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4.1 Types of convergence

As we’ve previously seen on the real line, there are two types

of convergence of functions. We begin with the weaker of the two.

Definition 4.1.1 (Pointwise convergence). Let (X, dX) and (Y, dY) be

metric spaces. The sequence ( fn) of functions from X to Y converges Nothing in the definition of pointwise
convergence actually requires that X be
a metric space—it could be a set with-
out any additional structure at all. How-
ever, for later concepts it will be neces-
sary that X be a metric space.

pointwise to the function f : X → Y if for every x ∈ X, the sequence

( fn(x)) converges to f (x) in (Y, dY).

Note that if the sequence ( fn(x)) is going to converge pointwise,

then it must converge pointwise to the function f : X → Y defined by

f (x) = lim
n→∞

fn(x).

Given that we know that limits of sequences are unique, this immedi-

ately implies that limits of sequences of functions must be unique.

We now (re)visit two of the standard examples of pointwise conver-

gence. Both of these examples illustrate how the definition of point-

wise convergence is fairly weak.

Example 4.1.2. Define the sequence fn : [0, 1] → R of functions by

fn(x) = xn.

This sequence converges pointwise to the function f : [0, 1] → R de-

fined by

f (x) = lim
n→∞

fn(x) = lim
n→∞

xn =

{

0 if x ∈ [0, 1), and

1 if x = 1.
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Note that each of the functions fn is continuous, but that the limit

function f is not.

Example 4.1.3. Let the sequence ( fn)n≥1 of functions from [0, 1] to R

be defined by

fn(x) =

{

2n if x ∈ [1/2n, 1/n], and

0 otherwise.

This sequence converges pointwise to the identically zero function.

However, for every n ≥ 1 the function fn is (Riemann) integrable, and

∫ 1

0
fn =

2n

2n
= 1,

but the integral of the limit function (the zero function) from 0 to 1 is

0. Thus this example shows that we can have

lim
n→∞

∫ b

a
fn 6=

∫ b

a
lim

n→∞
fn.

The previous examples show that pointwise convergence is not pow-

erful enough to prove theorems about; the limit function need not bear

much resemblance to the functions in the sequence.

Definition 4.1.4 (Uniform convergence). Let (X, dX) and (Y, dY) be

metric spaces. The sequence ( fn) of functions from X to Y converges Again, we don’t need X to be a metric
space in the definition of uniform con-
vergence, but we’ll want it to be later.

uniformly to the function f : X → Y if for every ǫ > 0, there is an N ∈ N

such that dY( fn(x), f (x)) < ǫ for every n ≥ N and every x ∈ X.

We hid the ǫ when we defined pointwise convergence in Defini-

tion 4.1.1, but of course there is one inside the condition that the

sequence ( fn(x)) converge to f (x) at every point x ∈ X. To define

pointwise convergence analogously to our definition of uniform con-

vergence, we would say that for every ǫ > 0 and every x ∈ X, there is

an Nx ∈ N such that dY( fn(x), f (x)) < ǫ for every n ≥ Nx. Thus the

difference between the two definitions is the placement of the quan-

tifier attached to the point x. In pointwise convergence, the value

Nx ∈ N is allowed to depend on the point x ∈ X, while in uniform

convergence, we must use the same value N ∈ N for every point

x ∈ X.

The following result follows immediately from the definitions, so

we state it without proof.

Proposition 4.1.5. Let (X, dX) and (Y, dY) be metric spaces. If the sequence Proposition 4.1.5 is trivial, but useful for
showing that sequences of functions do
not converge uniformly. If the sequence
( fn) of functions does not converge
pointwise, then by Proposition 4.1.5, it
cannot converge uniformly.

( fn) of functions from X to Y converges uniformly to the function f : X → Y,

then it also converges pointwise to f .

Suppose that the sequence ( fn) converges pointwise to some func-

tion f . By Proposition 4.1.5 and the uniqueness of pointwise limits of
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sequences of functions, if this sequence were to converge uniformly, then

it could only converge uniformly to the same limit, f .

Many important properties transfer from a sequence of functions to

its uniform limit (if it exists). We conclude this section by considering

one in particular.

Definition 4.1.6. Let (X, dX) and (Y, dY) be metric spaces. The func- Bounded sets were defined in Defini-
tion 2.3.1; the set S in the metric space
(Y, dY) is bounded if there exists a point
y ∈ Y and a real number r > 0 such that
S ⊆ Nr(y).

tion f : X → Y is bounded if f (X) is a bounded set; that is, if there

exists a neighborhood Nr(y) ⊆ Y such that f (X) ⊆ Nr(y).

