
5 Power series

We consider here a particular type of convergence of functions:

that of power series where they converge. We limit our consideration

to real functions—those whose domain and codomain are subsets of R,

and we consider only the usual absolute value metric on R.
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5.1 Taylor polynomials

Taylor polynomials approximate a function by matching its derivatives

at a given point. The derivatives of ex at the point x = 0 are all equal to

1, and so as we’ve all seen in calculus class, its nth Taylor polynomial

centered at the point 0 is Remember that n! = n · (n − 1) · · · · · 2 · 1
denotes n factorial. This function grows
very fast. Stirling’s approximation states
that

n! ≈
√

2πn
( n

e

)n
.

With elementary methods, it is not hard
to get the usually-sufficient lower bound

n! ≥
( n

e

)n
.

A crude simple bound is that (2n)! has
n terms that are all at least n, and so

(2n)! ≥ nn.

tn(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
+ · · ·+ xn

n!
.

It is then easy to check that for all k ≤ n, the kth derivative of ex

evaluated at x = 0 and the kth derivative of tn(x) evaluated at x = 0

are both equal (to 1).

Before presenting the general construction of Taylor polynomials,

we need some preliminaries. First, as Taylor polynomials are defined

by matching derivatives, our functions must have derivatives, so we

make the following inductive definition.

Definition 5.1.1 (k-times differentiability). Let A ⊆ R be open. The

function f : A → R is once differentiable at the point a ∈ A if it is dif-

ferentiable at a. For k ≥ 2, the function f is k times differentiable at the

point a ∈ A if and only if it is differentiable at a and f ′ is (k − 1) times

differentiable at a.
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As usual, we say that the function f is
simply k times differentiable on A if it is k
times differentiable at every point a ∈ A.
If the domain A is clear, we shorten this
and only say that f is k times differentiable.

Example 5.1.2. The function f : R → R defined by f (x) = |x|3 is 2

times differentiable (or, twice differentiable) on all of R, but it is not 3

times differentiable at x = 0.

Proof. This function is differentiable on all of R, and f ′(x) = 3x|x|.
Since f ′ is differentiable, f is 2 times differentiable. However, f ′′(x) =

6|x| is not differentiable at 0, so f is not 3 times differentiable at 0.

Moreover, f is not k times differentiable for any k ≥ 3.

We began the section by loosely defining the nth Taylor polyno-

mial of a function as a polynomial that matches its value and first n

derivatives at a given point. This information is enough to uniquely

determine a polynomial of degree at most n (Exercise 5.1.2), and this

is our definition of Taylor polynomials.

Definition 5.1.3 (Taylor polynomial). Suppose that the function f is

n times differentiable at the point a. The nth Taylor polynomial for f

centered at a is the unique polynomial tn(x) of degree at most n for

which

t
(k)
n (a) = f (k)(a)

for all 0 ≤ k ≤ n.

Of course, since tn(x) is a polynomial of degree at most n, we can

express it in the form Just as all polynomials of degree at most
n can be expressed in the basis

{xk : 0 ≤ k ≤ n},

they can equally well all be expressed in
the basis

{(x − a)k : 0 ≤ k ≤ n}.

tn(x) =
n

∑
k=0

ak(x − a)k

By taking derivatives and evaluating them at a, we see that, for all

0 ≤ k ≤ n,

t
(k)
n (a) = k! ak.

Setting this quantity equal to f (k)(a) and solving for ak gives us a Recall that 0! = 00 = 1.

formula for the coefficients of tn(x).

Proposition 5.1.4 (Taylor’s formula). Suppose that the function f is n

times differentiable at the point a. Then the nth Taylor polynomial for f

centered at a is

tn(x) =
n

∑
k=0

f (k)(a)

k!
(x − a)k

In light of the previous chapter, it is natural to ask:

Question 5.1.5. Given a function f and a point a ∈ R, where/when

does the sequence {tn(x)}∞
n=0 of Taylor polynomials for f centered at

a converge to f ? Where we do have convergence, is it uniform, or just

pointwise?
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Of course, in order for the sequence {tn(x)} of Taylor polynomials

to even be defined, f must have derivatives of all orders at the point a.

