
6 Linear algebra

For the rest of the course, we are concerned with functions from

R
n to R

m. In preparation for this material and to set some conventions,

we must first review a bit of linear algebra. It is assumed that the

reader has had a course in linear algebra and is conversant with matrix

computations.
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6.1 Linear transformations

We view the elements of R
n, for n ∈ N, as being column vectors. Thus This is simply a convention (we could in-

stead take R
n to consist of row vectors),

but this is the only convention compat-
ible with matrix multiplication (without
reversing the order or taking transposes
constantly).

R
n =























x1
...

xn









: x1, . . . , xn ∈ R















.

On this set we have two operations, addition and scalar multiplication,

which are defined by









x1
...

xn









+









y1
...

yn









=









x1 + y1
...

xn + yn









and c









x1
...

xn









=









cx1
...

cxn









for vectors x, y ∈ R
n and scalars c ∈ R. With these operations, R

n is We will not review the definition of vec-
tor spaces, with its many axioms.a vector space.

Of more interest to us are the mappings between these spaces, in

particular (initially), the linear ones.
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Definition 6.1.1. The mapping T : R
n → R

m is linear (or, a linear

transformation) if, for all vectors x, y ∈ R
n and all scalars c ∈ R, we The reader will note that we do note dec-

orate our vectors by writing them as ~x
or x; whether a variable is a vector or a
scalar (or something else) must be made
clear from the context.

have

(i) T(x + y) = T(x) + T(y) and

(ii) T(cx) = cT(x).

Note that we can simplify this definition somewhat; the mapping

T : R
n → R

m is linear if and only if

T(cx + y) = cT(x) + T(y)

for all vectors x, y ∈ R
n and scalars c ∈ R.

Example 6.1.2. The mapping T : R
2 → R

2 defined by Strictly speaking, we should denote the

imagine of the vector

(

x1

x2

)

under the

mapping T by T

((

x1

x2

))

, but we sup-

press this extra set of parentheses.

T

(

x1

x2

)

=

(

2x1

x1 + x2

)

is linear.

Example 6.1.3 (Scaling). The mapping T : R
2 → R

2 defined by

T

(

x1

x2

)

=

(

3x1

3x2

)

is linear.

Example 6.1.4 (Rotation). For any angle θ, the mapping Tθ : R
2 → R

2

defined by rotation by θ radians counterclockwise is linear.

Example 6.1.5 (Projection). The mapping T : R
3 → R

2 defined by

T







x1

x2

x3






=

(

x1

x2

)

is linear.

Example 6.1.6 (Inclusion). The mapping T : R
2 → R

3 defined by The mapping defined by

T

(

x1

x2

)

=





x1

x2

1





is not linear. Why not?

T

(

x1

x2

)

=







x1

x2

0







is linear.

As we assume the reader has already seen, linear transformations

can all be expressed in terms of matrix multiplication and conversely,

matrix multiplication always defines a linear transformation. We briefly

revisit these concepts now.
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Definition 6.1.7. Let a1, . . . , an ∈ R
m denote the columns of the m × n

matrix A, so that

A =
(

a1 a2 · · · an

)

.

If x ∈ R
n, then the product of A and x is Viewing the product Ax as a linear com-

bination of the columns of A is fre-
quently more convenient than the alter-
native dot product formulation.Ax =

n

∑
k=1

akxk ∈ R
m.

In particular, when ek ∈ R
n is the kth standard basis vector, namely

the vector with a 1 in the kth position and 0 elsewhere, we see that

Aek = ak.

Proposition 6.1.8. If A is an m×n matrix, then the mapping LA : R
n → R

m

defined by

LA(x) = Ax

is linear.

Proof. Let a1, . . . , an ∈ R
m denote the columns of A and take x, y ∈ R

n

and c ∈ R. We have

LA(cx + y) = A(cx + y) =
n

∑
k=1

(cxk + yk)ak.

