)) ≤ cdX(x1, x2).

Then f is continuous.

Proof. If c = 0, then f is a constant function and we have already seen

that it is continuous. Suppose that c > 0 and let a ∈ X and ǫ > 0 be

arbitrary. If dX(x, a) < ǫ/c, then we have

dY( f (x), f (a)) ≤ cdX(x, a) < ǫ,

which proves that f is continuous.

Example 3.1.6. Fix a vector z ∈ R
g and define the function fz : R

g → R

by fz(x) = 〈x, z〉, where 〈·, ·〉 is the standard inner product on R
g.

Viewed as a function from (Rg, d2) to R with the usual metric, fz is

continuous.

Proof. Let x1, x2 ∈ R
g. By the linearity of the inner product, we have

f (x1)− f (x2) = 〈x1, z〉 − 〈x2, z〉 = 〈x1 − x2, z〉.

Furthermore, by the Cauchy–Schwarz inequality, we have

| f (x1)− f (x2)| = |〈x1 − x2, z〉 ≤ ‖x1 − x2‖2 ‖z‖2 = ‖z‖2 d2(x1, x2).

It follows that fz satisfies the conditions of our previous example with

c = ‖z‖2, and thus it is continuous.

Next we establish two very important results. The first of these gives

an alternative, and frequently more useful, definition of continuity: a

function is continuous if and only if the preimage of every open set is open.
Proposition 3.1.7 also holds with both in-
stances of the word “open” replaced by
“closed”; see Exercise 3.1.4.

Proposition 3.1.7. Suppose (X, dX) and (Y, dY) are metric spaces. The

function f : X → Y is continuous if and only if for every open set U in

(Y, dY), the set

f−1(U) = {x ∈ X : f (x) ∈ U} ⊆ X

is open in (X, dX). The set f−1(U) is called the preimage (or
inverse image) of U, but note that its def-
inition does not require the invertibility
of f . One should think of the notation
“ f−1” here as being completely different
from the notation “ f−1” we use for in-
vertible functions. (And it is even more
different than the negative power nota-
tion we use when we write “x−1 = 1/x”.)
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Proof. Assume that the function f is continuous and that U ⊆ Y is

open. Let a ∈ f−1(U) be arbitrary. Since U is open and f (a) ∈ U,

there is an ǫ > 0 so that Nǫ( f (a)) ⊆ U. Since f is continuous at a,

there is a δ > 0 such that if x ∈ Nδ(a), then f (x) ∈ Nǫ( f (a)). This

shows that Nδ(a) ⊆ f−1(U), completing the proof of this direction of

the result. This definition of continuity in terms of
open sets allows one to extend the defi-
nition to arbitrary topological spaces, al-
though we will content ourselves with
metric spaces.

Conversely, suppose that f−1(U) is open in (X, dX) whenever U

is open in (Y, dY). Let a ∈ X and ǫ > 0 be arbitrary. The set U =

Nǫ( f (a)) is open in (Y, dY), so f−1(U) must be open in (X, dX). Since

a ∈ f−1(U), this means that there is a δ > 0 such that Nδ(a) ⊆ f−1(U).

This means that if dX(x, a) < δ, then dY( f (x), f (a)) < ǫ. Since ǫ > 0

was arbitrary, this verifies that f is continuous at a, and since a ∈ X

was arbitrary, this proves that f is continuous.

Notice how easily the viewpoint of Proposition 3.1.7 allows us to

prove the following.

Proposition 3.1.8. Suppose (X, dX), (Y, dY), and (Z, dZ) are all metric

spaces, and that f : X → Y and g : Y → Z. If f and g are both continuous,

then so is their composition h = g ◦ f : X → Z.

Proof. Suppose that U ⊆ Z is open in (Z, dZ). Since g is continuous,

g−1(U) is open in (Y, dY). Then since f is continuous, f−1(g−1(U)) is

open in (X, dX). Therefore h−1(U) = f−1(g−1(U)) is open in (X, dX),

proving the result.

There is also a local version of this result. We leave the proof to the

reader.