Definition 5.1.6 (Infinite differentiability). Let A ⊆ R be open. The

function f : A → R is infinitely differentiable at the point a ∈ A if it is k As usual, we say that the function f is in-
finitely differentiable on A if it is infinitely
differentiable at every point a ∈ A. If the
domain A is clear, we shorten this and
say only that f is infinitely differentiable
(or, smooth).

times differentiable at a for every k ≥ 1.

The reader should be able to think of a large number of infinitely

differentiable functions: polynomials, exponentials, sine, cosine, etc. It

is these functions for which we can construct an infinite sequence of

Taylor polynomials, and thus it is these for which we can ask Ques-

tion 5.1.5. The following tool will help provide answers.
There are several versions of the remain-
der theorem; this is the Lagrange form.Theorem 5.1.7 (Remainder theorem). Suppose that a ∈ R, r > 0, and

that f : (a − r, a + r) → R is n + 1 times differentiable on (a − r, a + r).

Let tn(x) be the nth Taylor polynomial for f centered at a. Then for every

x ∈ (a − r, a + r),

f (x)− tn(x) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1

for some point ξ (depending on x) that lies between a and x.

Proof. Viewing x ∈ (a − r, a + r) as fixed, choose K ∈ R so that We are allowed to choose such a C be-
cause we can simply solve the equation
for C. (To repeat, we are thinking of x as
fixed.)f (x)− tn(x) =

C

(n + 1)!
(x − a)n+1.

Our goal is to prove that C = f (n+1)(ξ) for some ξ between a and x.

Define the function ϕ : (a − r, a + r) → R by

ϕ(y) =
C

(n + 1)!
(x − y)n+1 −

(

f (x)−
n

∑
k=0

f (k)(y)

k!
(x − y)k

)

.

We then have

ϕ(a) =
C

(n + 1)!
(x − a)n+1

︸ ︷︷ ︸

f (x)−tn(x)

−
(

f (x)−
n

∑
k=0

f (k)(a)

k!
(x − a)k

)

︸ ︷︷ ︸

f (x)−tn(x)

= 0

by our choice of K, and also

ϕ(x) =
C

(n + 1)!
(x − x)n+1

︸ ︷︷ ︸

0

−
(

f (x)−
n

∑
k=0

f (k)(x)

k!
(x − x)k

)

︸ ︷︷ ︸

f (x)− f (x)

= 0.

Since the function ϕ is continuous (as a function of y) on the closed

interval between a and x and it is differentiable on the open interval
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between a and x, we can apply Rolle’s theorem to conclude that there

is some point ξ between a and x for which ϕ′(ξ) = 0.

Now we simply compute the derivative of ϕ(y) to reach our desired

conclusion. By the product rule, we have that for k ≥ 1,

d

dy

(

f (k)(y)

k!
(x − y)k

)

=
f (k+1)(y)

k!
(x − y)k − f (k)

(k − 1)!
(x − y)k−1.

Thus the derivative of the sum in the definition of ϕ(y) telescopes:

d

dy

(
n

∑
k=0

f (k)(y)

k!
(x − y)k

)

=
f (n+1)(y)

n!
(x − y)n.

Therefore,

ϕ′(ξ) = − C

n!
(x − ξ)n +

f (n+1)(ξ)

n!
(x − ξ)n = 0,

showing that C = f (n+1)(ξ) for some point ξ between a and x, as

desired.

We conclude by using the remainder theorem to show that on any

bounded domain, the sequence of Taylor polynomials for ex centered at

0 converges to the function ex, and moreover, that this convergence is

uniform.

Example 5.1.8. Let tn(x) denote the nth Taylor polynomial for ex cen-

tered at 0. Prove that for every r > 0, the sequence {tn(x)} converges

uniformly to ex on the interval (−r, r).