Theorem 4.1.7. Let (X, dX) and (Y, dY) be metric spaces. If every function

fn : X → Y is bounded and the sequence ( fn) converges uniformly to the

function f : X → Y, then f is also bounded.

Proof. Because the sequence ( fn) converges uniformly to f , there is

some N ∈ N such that for all n ≥ N and all x ∈ X, Here we essentially set ǫ = 1 in the defi-
nition of uniform convergence.

dY( fn(x), f (x)) < 1.

The function fN is bounded, so there is some point y ∈ Y and some

radius r > 0 such that

fN(X) ⊆ Nr(y).

Therefore by the triangle inequality, for every point x ∈ X we have

dY( f (x), y) ≤ dY( f (x), fN(x)) + dY( fN(x), y) < 1 + r,

and thus f (X) ⊆ Nr+1(y), proving the theorem.

Exercises

Exercise 4.1.1. Prove that the pointwise convergence in Example 4.1.2 is not

uniform.

Exercise 4.1.2. Prove that the pointwise convergence in Example 4.1.3 is not

uniform.

Exercise 4.1.3. Give an example to show that the conclusion of Theorem 4.1.7

does not hold if “converges uniformly” is replaced with “converges point-

wise”.

Exercise 4.1.4. Let f : R → R be a function and for a ∈ R, define the shifted

function fa : R → R by fa(x) = f (x − a). Prove that f is continuous if and

only if for every sequence (an) in R that converges to 0, the sequence ( fan )

converges pointwise to f .

Exercise 4.1.5. As in the previous problem, let f : R → R be a function and

for a ∈ R, define the shifted function fa : R → R by fa(x) = f (x − a). Prove

that f is uniformly continuous if and only if for every sequence (an) in R that

converges to 0, the sequence ( fan ) converges uniformly to f .
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Exercise 4.1.6. Let (X, dX) and (Y, dY) be metric spaces. Prove that if every

function fn : X → Y is bounded and the sequence ( fn) converges uniformly

to the function f : X → Y, then the sequence ( fn) is uniformly bounded in the

sense that there is some neighborhood Nr(y) ⊆ Y such that fn(X) ⊆ Nr(y) for

all n ∈ N.



advanced calculus ii 61

4.2 The uniform metric

We have accumulated several notions of limits: one for se-

quences, one for functions, and two for sequences of functions. Here Pointwise convergence can also be
viewed as a special case of convergence
of sequences, but to do so, one must
work in a topological space.

we show how the notion of uniform convergence of sequences of func-

tions can be viewed as a special case of convergence of sequences, in a

metric space consisting of the functions themselves.

We need to restrict ourselves to bounded functions. Thus given

metric spaces (X, dX) and (Y, dY), we define Recall from Definition 4.1.6 that the
function f : X → Y is bounded if and
only if its range f (X) is contained in
some neighborhood in Y.

B(X, Y) = { f : f is a bounded function from X to Y}.

If f , g ∈ B(X, Y), then one can show (Exercise 4.2.1) that the set

{dY( f (x), g(x)) : x ∈ X} ⊆ R

is bounded above. Therefore (so long as X 6= ∅), this set has a supre- Note that for any domain (X, dX), the set
B(X, R) is a vector space (in fact this is
true whenever the codomain is a field).

mum. This allows us to make the following definition.

Definition 4.2.1 (Uniform metric). Let (X, dX) and (Y, dY) be metric

spaces. For f , g ∈ B(X, Y), we define the uniform metric by

d∞( f , g) = sup{dY( f (x), g(x)) : x ∈ X}.

We have gotten ahead of ourselves a bit by calling this the uniform

metric, and should check that it actually is a metric.

Proposition 4.2.2. Let (X, dX) and (Y, dY) be metric spaces. The function

d∞ : B(X, Y)×B(X, Y) → R

is a metric on B(X, Y).

Proof. We prove that d∞ satisfies the triangle inequality. The other

properties of a metric are, as usual, easy to see by inspection. Suppose

that f , g, h ∈ B(X, Y). For any point x ∈ X, the triangle inequality that

dY satisfies implies that

dY( f (x), h(x)) ≤ dY( f (x), g(x)) + dY(g(x), h(x))

≤ d∞( f , g) + d∞(g, h).