Proposition 3.1.9. Suppose (X, dX), (Y, dY), and (Z, dZ) are all metric

spaces, and that f : X → Y and g : Y → Z. If f is continuous at the point

a ∈ X and g is continuous at the point f (a) ∈ Y, then g ◦ f is continuous at

the point a.

Exercises

Exercise 3.1.1. Let (X, ddisc) be a discrete metric space and let (Y, dY) be any

metric space. Determine all continuous functions f : X → Y.

Exercise 3.1.2. Let (R, d) be real line with the standard metric and let (Y, ddisc)

be a discrete metric space. Determine all continuous functions f : R → Y.
Exercise 3.1.3 is a “local version” of the
open sets definition of continuity from
Proposition 3.1.7.

Exercise 3.1.3. Suppose (X, dX) and (Y, dY) are metric spaces. Prove that the

function f : X → Y is continuous at the point a ∈ X if and only if for every

open set U ⊆ Y containing f (a), there is an open set V ⊆ X containing a such

that V ⊆ f−1(U).
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Exercise 3.1.4. Suppose that (X, dX) and (Y, dY) are metric spaces. Prove that

the function f : X → Y is continuous if and only if for every closed set C in

(Y, dY), the set

f−1(C) = {x ∈ X : f (x) ∈ C} ⊆ X

is closed in (X, dX).

Exercise 3.1.5. Let (X, d) be a metric space and A ⊆ X be nonempty. Define

f : X → [0, ∞) by f (x) = inf{d(x, a) : a ∈ A}. Prove that f is continuous.
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3.2 Limits of functions

In this section we define what it means for a general function to

have a limit at a point. Recall from our study of functions on the real

line that we are only “allowed” to consider limits at certain points. We

begin by (re)defining those.

Definition 3.2.1. Suppose (X, dX) is a metric space and A ⊆ X. The

point a ∈ X is a limit point of A if for every δ > 0, the set A ∩ Nδ(a) is

infinite.

Note that limit points of a set need not lie in the set themselves. We

look a few examples of this definition before moving on to consider

limits themselves.

Example 3.2.2. The set {1/n : n ∈ N
+} in the metric space (R, d) has

only one limit point: 0.

Example 3.2.3. If E is an open set in (Rn, d2), then every point of E is

a limit point of E, but E may have more limit points.

Example 3.2.4. Sets in a discrete metric space never have any limit

points.

Note that continuity comes “for free” at non-limit points, as recorded

in the following result.

Proposition 3.2.5. Let (X, dX) and (Y, dY) be metric spaces and suppose

that the point a ∈ X is not a limit point of X. Then every function f : X → Y

is continuous at a.

We now define limits.

Definition 3.2.6. Let (X, dX) and (Y, dY) be metric spaces and A ⊆ X.

Suppose that a ∈ X is a limit point of A and that b ∈ Y. The function

f : A → Y has limit b at the point a, written

lim
x→a

f (x) = b,

if for every ǫ > 0, there is a δ > 0 such that dY( f (x), b) < ǫ whenever

0 < dX(x, a) < δ.

Proposition 3.2.7. If a function has a limit at a point, then that limit is

unique. We leave the proof of Proposition 3.2.7 to
the reader (Exercise 3.2.3).

The reader may recognize our next result as saying that we may “fill

in removable singularities” to get a continuous function.
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Proposition 3.2.8. Let (X, dX) and (Y, dY) be metric spaces, let A ⊆ X,

and suppose that a ∈ X is a limit point of A. If f : A → Y has a limit at a,

then the function g : A ∪ {a} → Y defined by Note in Proposition 3.2.8 that A ∪ {a}
may well equal A, and g may well equal
f , in which case the result is just saying
that f is continuous at a.g(x) =

{

f (x) if x 6= a,

lim
x→a

f (x) if x = a,

is continuous at a.

The following result gives a sequential formulation of limit.

Proposition 3.2.9 (Sequential criterion for limits). Let (X, dX) and (Y, dY)

be metric spaces, let A ⊆ X, and suppose that a ∈ X is a limit point of A.