Proof. Let r > 0 be given and x ∈ (−r, r) be arbitrary. Because all

derivatives of ex are itself, the remainder theorem tells us that

|tn(x)− ex| = eξ

(n + 1)!
ξn+1

for some ξ between 0 and x. Because x ∈ (−r, r), we have eξ < er and

|ξn+1| < rn+1, so we may conclude that

|tn(x)− ex| < er rn+1

(n + 1)!
.

As n → ∞, the righthand side above tends to 0: the er is simply a

constant, while the factorial (n + 1)! dominates the exponential rn+1.

Thus for any given ǫ > 0, there is an N ∈ N such that |tn(x)− ex| < ǫ

for all x ∈ (−r, r), which is the definition of uniform convergence.

Exercises
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Exercise 5.1.1. For every k ≥ 1, construct a function f : R → R that is k times

differentiable but not k + 1 times differentiable.

Exercise 5.1.2. Prove that a polynomial p(x) of degree at most n is uniquely

determined by its value and first n derivatives at a given point a ∈ R. That is,

prove that if p(x) and q(x) are both polynomials of degree at most n and for

some point a ∈ R we have p(k)(a) = q(k)(a) for and all 0 ≤ k ≤ n, then p(x)

and q(x) have identical coefficients.

Exercise 5.1.3. Let p(x) be a polynomial and let tn(x) denote the nth Taylor

polynomial for p(x) centered at 0. Prove that the sequence {tn(x)} converges

uniformly to p(x) on all of R.

Exercise 5.1.4. Let tn(x) denote the nth Taylor polynomial for sin x centered

at 0. Prove that for any r > 0, the sequence {tn(x)} converges uniformly to

sin x on the interval (−r, r).

Exercise 5.1.5. Let tn(x) denote the nth Taylor polynomial for ex centered at 0.

Show that, contrary to Example 5.1.8, the sequence {tn(x)} does not converge

uniformly to ex on all of R.
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5.2 Numerical series and the root test

We concluded the previous section by using the remainder the-

orem to prove that the sequence of Taylor polynomials for ex centered

at 0 converges uniformly to ex. In order to obtain more general an-

swers about where and when this happens, is is necessary to consider

series.

Given a sequence (an)∞
n=m of real numbers, we form the series We call these numerical series, because

they consist of numbers, to differentiate
them from power series.

∞

∑
n=m

an = am + am+1 + · · · ,

which we abbreviate to ∑ an if the lower bound of the summation is

clear. We analyze a series via its sequence of partial sums, which is the

sequence (sk)
∞
k=m defined by

sk =
∞

∑
n=m

an.

Definition 5.2.1 (Convergence of series). The series ∑ an is said to con-

verge if and only if the sequence (sk) of partial sums converges, and in

this case we write
∞

∑
n=m

an = lim
n→∞

sn.

Otherwise the series diverges. If (sk) diverges to ∞, then we sometimes
say that series ∑ an diverges to infinity as
well.We begin with a fundamental example, geometric series, on which

much of the theory is based. For any number r ∈ R, one can check

that the identity

(1 − r)(1 + r + r2 + · · ·+ rk) = 1 − rk+1

holds by expanding the left-hand side. Defining the sequence (an) by

an = rn, we see that whenever r 6= 1, we have

sk =
k

∑
n=0

an =
k

∑
n=0

rn =
1 − rk+1

1 − r
.

From this equation we can see the behavior of the partial sums (sk).
The geometric series ∑ rk diverges to in-
finity if r ≥ 1 (although in the case r = 1,
one cannot use our equation for the par-
tial sums to see this). It simply does not
converge if r ≤ −1.

Theorem 5.2.2 (Geometric series). The geometric series ∑ rn converges if

and only if |r| < 1.