Because R
m is a vector space, the summands here expand to cxkak + ykak,

and thus our expression of LA(cx + y) becomes

c
n

∑
k=1

xkak +
n

∑
k=1

ykak = cAx + Ay = cLA(x) + LA(y),

establishing that LA is indeed linear.

Conversely, every linear transformation can be expressed as left

multiplication by a matrix. We saw above that if A is an m × n ma-

trix and ek is the kth standard basis vector, then

LA(ek) = Aek = ak.

This shows that if T = LA, then the columns of A must be the images

T(ek); our result below verifies that this matrix indeed represents T.

Proposition 6.1.9. If T : R
n → R

m is a linear transformation, then there

exists a unique m × n matrix A such that T = LA. In some instances (but not in what we
will do), it is convenient to have a no-
tation such as [T] to denote the matrix
representing the linear transformation T.
(In fact sometimes one will use a nota-

tion like [T]
β
α where α and β are bases of

the domain and codomain.)

Proof. We have already shown that if the matrix A represents T, then

the columns of A must T(ek). This shows that there is at most one ma-

trix that represents T, but we must show that this matrix does indeed

represent it.

Let A denote the m × n matrix whose kth column is given by the

vector T(ek) ∈ R
m, so

A =
(

T(e1) T(e2) · · · T(en)
)

.
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Given any column vector x ∈ R
n, we have

x =









x1
...

xn









=
n

∑
k=1

xkek.

Thus by the linearity of T, we have that

T(x) =
n

∑
k=1

xkT(ek). =
n

∑
k=1

xkak = Ax,

as desired.
Given the fact that linear transforma-
tions are equivalent to left-multiplying
by matrices, one may wonder why we
don’t just work with matrices all the
time. There are several reasons, but one
is that expressing a linear transformation
as a matrix requires us to fix bases for
the domain and codomain.

We leave it to the reader to verify that composition of linear trans-

formations corresponds to matrix multiplication.

Proposition 6.1.10. Suppose that S : R
n → R

m and T : R
m → R

p are both

linear, and that the m × n matrix A and the p × m matrix B satisfy

S = LA and T = LB.

Then the mapping T ◦ S : R
n → R

p satisfies

T ◦ S = LB ◦ LA = LBA,

where BA is the p × n matrix product of B and A.

Exercises

Exercise 6.1.1. Prove that if T : R
n → R

m is linear, then T(0) = 0. In Exercise 6.1.1, the first 0 is the zero
vector in R

n and the second 0 is the zero
vector in R

m.Exercise 6.1.2. Define T : R
3 → R

2 by

T







x1

x2

x3






=

(

2x1 − x2 + 3x3

x3 − x1

)

.

Find a matrix A such that T = LA and explain how doing so shows that T is

linear.

Exercise 6.1.3. Suppose that ‖ · ‖ is a norm on R
m and that the linear trans-

formation T : R
n → R

m is injective. Prove that the function ‖ · ‖∗ : R
n → R

defined by

‖x‖∗ = ‖T(x)‖
is a norm on R

n.
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6.2 All norms on R
n are equivalent

We saw in the previous section how norms induce metrics, and thus

when we are working with a space that has a norm, this norm is in

some sense more fundamental that the induced metric. The main re-

sult of this section is that all norms on n-dimensional real space are,

for most purposes of analysis, the same. First we must formalize this

notion.

Definition 6.2.1. The norm ‖ · ‖a is equivalent to the norm ‖ · ‖b if there Exercise 6.2.1 asks the reader to verify
that this is indeed an equivalence rela-
tion.

exist constants C ≥ c > 0 such that

c‖x‖a ≤ ‖x‖b ≤ C‖x‖a

for all vectors x ∈ V. The notions of convergence and continu-
ity are the same on equivalent norms.
Accordingly, we may freely move be-
tween equivalent norms for many pur-
poses of analysis. This is frequently use-
ful, because depending on what we are
trying to do, one norm may be easier to
work with than others.