Then

lim
x→a

f (x)

exists and equals b ∈ Y if and only if for every sequence (an) from A \ {a} In the statement of Proposition 3.2.9,
note that we can have A \ {a} = A if we
are considering a limit at a point outside
the domain of f .

that converges to a, the sequence ( f (an)) converges to b.

Proof. Suppose that the limit of f at a is b and that (an) is a sequence

from A \ {a} that converges to a. To see that ( f (an)) converges to b,

let ǫ > 0 be arbitrary. There is a δ > 0 such that if 0 < dX(x, a) < δ,

then dY( f (x), b) < ǫ. There is also an N ∈ N such that if n ≥ N,

then 0 < dX(an, a) < δ. Hence, if n ≥ N, then dY( f (an), b) < ǫ, which

proves that ( f (an)) converges to b.

Conversely, suppose that the limit of f at a does not equal b (so

either it exists and doesn’t equal b, or it simply doesn’t exist). Then

there is some ǫ > 0 such that for every n ∈ N
+, we can find a point

within distance 1/n of a where the value of f is at least distance ǫ away

from b. In other words, we can construct a sequence (an)∞
n=1 in A \ {a}

such that for every n ∈ N
+, 0 < dX(an, a) < 1/n and dY( f (an), b) > ǫ.

This completes the proof, by showing that if the limit of f at a is not b,

then we can find a sequence (an) from A \ {a} for which ( f (an)) does

not converge to b.

From the sequential criterion for limits, we quickly obtain a sequen-

tial criterion for continuity.

Proposition 3.2.10 (Sequential criterion for continuity). Let (X, dX) and

(Y, dY) be metric spaces, let A ⊆ X, and suppose that the point a ∈ A is a

limit point of A. Then the function f : A → Y is continuous at a if and only Note that in Proposition 3.2.10, we re-
quire the point a to lie in the domain of
f . By the very definition, functions can-
not be continuous at points outside their
domains.

if for every sequence (an) from A that converges to a, the sequence ( f (an))

converges to f (a).

Proof. This follows immediately from the sequential criterion for limits

and Proposition 3.2.8.

We conclude with a result about limits of compositions of functions.
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Proposition 3.2.11. Let (X, dX), (Y, dY), and (Z, dZ) all be metric spaces,

let A ⊆ X, and suppose that a ∈ X is a limit point of A. If lim
x→a

f (x) = b

and if g : Y → Z is continuous at b, then lim
x→a

g ◦ f (x) = g(b).

Proof. The function h : X → Y defined by h(x) = f (x) if x 6= a and

h(a) = b is continuous at a by Proposition 3.2.8. Hence the function

g ◦ h is continuous at a by Proposition 3.1.9. It follows from Proposi-

tion 3.2.8 that

lim
x→a

g ◦ f (x) = lim
x→a

g ◦ h(x) = g(h(a)) = g(b),

completing the proof.

Exercises

Exercise 3.2.1. Suppose (X, dX) is a metric space and A ⊆ X. Prove that the

point a ∈ X is a limit point of A if and only if for every δ > 0, the set A∩ Nδ(a)

contains at least one point other than a. Since Exercises 3.2.1 and 3.2.2 are both
if and only if statements, they provide
alternative definitions of limit points.Exercise 3.2.2. Suppose (X, dX) is a metric space and A ⊆ X. Prove that the

point a ∈ X is a limit point of A if and only if there is a sequence (an) from

A \ {a} that converges to a.

Exercise 3.2.3. Prove Proposition 3.2.7: if (X, dX) and (Y, dY) are metric spaces,

A ⊆ X, and the function f has limit b and b′ at the limit point a ∈ A, then b = b′.
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3.3 Continuity and compactness

Continuity and compactness interact in a very convenient way,

as we see in this section, with the following theorem and two of its

corollaries.

Theorem 3.3.1. Let (X, dX) and (Y, dY) be metric spaces. If the function The continuous image of a com-

pact set is compact.f : X → Y is continuous and the set K ⊆ X is compact, then the image

f (K) = { f (x) : x ∈ K}

is also compact.