By definition, the series ∑ an converges if and only if its sequence

(sk) of partial sums converges. Since a sequence of real numbers con-

verges if and only if it is Cauchy, we see that ∑ an converges if and

only if the sequence (sk) is Cauchy. The following result simply trans-

lates this Cauchy criterion on partial sums to a condition on the terms

of the sequence itself.
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Proposition 5.2.3 (The Cauchy criterion for series). The series ∑ an con-

verges if and only if for every ǫ > 0, there is some K ∈ N such that The quantity appearing in the Cauchy
criterion for series is |sℓ − sk−1|.∣

∣
∣
∣
∣

ℓ

∑
n=k

an

∣
∣
∣
∣
∣
< ǫ

for all ℓ ≥ k ≥ K. Note that if we take ℓ = k here, we
see that if ∑ an converges, then we must
have an → 0. In other words, if a series
is to have a chance to converge, its terms
must go to 0.

Our next task is to establish the root test. To state this test in its

strongest possible form, we must first recall the notion of a limit supre-

mum.

Definition 5.2.4 (Limit supremum). Let (an) be a sequence of nonneg-

ative real numbers. If (an) is unbounded, then we define

lim sup an = ∞.

Otherwise, if (an) is bounded, then we define the sequence (αk) by

αk = sup{an : n ≥ k}.

The sequence (αk) is nonincreasing and bounded, so it has a limit, and The sequence (αk) is nonincreasing sim-
ply because αk+1 is the supremum of a
subset of the numbers of which αk is the
supremum.

we define

lim sup an = lim
k→∞

αk.

With the notion of limit supremums established, we can now state

and prove the root test.

Theorem 5.2.5 (Root test). Given a sequence (an)∞
n=m, define

L = lim sup |an|1/n.

If L < 1, then the series ∑ an converges. If L > 1, then the series ∑ an If L = 1 in the root test, then it does not
say whether the series ∑ an converges;
the test is inconclusive. Two series with
L = 1 are ∑ 1/n and ∑ 1/n2. You may re-
member from calculus that one of these
series converges while the other diverges
to infinity.

diverges.

Proof. Suppose first that L < 1. Choose a number ρ such that L < ρ < 1.

There must be some N ∈ N such that

To see why such an N must exist, sup-
pose to the contrary that it does not.
Then we can find an infinite subse-
quence (anj

) such that

|anj
|1/nj ≥ ρ

for all j. However, this implies that
lim sup |an|1/n ≥ ρ > L.

|an|1/n
< ρ

for all n ≥ N. To show that ∑ an converges, we now verify that it

satisfies the Cauchy criterion. Let ǫ > 0 be given. Because the series

∑ ρn converges, there is some K ∈ N such that

∣
∣
∣
∣
∣

ℓ

∑
n=k

ρn

∣
∣
∣
∣
∣
=

ℓ

∑
n=k

ρn
< ǫ

for all ℓ ≥ k ≥ K. Now we see that for all ℓ ≥ k ≥ max{N, K}, we have

ǫ >

ℓ

∑
n=k

ρn
>

ℓ

∑
n=k

|an| ≥
∣
∣
∣
∣
∣

ℓ

∑
n=k

an

∣
∣
∣
∣
∣

.
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This verifies that ∑ an satisfies the Cauchy criterion and therefore con-

verges.

To finish the proof, suppose that L > 1 and choose a number ρ such

that L > ρ > 1. For each N ∈ N, there must be some n ≥ N such

that |an|1/n > ρ, and thus |an| > ρn. If follows that there must be an

infinite subsequence (ank
) for which |ank

| > ρnk for all k. However,

since ρ > 1, this means that the sequence (an) does not converge to 0,

and thus ∑ an must diverge.

We conclude this section by considering two classical examples of

numerical series where the root test does not apply. One of them

diverges while the other converges.

Example 5.2.6. The harmonic series
∞

∑
n=1

1/n diverges. The name of this series is due to
Pythagoras’s first experiments with mu-
sic. Pythagoras noticed that striking a
glass half-full of water produced a note
one octave higher than striking a glass
full of water. A glass one-third-full of
water similarly produced a note at a
“perfect fifth” of a whole glass, while
a glass one-quarter-full produced a note
two octaves higher, and a glass one-fifth-
full produced a “major third.” These
higher frequencies are referred to as har-
monics, and all musical instruments pro-
duce harmonics in addition to the funda-
mental frequency which they are playing
(the instrument’s “timbre” describes the
amounts in which these different har-
monics occur). This is what led Pythago-
ras to call the series 1 + 1/2 + 1/3 + · · ·
the harmonic series.