As this holds for every x ∈ X, it implies that d∞( f , g) + d∞(g, h) is an

upper bound for the set

{dY( f (x), h(x)) : x ∈ X}.

Therefore d∞( f , h) ≤ d∞( f , g) + d∞(g, h), as desired.
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Our next result shows that, indeed, convergence in (B(X, Y), d∞) is

the same as uniform convergence of functions.

Proposition 4.2.3. Let (X, dX) and (Y, dY) be metric spaces. The sequence

( fn) from B(X, Y) converges to f ∈ B(X, Y) in the metric space (B(X, Y), d∞)

if and only if it converges to f uniformly.

Proof. First suppose that the sequence ( fn) from B(X, Y) converges to

f ∈ B(X, Y) in the metric space (B(X, Y), d∞). Given ǫ > 0, there is an

N ∈ N such that if n ≥ N, then d∞( fn, f ) < ǫ. In particular, for every

n ≥ N and every x ∈ X,

dY( fn(x), f (x)) ≤ d∞( fn, f ) < ǫ.

Thus ( fn) converges to f uniformly.

Conversely suppose that ( fn) converges to f uniformly. Then given

any ǫ > 0, there is an N ∈ N such that for every n ≥ N and every

x ∈ X,

dY( fn(x), f (x)) < ǫ.

This implies that d∞( fn, f ) ≤ ǫ for all n ≥ N, and thus ( fn) converges We normally use a strict inequality for
convergence, but it doesn’t matter; hav-
ing d∞( fn, f ) ≤ ǫ for every ǫ > 0 is
enough to guarantee convergence.

to f in the metric space (B(X, Y), d∞).

Our previous result justifies considering the uniform metric. Our

next result shows that completeness of the codomain carries over to

the space (B(X, Y), d∞).

Theorem 4.2.4. Let (X, dX) and (Y, dY) be metric spaces. If (Y, dY) is

complete, then (B(X, Y), d∞) is also complete.

Proof. Let ( fn) be a Cauchy sequence in (B(X, Y), d∞). We first estab-

lish that ( fn) has a pointwise limit. For every point x ∈ X, and every

m, n ∈ N, we have

dY( fm(x), fn(x)) ≤ d∞( fm, fn),

so the sequence ( fn(x)) is a Cauchy sequence in (Y, dY). Since (Y, dY)

is complete, this sequence converges to some point which we denote

by f (x). Thus there is a function f : X → Y such that ( fn) converges

pointwise to f . We have not proved that f is itself
bounded, but this will follow at the end
of the proof.

Now let ǫ > 0 be given. Because ( fn) is Cauchy, there is some

N ∈ N such that

d∞( fm, fn) < ǫ/2

for all m, n ≥ N. For any particular point x ∈ X, we can use the

pointwise convergence of ( fn) to f to find an index mx ≥ N such that

dY( fmx (x), f (x)) < ǫ/2.
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Therefore, for every n ≥ N and every x ∈ X, we have

dY( fn(x), f (x)) ≤ dY( fn(x), fmx (x)) + dY( fmx (x), f (x)) < ǫ.

This proves that ( fn) converges uniformly to f . Theorem 4.1.7 then

implies that f ∈ B(X, Y). This completes the proof that ( fn) converges

to f in the metric space (B(X, Y), d∞).

Exercises

Exercise 4.2.1. Let (X, dX) and (Y, dY) be metric spaces. Prove that the set Exercise 4.2.1 allows us to actually define
the function

d∞ : B(X, Y)×B(X, Y) → R.
{dY( f (x), g(x)) : x ∈ X} ⊆ R

is bounded above for all f , g ∈ B(X, Y).

Exercise 4.2.2. Prove that if ( fn) and (gn) are both convergent sequences in

(B(X, R), d∞), then the sequence ( fn + gn) is also convergent in this metric

space.

Exercise 4.2.3. Construct a sequence ( fn) from B([0, 1], R), each of which is

discontinuous at every point of [0, 1], that converges uniformly to a continuous

function f .
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4.3 The space of continuous functions

As we’ve already remarked, a sequence of continuous functions

can converge pointwise to a noncontinuous function. However, this

cannot happen if the convergence is uniform:

Theorem 4.3.1 (Uniform limit theorem). Let (X, dX) and (Y, dY) be met-

ric spaces. If every function fn : X → Y is continuous at the point a ∈ X

and the sequence ( fn) converges uniformly to the function f : X → Y, then Theorem 4.3.1 implies that if

each function fn : X → Y is con-

tinuous on all of X, and the

sequence ( fn) converges uni-

formly to f : X → Y, then f is

also continuous on all of X.

f is also continuous at the point a.