Proof. Let W be an arbitrary open cover of f (K). The family

{ f−1(W) : W ∈ W}

is a cover of K by definition (every point x ∈ K has an image in f (K),

so it lies in f−1(W) for some set W ∈ W), and this family is an open

cover of K because f is continuous (so the preimage of an open set is

open). Since K is compact, this open cover has a finite subcover. Thus

there is some finite subfamily F ⊆ W so that

K ⊆
⋃

W∈F

f−1(W).

Our goal is to prove that F covers f (K). We prove Theorem 3.3.1 using the defini-
tion of compactness here, but it can also
be proved from the definition of sequen-
tial compactnessness. Let ( f (xn)) be a
sequence in f (K). Since K is sequentially
compact, there is a subsequence (xnk

)
that converges to some point x ∈ K.
Then since f is continuous, the subse-
quence ( f (xnk

)) converges to f (x), prov-
ing that f (K) is also sequentially com-
pact.

For any set W ⊆ Y, we have W ⊇ f ( f−1(W)) because if y ∈ Y

has a preimage, then y is (obviously) the image of that preimage. We

therefore have
⋃

W∈F

W ⊇
⋃

W∈F

f ( f−1(W)).

This union of images is the same the image of the union, so we can

rewrite this as

⋃

W∈F

f ( f−1(W)) = f

(

⋃

W∈F

f−1(W)

)

.

We have assumed that { f−1(W) : W ∈ F} covers K, and thus

f

(

⋃

W∈F

f−1(W)

)

⊇ f (K).

Therefore F is a finite subcover of the given open cover of f (K), prov-

ing the result.
Here R is considered with the standard
metric.Corollary 3.3.2 (Extreme value theorem). Let (X, dX) be a nonempty

compact metric space. If the function f : X → R is continuous, then there The extreme value theorem says that f
attains its maximum. By a similar argu-
ment, or by applying the same result to
− f , we see that f also attains its mini-
mum.

is a point xmax ∈ X such that f (xmax) ≥ f (x) for all x ∈ X.
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Proof. Because the continuous image of a compact set is compact, the

set f (X) ⊆ R is compact. Since all compact sets (in any metric space)

are closed and bounded, f (X) is closed and bounded, and since we

have assumed that X is nonempty, f (X) is also nonempty. Finally,

since nonempty closed and bounded subsets of R contain their max-

imums, there is some M ∈ f (X) such that M ≥ f (x) for all x ∈ X,

and since M ∈ f (X), we must have M = f (xmax) for some point

xmax ∈ X.

Corollary 3.3.3. Let (X, dX) be a compact metric space and (Y, dY) be any

metric space. If f : X → Y is a continuous bijection, then its inverse f−1 is

also continuous.
The proof of Corollary 3.3.3 could be
shortened by appealing to Exercise 3.1.4.
Instead, we essentially solve that exer-
cise here.

Proof. Let U be an arbitrary open set in (X, dX). To prove that f−1

is continuous, we want to show that ( f−1)−1(U) is open in (Y, dY).

Furthermore, since f is injective (one-to-one), ( f−1)−1(U) = f (U), so

it suffices to prove that f maps open sets to open sets. Functions that map open sets to open
sets are called open maps. We leave
it to the reader to construct examples
showing that functions may be contin-
uous without being open maps, and
conversely, that functions may be open
maps without being continuous. How-
ever, as this result shows, continuous bi-
jections on compact domains are always
open maps.

Since U is open, X \ U is a closed subset of a compact space, so

it is compact itself (by Proposition 2.1.5). The continuous image of

a compact set is compact, so f (X \ U) is compact in (Y, dY). Since all

compact sets are closed, f (X \U) is closed. Finally, since f is surjective

(onto), f (X \ U) = Y \ f (U). Finally, because Y \ f (U) is closed, f (U)

is open in (Y, dY), as desired.