To establish this, we can simply group the terms together so that

every group sums to at least 1/2:

∞

∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
︸ ︷︷ ︸

≥2· 1
4=

1
2

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

≥4· 1
8=

1
2

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
︸ ︷︷ ︸

≥8· 1
16=

1
2

+ · · ·
≥ 1 +

1

2
+

1

2
+

1

2
+

1

2
+ · · · .

In general, this grouping is always possible because This proof of the divergence of the
harmonic series is due to the French
philosopher Nicolas Oresme (1323–
1382), and stands as one of the pinnacles
of medieval mathematical achievement.
(There was not much medieval mathe-
matical achievement.)

1

2k + 1
+ · · ·+ 1

2k+1
︸ ︷︷ ︸

2k terms

≥ 2k · 1

2k+1
=

1

2
.

Example 5.2.7. The series ∑ 1/n2 converges.

This series is often shown to converge by the integral test, but here

we give a proof using comparison. Letting (sk) denote the partial sums

of the series, we have While we show that the series ∑ 1/n2

converges, we do not compute its value
here. For series that aren’t geometric,
such questions are generally extremely
difficult, and this series is no excep-
tion. Finding ∑ 1/n2 became known as
the Basel problem after it was posed
by Pietro Mengoli (1626–1686) in 1644.
In 1735, at the age of twenty-eight,
Leohnard Euler showed that

∑
1

n2
=

π2

6
≈ 1.645,

one of the first results of his career.

sk =
k

∑
n=1

1

n2
< 1 +

k

∑
n=2

1

n2 − n
= 1 +

k

∑
n=2

(
1

n − 1
− 1

n

)

.

The sum on the right of this inequality telescopes, and thus we have

sk < 1 +

(

1 − 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(

1

k − 1
− 1

k

)

= 2 − 1

k
.
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From this inequality, we see that (sk) is a nondecreasing sequence of

real numbers bounded above by 2. Therefore (sk) has a limit, and thus

(by definition), ∑ 1/n2 converges.

Exercises

Exercise 5.2.1. Show if (sn) is an increasing sequence of real numbers and if

(sn) has a bounded subsequence, then (sn) converges. Interpret this result in

terms of series.

Exercise 5.2.2. Prove that if (an) is a sequence of nonnegative numbers and

the series ∑ an converges, then so does the series ∑ a2
n.

Exercise 5.2.3. Suppose that (an) and (bn) are sequences of real numbers and For Exercise 5.2.3, you may want to use
the inequality 2|ab| ≤ a2 + b2, or apply
the Cauchy–Schwarz inequality to the
partial sums.

that both of the series ∑ a2
n and ∑ b2

n converge. Prove that the series ∑ anbn

also converges.

Exercise 5.2.4. Show that if (an) is a decreasing sequence of positive real num- For Exercise 5.2.4, one may want to ob-
serve that lim an = 0 and that for every
m ∈ N and every k ≥ m,

k

∑
n=m

an ≥ (k − m + 1)ak .

bers and
∞

∑
n=0

an

converges, then lim
n→∞

nan = 0.



advanced calculus ii 80

5.3 Power series and uniform convergence

We now define power series, which are the principal reason we are

interested in series.

Definition 5.3.1 (Power series). Let (an) be a sequence of real numbers

and suppose that a ∈ R and m ∈ N. The expression

∞

∑
n=0

an(x − a)n

is a power series with center a.

Changing the center of a power series merely shifts its behavior left

or right, so for convenience we often specialize to the case of power

series centered at the origin. We also suppress the summation limits

when they are clear, so our generic power series is written as ∑ anxn.