Proof. Let ǫ > 0 be arbitrary. Because the sequence ( fn) converges

uniformly to f , there is some N ∈ N such that for all n ≥ N and

x ∈ X,

dY( fn(x), f (x)) < ǫ/3.

Since the function fN is continuous at the point a, there is some δ > 0

such that if dX(x, a) < δ, then

dY( fN(x), fN(a)) < ǫ/3.

Therefore, if dX(x, a) < δ, then by the triangle inequality, we see that

dY( f (x), f (a)) is at most

dY( f (x), fN(x)) + dY( fN(x), fN(a)) + dY( fN(a), f (a)) < ǫ.

This proves that f is indeed continuous at a.

Theorem 4.3.1 can be used to show that a sequence of functions that

converges pointwise does not converge uniformly, as demonstrated

below.

Example 4.3.2. Prove that the sequence ( fn) of functions defined by

fn(x) = xn (and considered first in Example 4.1.2) does not converge

uniformly.

Proof. As we saw in Example 4.1.2, the sequence ( fn) converges point-

wise to the function f : [0, 1] → R defined by

f (x) =

{

0 if x ∈ [0, 1), and

1 if x = 1.

However, each of the functions fn is continuous at the point a = 1,

while f is not continuous there. Therefore the convergence must not

be uniform, by Theorem 4.3.1.
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In the previous section we considered the space B(X, Y) of bounded

functions from X to Y, equipped with the uniform metric. We are fre-

quently interested in the subspace of B(X, Y) consisting only of con-

tinuous functions, and so we define

C(X, Y) = { f : f is a bounded continuous function from X to Y}.

In the case where X = Y, we often shorten this notation, defining

C(X) = { f : f is a bounded continuous function from X to X}.

Note that if the domain (X, dX) is compact, then all continuous func-

tions with domain X are bounded, so in this cases we wouldn’t need

to insist on the boundedness condition in our definitions of C(X, Y)

and C(X).

Since C(X, Y) ⊆ B(X, Y), the uniform metric is also a metric on

C(X, Y). Moreover, our previous result implies the following.

Corollary 4.3.3. The set C(X, Y) is closed in the metric space (B(X, Y), d∞).

Proof. Let ( fn) be a sequence from C(X, Y) that converges to f with

respect to the uniform metric d∞. Then f is bounded by Theorem 4.1.7,

and f is continuous by Theorem 4.3.1, so f ∈ C(X, Y), proving that

C(X, Y) is closed.

Recall that Theorem 4.2.4 showed that if (Y, dY) is complete, then

(B(X, Y), d∞) is also complete. By Theorem 4.3.1, the same holds for

(C(X, Y), d∞).

Corollary 4.3.4. Let (X, dX) and (Y, dY) be metric spaces. If (Y, dY) is

complete, then (C(X, Y), d∞) is also complete.
Corollary 4.3.4 is just an instance of
Proposition 1.7.9: a closed subset of a
complete space is itself complete.Proof. Suppose that (Y, dY) is complete and that ( fn) is a Cauchy se-

quence in (C(X, Y), d∞). By Theorem 4.2.4, ( fn) converges uniformly

to some function f ∈ B(X, Y). By Theorem 4.3.1, f is continuous, and

thus f ∈ C(X, Y).

Example 4.3.5. Let 0 ∈ C([0, 1]) denote the identically-0 function. The

unit ball in C([0, 1]) is the set

B = { f ∈ C([0, 1]) : d∞( f , 0) ≤ 1}.

Prove that B is complete, closed, and bounded, but not compact.
Note that the word “bounded” in Ex-
ample 4.3.5 refers to B being a bounded
subset of C([0, 1]), not to the functions
in B being themselves bounded. (Of
course, the functions in B are bounded,
because they map [0, 1] to [0, 1].)

Proof. The set B is, by definition, a closed ball in C([0, 1]), so it is both

closed and bounded. Since C([0, 1]) is complete by Corollary 4.3.4 and

B is closed, B is complete. To see that B is not compact, consider

the sequence ( fn) where fn(x) = xn. This sequence lies in B, but

in Example 4.3.2 we saw that it has no convergent subsequence with

respect to the d∞ metric.
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Exercises

Exercise 4.3.1. Prove that if ( fn) converges to f in (C(X, Y), d∞) and if (xn)

is a sequence from (X, dX) that converges to x, then the sequence ( fn(xn))

converges to f (x) in (Y, dY).