Exercises

Exercise 3.3.1. Suppose that (X, dX) and (Y, dY) are metric spaces and define

the metric space (Z, dZ) where Z = X × Y and the metric dZ is given by

dZ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY(y1, y2)}.

Prove that if the function f : X → Y is continuous, then the function F : X → Z

defined by F(x) = (x, f (x)) is also continuous.

Exercise 3.3.2. Assuming the same hypotheses as the previous exercise, prove

that if f is continuous and X is compact, then the graph of f ,

graph( f ) = {(x, f (x)) : x ∈ X} ⊆ Z

is compact.

Exercise 3.3.3. A function f : X → Y is a homeomorphism if it is a continuous

bijection and its inverse f−1 is also continuous. Suppose that f : X → Y

is a homeomorphism. Show that if Z ⊆ X, then f |Z : Z → f (Z) is also a

homeomorphism.
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3.4 Uniform continuity and compactness

The definition of uniform continuity for arbitrary metric spaces is (like

our initial definition of continuity) a straightforward generalization

from its definition on the real line.
We have given a purely topological defi-
nition of continuity: a function is continu-
ous if and only if the preimage of every open
set is open. However, there is no purely
topological definition of uniform conti-
nuity.

Definition 3.4.1. Suppose (X, dX) and (Y, dY) are metric spaces. The

function f : X → Y is uniformly continuous if for every ǫ > 0, there is

a δ > 0 such that if the points a, x ∈ X satisfy dX(x, a) < δ, then

dY( f (x), f (a)) < ǫ.

As on the real line, there is no notion of “uniform continuity at a

point”.

Our next result states that every continuous function with compact do-

main is uniformly continuous. Thus, for example, the function (on the

real line) defined by f (x) = x2 is not uniformly continuous, but when We remind the reader why the function
f (x) = x2 is not uniformly continuous
(on the real line with the usual metric).
Choose ǫ = 1. Given δ > 0, let a = 2/δ

and x = 2/δ+ δ/2. Then |x− a| = δ/2 < δ,
but

| f (x)− f (a)|

=

∣

∣

∣

∣

(

4

δ2

)

−

(

4

δ2
+ 2 +

δ
2

4

)∣

∣

∣

∣

= 2 +
δ

2

4

≥ ǫ.

restricted to any closed and bounded interval, it is uniformly contin-

uous. It was essentially this fact that we used when we proved that

continuous functions are Reimann integrable.

Theorem 3.4.2. Suppose (X, dX) and (Y, dY) are metric spaces. If the func-

tion f : X → Y is continuous and the domain X is compact, then f is uni-

formly continuous.

Proof. Let ǫ > 0 be given and suppose that f : X → Y is continuous

and X is compact. For each point a ∈ X there is a quantity δa > 0

(depending on a) such that if dX(x, a) < δa, then dY( f (x), f (a)) < ǫ/2.

Define

U = {Nδa/2(a) : a ∈ X}.

Every set in U is open, and every point in X lies in at least one of the

sets of U (the neighborhood centered at that point), so U is an open

cover of X. Because X is compact, U has a finite subcover. Therefore

there is a finite subset F ⊆ X such that

V = {Nδa/2(a) : a ∈ F} ⊆ U

covers X.

Because F is finite, the set {δa : a ∈ F} has a minimum, which is

positive. Define

δ = min{δa/2 : a ∈ F}.

Now suppose that x, y ∈ X satisfy dX(x, y) < δ. Because V covers X,

there is a point a ∈ F such that y ∈ Nδa/2(a). This implies that f (y) is

close to f (a). But also, because x is close to y, x is also close to a:

dX(x, a) ≤ dX(x, y) + dX(y, a) < δ +
δa

2
≤ δa.
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Therefore both x and y are within distance δa of the point a, and so we

may use the triangle inequality to bound the difference in the function

values f (x) and f (y):

dY( f (x), f (y)) ≤ dY( f (x), f (a)) + dY( f (a), f (y)) <
ǫ

2
+

ǫ

2
,

completing the proof. Note that the converse to Theorem 3.4.2
is trivial—if a function is uniformly con-
tinuous, then it is continuous. Thus we
could have stated this result as an “if and
only if”.