Given a power series ∑ anxn, we define the set

D = {x ∈ R : ∑ anxn converges}.

Since the power series converges for x ∈ D, it defines a real-valued Note that every power series converges
at its center, so the set D is never empty.function with domain D. Our first result tells us about this domain.

Theorem 5.3.2. Given a sequence (an), define

R =
1

lim sup |an|1/n
,

where R is interpreted as being 0 if the limit supremum is ∞ and as being ∞

if the limit supremum is 0. The series ∑ anxn converges for x ∈ (−R, R) and As in the root test, Theorem 5.3.2 does
not specify the behavior of the power se-
ries when |x| = R.

diverges for x /∈ [−R, R].

Proof. For a fixed point x ∈ R, we define

L = lim sup |anxn|1/n

= lim
k→∞

(

sup
{

|anxn|1/n : n ≥ k
})

= |x| lim
k→∞

(

sup
{

|an|1/n : n ≥ k
})

= |x| lim sup |an|1/n.

By the root test, the power series converges if L < 1 and diverges if

L > 1. If lim sup |an|1/n = 0, then R is defined to be ∞, and we have

L = 0 so the series converges for every x ∈ (−∞, ∞) and the theorem

holds. If lim sup |an|1/n = ∞, then R is defined to be 0, and we have

L = ∞, so the series diverges everywhere but its center x = 0, so the

theorem holds.

Otherwise if lim sup |an|1/n 6= 0, ∞, then L = |x|/R, so the root

test shows that the power series converges if |x| < R and diverges if

|x| > R, completing the proof of the theorem.
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Theorem 5.3.2 guarantees that the set of points at which a given

power series converges is an interval, which we call the interval of con- More specifically, Theorem 5.3.2 shows
that the interval of convergence can be
any one of the four possibilities (−R, R),
(−R, R], [−R, R), or [−R, R]. Exer-
cise 5.3.1 provides examples showing
that all four of these possibilities can oc-
cur.

vergence. The number R in Theorem 5.3.2 is called the radius of conver-

gence of the power series.

Given a power series ∑ anxn with interval of convergence I ⊆ R, we

denote by s(x) the function s : I → R defined by

s(x) = ∑ anxn.

We also let sk(x) denote the kth partial sum of this series,

sk(x) =
k

∑
n=0

anxn.

Note that these partial sums are polynomials, so they are defined on

all of R. On the interval I, the sequence (sk(x)) of functions converges

pointwise to s(x), written

s(x) =
∞

∑
n=0

anxn = lim
k→∞

sk(x).

In fact, on any closed interval within the interval of convergence, this

convergence is uniform, as our next result shows.

Theorem 5.3.3. If the power series s(x) = ∑ anxn has radius of convergence

R, and r ∈ (0, R), then the sequence (sk(x)) of functions converges uniformly

to s(x) on the interval [−r, r].

Proof. Let ǫ > 0 be given. To establish uniform convergence, we need

to find a K ∈ N such that |sk(x)− s(x)| < ǫ for every k ≥ K and every

x ∈ X.

We begin by apply the root test to the sum ∑ |anrn|, which leads us

to consider the limit supremum

lim sup |anrn|1/n = r lim sup |an|1/n.

This quantity is less than 1 because r < R, so the series ∑ |anrn| con-

verges, and hence by definition the sequence (tk) defined by

tk =
k

∑
n=0

|anrn|

converges (because these are the partial sums of the series). Therefore

the sequence (tk) is Cauchy, so we can choose K ∈ N such that if

m ≥ ℓ ≥ K, then

ǫ

2
> |tm − tℓ| =

∣
∣
∣
∣
∣

ℓ

∑
n=ℓ+1

|anrn|
∣
∣
∣
∣
∣
=

ℓ

∑
n=ℓ+1

|anrn|.
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Therefore for any x ∈ [−r, r] and any indices m ≥ ℓ ≥ K, we have

|sm(x)− sℓ(x)| =
∣
∣
∣
∣
∣

m

∑
n=ℓ+1

anxn

∣
∣
∣
∣
∣
≤

m

∑
n=ℓ+1

|anxn| ≤
m

∑
n=ℓ+1

|anrn| < ǫ/2.