Exercise 4.3.2. Prove that if the space (X, dX) is compact and the sequence ( fn)

from C(X, Y) converges to f , then ( fn) is equicontinuous, meaning that given

ǫ > 0, there is some δ > 0 such that, for every n ∈ N, if dX(x, y) < δ, then

dY( fn(x), fn(y)) < ǫ. (Thus the collection { fn : n ∈ N} is uniformly uniformly

continuous.)

Exercise 4.3.3. Prove the following partial converse to Exercise 4.3.1. Suppose

that (X, dX) is compact, that ( fn) is a sequence from C(X, Y), and that f ∈

C(X, Y). Prove that if ( fn(xn)) converges to f (x) for every point x ∈ X and

every sequence (xn) converging to x, then ( fn) converges to f uniformly. Give

an example to show that the assumption that (X, dX) is compact is needed.
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4.4 Integration and differentiation

Theorem 4.3.1 states that if ( fn) is a sequence of continuous functions

that converges uniformly to the function f , then f is itself continuous.

Assuming that we are working with functions from R to R where

we have defined integrals and derivatives, it is natural to ask if these

properties carry over to uniform limits. We show here that—assuming

sufficient hypotheses—they do. Both results can be viewed as inter-

changes of limits (the uniform limit with the limit from the derivative

or integral).

We begin with the integral, which is a bit easier. We restrict our con-

sideration to sequences in B([a, b], R) because (Riemann) integrable

functions must be bounded.

Theorem 4.4.1 (Integrating uniform limits). Suppose the sequence ( fn) of

integrable functions from B([a, b], R) converges uniformly to f . Then, f is

integrable and
∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. First note that f is itself bounded by Theorem 4.1.7. Let ǫ > 0

be given and choose N ∈ N so that

d∞( fn, f ) <
ǫ

3(b − a)

for all n ≥ N. This implies for every partition P of [a, b], we have In the proof of Theorem 4.4.1, we use
L( f , P) and U( f , P) for the lower and
upper (Riemann) sums of f with respect
to the partition P. Recall that a bounded
function f is (Riemann) integrable if and
only if for every ǫ > 0, there is a parti-
tion P so that U( f , P)− L( f , P) < ǫ.

L( fN , P)−
ǫ

3
≤ L( f , P) ≤ U( f , P) ≤ U( fN , P) +

ǫ

3
.

Because the function fN is integrable, there is some partition P for

which U( fN , P) − L( fN , P) < ǫ/3. For this partition, the inequality

above shows that

U( f , P)− L( f , P) ≤ U( fN , P)− L( fN , P) +
2ǫ

3
< ǫ.

This proves that f is integrable on the interval [a, b]. To show that the

integral of f is as claimed, note that for all n ≥ N (where N is as

above), we have
∣

∣

∣

∣

∫ b

a
fn −

∫ b

a
f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a
( fn − f )

∣

∣

∣

∣

≤
∫ b

a
| fn − f | ≤

∫ b

a

ǫ

3(b − a)
=

ǫ

3
.

As ǫ is arbitrary, the integral of f must be as claimed.

This leaves us to consider the derivative. We prove two theorems

about the derivative, the second stronger than the first (because it has

weaker—and thus more easily applied—hypotheses).
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Theorem 4.4.2 (Differentiating uniform limits, first version). Let I ⊆ R

be a bounded interval and let ( fn) be a sequence of functions from I to R.

Suppose that ( fn) converges pointwise on I to a function f and that the

sequence ( f ′n) of derivatives exists on I and converges uniformly on I to a

function g. Then f is differentiable and f ′ = g.

Proof. Let c ∈ I. We seek to show that f ′(c) = g(c). To this end, let

ǫ > 0 be given. Our goal is to find a δ > 0 so that if 0 < |x − c| < δ,

then
∣

∣

∣

∣

f (x)− f (c)

x − c
− g(c)

∣

∣

∣

∣

< ǫ.

Consider an arbitrary point x ∈ I distinct from c. With an eye to

appealing to the Cauchyness of the sequence ( f ′n), we apply the mean

value theorem to the function fm − fn to see that there exists a point z

(which depends on both m and n) between c and x for which

f ′m(z)− f ′n(z) =
( fm(x)− fn(x))− ( fm(c)− fn(c))

x − c
.

In particular, this implies that

∣

∣

∣

∣

fm(x)− fm(c)

x − c
−

fn(x)− fn(c)

x − c

∣

∣

∣

∣

≤ d∞( f ′m, f ′n).