A proof of Theorem 3.4.2 using sequential compactness is outlined

in Exercise 3.4.3.

Exercises

Exercise 3.4.1. Let (Y, dY) be a metric space, let L ∈ Y, and suppose f : [0, ∞) → Y,

where [0, ∞) is considered with the standard metric on R. We say that f has

limit L ∈ Y at infinity, written

lim
x→∞

f (x) = L,

if for every ǫ > 0, there is some C > 0 such that if x > C, then dY( f (x), L) < ǫ.

Prove that if f : [0, ∞) → Y is continuous and has a limit at infinity, then f is

uniformly continuous.

Exercise 3.4.2. Let (X, dX) and (Y, dY) be metric spaces. Prove that if f : X → Y Uniformly continuous functions map
Cauchy sequences to Cauchy sequences.uniformly continuous and (xn) is a Cauchy sequence from X, then ( f (xn)) is

Cauchy in Y.

Exercise 3.4.3. Fill in the following outline of an alternate proof of Theo-

rem 3.4.2.

• Suppose to the contrary that f is not uniformly continuous.

• Then there is an ǫ > 0 such that for every n ∈ N, there are points xn, yn ∈ X

such that dX(xn, yn) < 1/n, but dY( f (xn), f (yn)) ≥ ǫ.

• There is a choice of indices n1 < n2 < · · · such that both subsequences

(xnk
)k and (ynk

)k converge to the same point.

• This last statement contradicts the hypothesis that f is continuous.
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3.5 Continuity and connectedness

Here we consider the interplay between continuity and a concept called

connectedness. This will allow us to prove a generalization of the in-

termediate value theorem. Connectedness is often defined by its nega-

tion, as below.

Definition 3.5.1 (Connected spaces). The metric space (X, dX) is dis-

connected if there exist disjoint, nonempty, open sets U, V ⊆ X such

that U ∪ V = X. The metric space (X, dX) is connected if it is not dis-

connected.
To prove that (X, dx) is disconnected, you
just need to exhibit appropriate sets U
and V. To prove that (X, dX) is connected,
one way is to assume that U and V are
disjoint, open sets satisfying U ∪ V = X,
and then show that either U or V must
be empty (and thus the other must be all
of X).

Most metric spaces we have seen are connected, but a notable ex-

ception are the discrete metric spaces, as we consider below.

Example 3.5.2. Let (X, ddisc) be a discrete metric space. If |X| ≥ 2,

then X is disconnected, because letting x ∈ X be arbitrary, we see that

U = {x} and V = X \ {x} are disjoint, nonempty, open sets such that

U ∪ V = {x} ∪ (X \ {x}) = X.

This example hints at a more “positive” definition of connected-

ness. The space (X, dX) is disconnected if and only if there are dis-

joint, nonempty, open sets U, V ⊆ X such that U ∪ V = X. In this

case U = X \ V and V = X \ U, so since U and V are open by as-

sumption, they are also both closed. In fact, it suffices to have one

nontrivial clopen (both closed and open) set: if U 6= X, ∅ is clopen,

then X \ U 6= X, ∅ is also clopen and X = U ∪ (X \ U). Thus we

have proved the following result, which we can take as an alternative

definition of connectedness.

Proposition 3.5.3. The metric space (X, dX) is connected if and only if the

only clopen (both closed and open) subsets of X are ∅ and X itself.

To define connectedness for subsets of a metric space, we simply ap-

ply the previous definition to the induced subspace, as in the following

definition. The definition of connected sets has
some subtleties because we only need
the sets U and V in the definition to be
disjoint, nonempty, and open in the space
(Y, d|Y×Y). By definition, a set is open
in (Y, d|Y×Y) if and only if it is relatively
open with respect to Y in the space (X, d).
We proved (Proposition 1.6.4) that a set
is relatively open with respect to Y if and
only if it is the intersection of Y with an
open set of (X, d). See Exercise 3.5.6.