Now let x ∈ [−r, r] and ℓ ≥ K be arbitrary. Because the sequence This part of the proof closely resembles
our proof of Theorem 4.2.4.(sk(x)) converges pointwise to s(x), for this particular point x we can

find an index mx ≥ k such that |smx (x) − s(x)| < ǫ/2. Therefore we

have

|sℓ(x)− s(x)| ≤ |sℓ(x)− smx (x)|+ |smx (x)− s(x)| < ǫ,

completing the proof.

Because each partial sum sk(x) is a polynomial, polynomials are

continuous, and uniform convergence preserves continuity, we imme-

diately see that every power series is continuous within its radius of

convergence: It is natural to ask if the power series is
also continuous at x = ±R if it happens
to converge there. The answer is yes; this
is known as Abel’s theorem (and takes a
bit more work to show).

Corollary 5.3.4. If the power series s(x) = ∑ anxn has radius of convergence

R, then s(x) is continuous on the open interval (−R, R).

We also immediately obtain term-by-term integration, because poly-

nomials are integrable and uniform convergence preserves integrabil-

ity (Theorem 4.4.1).

Corollary 5.3.5. If the power series s(x) = ∑ anxn has radius of convergence

R, and r ∈ (0, R), then s(x) is integrable on the interval [−r, r] and

∫ r

0
s(x) dx = lim

k→∞

∫ r

0
sk(x) dx =

∞

∑
n=0

an

n + 1
rn+1.

For the reader’s convenience, we recall
the following result.

Theorem 4.4.3 (Differentiating uniform
limits, more general version). Let I ⊆ R

be a bounded interval and let ( fn) be a se-
quence of functions from I to R. Suppose
that there exists a point x0 ∈ I such that
( fn(x0)) converges, and that the sequence
( f ′n) of derivatives exists on I and converges
uniformly on I to a function g. Then the
sequence ( fn) converges uniformly on I to
a function f that is differentiable at every
point of I, and f ′ = g.

Finally, we would like to justify term-by-term differentiation, but

this requires a bit more work, because our theorem about the differ-

entiation of uniform limits has rather complicated hypotheses. In par-

ticular, in order to establish that s′(x) exists and equals lim s′k(x) on

the open interval (−R, R), we need to show first that the sequence

(sk(x)) converges at some point in the interval, and second that the

sequence of derivatives (s′k(x)) converges uniformly to some function.

The first of these tasks is easy; the sequence (sk(x)) converges at x = 0

to s(0) = a0. For the second, we note that

s′k(x) =
k

∑
n=0

nanxn−1 =
k−1

∑
n=0

(n + 1)an+1xn,

and

lim sup |(n + 1)an+1xn|1/n = lim sup |anxn|1/n,

so the radius of convergence of the series ∑(n + 1)an+1xn is the same

as the radius of converges of the series ∑ anxn by Theorem 5.3.2. Then
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by Theorem 5.3.3, we see that the sequence of derivatives (s′k(x)) con-

verges uniformly on the interval [−r, r] for every r ∈ (0, R). This al-

lows us to derive our final consequence of the uniform convergence of

power series.

Corollary 5.3.6. If the power series s(x) = ∑ anxn has radius of convergence

R, then s(x) is differentiable on the interval (−R, R), and on this interval,

s′(x) =
∞

∑
n=0

(n + 1)an+1xn.

Exercises

Exercise 5.3.1. Find the interval of convergence for the following power series.

∞

∑
n=1

n−nxn,
∞

∑
n=1

xn

n2
,

∞

∑
n=1

xn

n
, and

∞

∑
n=1

nnxn.

Exercise 5.3.2. Let ∑ an(x − a)n be a power series that converges uniformly

on all of R. Prove that the sequence (an) is eventually 0. (That is, there is an

N ∈ N such that an = 0 for all n ≥ N.)
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