Because the sequence ( f ′n) converges uniformly, it is Cauchy with re-

spect to the uniform metric, so there is some N1 ∈ N so that

∣

∣

∣

∣

fm(x)− fm(c)

x − c
−

fn(x)− fn(c)

x − c

∣

∣

∣

∣

≤
ǫ

3

for all m, n ≥ N1. Now taking the limit as m → ∞, we see that

∣

∣

∣

∣

f (x)− f (c)

x − c
−

fn(x)− fn(c)

x − c

∣

∣

∣

∣

≤
ǫ

3

for all n ≥ N1.

Since g(c) = lim f ′n(c), there is some N2 ∈ N so that if n ≥ N2, then

∣

∣ f ′n(c)− g(c)
∣

∣ <
ǫ

3
.

Choose N ≥ N1, N2.

Since f ′N(c) exists, there is some δ > 0 so that if 0 < |x − c| < δ,

then
∣

∣

∣

∣

fN(x)− fN(c)

x − c
− f ′N(c)

∣

∣

∣

∣

<
ǫ

3
.

By the triangle inequality, we may conclude that if 0 < |x − c| < δ,

then
∣

∣

∣

∣

f (x)− f (c)

x − c
− g(c)

∣

∣

∣

∣

< ǫ,

proving that f ′(c) = g(c), as desired.
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Theorem 4.4.2 assumes that both sequences ( fn) and ( f ′n) converge

uniformly. It is not necessary to assume that the sequence ( fn) con-

verges uniformly, because the condition on the derivatives ( f ′n) almost

implies this. We are required to assume something about the functions

( fn), however, because otherwise they could differ by a constant. We To see why we must require that ( f (x0))
converge for some point x0, consider the
sequence ( fn) defined by fn(x) = x + n.
We have f ′n(x) = 1 for all n ∈ N and all
x ∈ R, so the sequence ( f ′n) converges
uniformly. The sequence ( fn), however,
does not converge.

therefore require that the sequence ( fn) converge pointwise somewhere.

Theorem 4.4.3 (Differentiating uniform limits, more general version).

Let I ⊆ R be a bounded interval and let ( fn) be a sequence of functions from

I to R. Suppose that there exists a point x0 ∈ I such that ( fn(x0)) converges,

and that the sequence ( f ′n) of derivatives exists on I and converges uniformly

on I to a function g. Then the sequence ( fn) converges uniformly on I to a

function f that is differentiable at every point of I, and f ′ = g.

Proof. It suffices to show that under the hypotheses of this theorem,

the hypotheses of Theorem 4.4.2 hold. In particular, our goal is to

prove that the sequence ( fn) converges uniformly on the interval I.

By applying the mean value theorem to the function fm − fn, we see

that there exists a point z between x0 and x for which

f ′m(z)− f ′n(z) =
( fm(x)− fn(x))− ( fm(x0)− fn(x0))

x − x0
.

Solving for fm(x)− fn(x) and taking absolute values, we see that

| fm(x)− fn(x)| = | fm(x0)− fn(x0)|+ |x − x0| ·
∣

∣ f ′m(z)− f ′n(z)
∣

∣

≤ | fm(x0)− fn(x0)|+ |x − x0| · d∞( f ′m, f ′n).

Let M denote the width of the interval I (we assumed that I is bounded).

For every x ∈ I, we have that |x − x0| ≤ M, and thus for every x ∈ I,

we have from the above inequality that

| fm(x)− fn(x)| ≤ | fm(x0)− fn(x0)|+ M · d∞( f ′m, f ′n).

Since this holds for every x ∈ I, we have shown that

d∞( fm, fn) ≤ | fm(x0)− fn(x0)|+ M · d∞( f ′m, f ′n).

Now let ǫ > 0 be given. Because the sequence ( fn(x0)) is Cauchy

(with respect to the usual metric on R) and the sequence ( f ′n) is Cauchy

(with respect to the uniform metric), there is some N ∈ N so that if

m, n ≥ N, then both | fm(x0) − fn(x0)| < ǫ/2 and d∞( f ′m, f ′n) < ǫ/2.

Therefore, for all m, n ≥ N, we have

d∞( fm, fn) < ǫ,

proving that the sequence ( fn) is Cauchy with respect to the d∞ met-

ric. It follows that the pointwise limit f = lim fn exists, and that the

sequence ( fn) converges uniformly to f .
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