Definition 3.5.4 (Connected sets). Let (X, d) be a metric space. The set

Y ⊆ X is connected (resp., disconnected) if the metric space (Y, d|Y×Y) is

connected (resp., disconnected).

Note that the definition of connected sets is intrinsic—whether a set

Y is connected depends only on Y and the metric restricted to Y, not

on the ambient space X.

Example 3.5.5. On the real line with the standard metric, the set [0, 2] \ {1}

is disconnected. This is because the sets

U = [0, 1) = (−1, 1) ∩
(

[0, 2] \ {1}
)

and

V = (1, 2] = (1, 3) ∩
(

[0, 2] \ {1}
)
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are both disjoint, nonempty, and relatively open with respect to [0, 2] \ {1}.

Having defined connected sets, our goal in the rest of the section is

to generalize the intermediate value theorem. This generalization has

two parts. First we show that continuous functions preserve connect-

edness, and second, we show that the only connected subsets of the

real line are the intervals.

Theorem 3.5.6. Let (X, dX) and (Y, dY) be metric spaces. If the function The continuous image of a con-

nected set is connected.f : X → Y is continuous and the space (X, dX) is connected, then its image

f (X) is also connected.
It is perhaps slightly shorter to prove
Theorem 3.5.6 using Proposition 3.5.3.
Suppose that U ⊆ f (X) is clopen. Be-
cause f is continuous and U is open,
f−1(U) is open. But also by Exer-
cise 3.1.4, because f is continuous and U
is closed, f−1(U) is closed. Thus f−1(U) is
clopen in (X, dX), and because we have
assumed that (X, dX) is connected, we
must have f−1(U) = X, and thus we
must also have U = f (X).

Proof. Suppose U and V are disjoint open subsets of f (X) such that

f (X) = U ∪ V. The sets A = f−1(U) and B = f−1(V) are both open

in (X, dX) because f is continuous. Moreover, since f (X) = U ∪ V,

we must have X = A ∪ B, and since U and V are disjoint, we must

have A ∩ B = ∅ (if there were a point x ∈ A ∩ B, then we would have

f (x) ∈ U ∩ V).

Thus A, B ⊆ X are disjoint open sets such that A ∪ B = X. Since

(X, dX) is connected by our hypotheses, it must be the case that one

of A or B is empty. This implies that one of U or V is empty, and it

follows that f (X) is connected.
With Theorem 3.5.6 in hand, the reader
may want to revisit Exercise 3.1.2.Next we characterize the connected subsets of the real line.

Theorem 3.5.7. The connected subsets of the real line with the standard

metric are precisely the intervals.

Proof. We want to prove that a subset of R (with the standard metric)

is connected if and only if it is an interval. Recall that an interval is a

set that satisfies the betweenness property: if x and z lie in the set and

x < y < z, then y also lies in the set.

One direction is easy. If the set S ⊆ R is not an interval, then it fails

the betweenness property. This means that there are real numbers x,

y, and z satisfying x < y < z such that x, z ∈ S but y /∈ S. Then can be

expressed as the union

S =
(

(−∞, y) ∩ S
)

∪
(

(y, ∞) ∩ S
)

of disjoint and nonempty sets that are relatively open with respect to

S, so S is disconnected.

To prove that all intervals are connected, suppose to the contrary

that I ⊆ R is an interval (so it satisfies the betweenness property)

but that there are disjoint and nonempty sets U and V that are both

relatively open with respect to I, such that I = U ∪ V. Since U and

V are both nonempty, we can choose points u ∈ U and v ∈ V. Since

U and V are disjoint, u 6= v. By swapping the roles of U and V
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if necessary, we may assume without loss of generality that u < v.

Because I is an interval, [u, v] ⊆ I. At this point in the proof we have nar-
rowed in on the interval [u, v]. The
points on the left of [u, v] are contained
in U, while the points on the right of
[u, v] are contained in V. Somewhere in
the middle, points must change from be-
ing in U to being in V, but we will show
that that is impossible. This is why we
define u∗ as we do; it is a point where
this switch occurs.

The set U ∩ [u, v] is therefore bounded and nonempty, so it has a

supremum; define

u∗ = sup(U ∩ [u, v]).

We have u∗ ∈ [u, v] ⊆ I, so u∗ must lie in either U or V, but not both

(because they are disjoint). In either case, we find a contradiction.

Suppose first that u∗ ∈ U. Because u∗ /∈ V, we have u∗
< v. Since U

is open, there is some ǫ > 0 so that Nǫ(u∗) ⊆ U. But then [u∗, u∗+ ǫ) ⊆

U ∩ [u, v], which contradicts the fact that u∗ is an upper bound on

U ∩ [u, v].

Now suppose that u∗ ∈ V. Because u∗ /∈ U, we have u∗
> u.

Furthermore, since V is open in (I, dI×I), there is some ǫ > 0 such that

Nǫ(u∗) ⊆ V. But then (u∗ − ǫ, u∗] ⊆ V ∩ [u, v], which contradicts the

fact that u∗ is the least upper bound of U ∩ [u, v].

Combining Theorems 3.5.6 and 3.5.7, we immediately obtain the

intermediate value theorem.

Corollary 3.5.8 (Intermediate value theorem). Let I ⊆ R be an interval.

If f : I → R is continuous, then f (I) is also an interval.

It is frequently easier to establish a stronger property than connect-

edness.

Definition 3.5.9 (Path-connected sets). Let (X, d) be a metric space.

The set Y ⊆ X is path-connected if, given any two points y0, y1 ∈ Y,

there is a continuous function f : [0, 1] → Y such that f (0) = y0 and

f (1) = y1.

Corollary 3.5.10 (Path-connected implies connected). Let (X, d) be a

metric space. If the set Y ⊆ X is path-connected, then it is connected.

Proof. Suppose that Y is path-connected, let U, V ⊆ Y be nonempty

open sets in (Y, d|Y×Y) with U ∪ V = Y, and take y0 ∈ U and y1 ∈ V.

Because Y is connected, there is a continuous function f : [0, 1] →

Y with f (0) = y0 and f (1) = y1. Theorem 3.5.7 tells us that the

interval [0, 1] is connected, so Theorem 3.5.6 implies that f ([0, 1]) is

connected. The sets U ∩ f ([0, 1]) and V ∩ f ([0, 1]) are nonempty, open

in ( f ([0, 1]), d| f ([0,1])× f ([0,1])), and their union is all of f ([0, 1]). Since

f ([0, 1]) is connected, this means that U ∩ f ([0, 1]) and V ∩ f ([0, 1])

must not be disjoint, and thus U and V must not be disjoint either.

Exercises
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Exercise 3.5.1. In which metric spaces is the empty set connected? In which

spaces is it disconnected?

Exercise 3.5.2. Prove that in every metric space, singleton sets are connected,

but finite sets with two or more elements are not.

Exercise 3.5.3. Determine the connected subsets of a discrete metric space.

Exercise 3.5.4. Determine the path-connected subsets of a discrete metric space.

Exercise 3.5.5. Prove that every neighborhood Nǫ(x) in every Euclidean space

(Rn, d2) is path-connected, and thus connected. For Exercise 3.5.5, it may be useful to ob-
serve that these neighborhoods are con-
vex: given any two points y0, y1 ∈ Nǫ(x),
the line segment between y0 and y1 also
lies in Nǫ(x).

Exercise 3.5.6. Let (X, d) be a metric space and Y ⊆ X. Prove that Y is discon-

nected if and only if there are sets U, V ⊆ X such that

(a) U and V are open in (X, d),

(b) U ∩ V ∩ Y = ∅, and

(c) Y ⊆ (U ∪ V).

Exercise 3.5.7. Prove that if A, B, C are connected sets in the metric space

(X, dX) and A ∩ B 6= ∅ and B ∩ C 6= ∅, then A ∪ B ∪ C is connected.

Exercise 3.5.8. Must the intersection of two connected sets be connected?
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