For example, in R
n, we have that

‖x‖2
2 =

n

∑
k=1

x2
k ≤

(

n

∑
k=1

|xk|
)2

= ‖x‖2
1,

so ‖x‖2 ≤ ‖x‖1 for every vector x ∈ R
n. In the other direction, it

follows direction from the Cauchy–Schwarz inequality that

‖x‖1 =
n

∑
k=1

|xk| =
n

∑
k=1

1 · |xk| ≤

∥

∥

∥

∥

∥

∥

∥

∥









1
...

1









∥

∥

∥

∥

∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥









|x1|
...

|xn|









∥

∥

∥

∥

∥

∥

∥

∥

2

=
√

n ‖x‖2.

Therefore the norms ‖ · ‖1 and ‖ · ‖2 on the vector space R
n are equiv-

alent, because We are thinking of n as fixed, so the
√

n
here is a constant.‖x‖2 ≤ ‖x‖1 ≤

√
n ‖x‖2

for all x ∈ R
n. Note that the unit sphere in R

n is de-
noted by Sn−1, not Sn. This is because
the sphere itself is (n − 1)-dimensional.
For example, when you walk around on
the surface of the Earth (that is, when
you walk on S2), it is virtually indistin-
guishable from walking on the plane R

2;
hence, Flat Earthers.

For our proof we need one more definition. In R
n with the Eu-

clidean metric ‖ · ‖2, the unit sphere is the set

Sn−1 = {x ∈ R
n : ‖x‖2 = 1}.

Because Sn−1 is closed and bounded in (Rn, d2), it is compact set in

this metric space by the Heine–Borel theorem.

Theorem 6.2.2. All norms on R
n are equivalent.

One consequence of Theorem 6.2.2 is
that if ‖ · ‖ is a norm on R

n and d is
the induced metric, then the closed and
bounded sets in (Rn, d) are the same as
those in the Euclidean space (Rn, d2).

Proof. The strategy is to show that every norm ‖ · ‖ on R
n is equivalent

to ‖ · ‖2. To this end, let ‖ · ‖ be an arbitrary norm on R
n and define

M = max{‖e1‖, . . . , ‖en‖},
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where ek is the kth standard basis vector of R
n. The definition of M shows that our proof

is dependent upon the fact that R
n is fi-

nite dimensional. Indeed, there are ex-
amples of inequivalent norms on infi-
nite dimensional vector spaces; see Ex-
ercise 6.2.2.

For any x ∈ R
n, writing x = ∑ xkek, we see that

‖x‖ =

∥

∥

∥

∥

∥

n

∑
k=1

xkek

∥

∥

∥

∥

∥

≤
n

∑
k=1

‖xkek‖

=
n

∑
k=1

|xk| ‖ek‖

≤
n

∑
k=1

M |xk|

= M ‖x‖1

≤ (M
√

n) ‖x‖2.

The above gives us one of the inequalities we need. Obtaining the

other is more difficult. We begin by defining the function f : R
n → R

by f (x) = ‖x‖.

We want to show that f is continuous (actually, uniformly continu-

ous), where its domain R
n is considered with the Euclidean metric d2

and the codomain R is considered with the usual metric. For any pair

of points x, y ∈ R
n, we have by the norm axioms that

‖x‖ − ‖y‖ = ‖x − y + y‖ − ‖y‖ ≤ ‖x − y‖+ ‖y‖ − ‖y‖ = ‖x − y‖,

and by interchanging the roles of x and y,

‖y‖ − ‖x‖ = ‖y − x + x‖ − ‖x‖ ≤ ‖y − x‖+ ‖x‖ − ‖x‖ = ‖y − x‖.

It follows that

|‖x‖ − ‖y‖| ≤ ‖x − y‖

for any pair of points x, y ∈ R
n. Now (to establish uniform continuity),

let ǫ > 0 be arbitrary. For any x, y ∈ R
n with

d2(x, y) = ‖x − y‖2 <
ǫ

M
√

n
,

we have

| f (x)− f (y)| = |‖x‖ − ‖y‖| ≤ ‖x − y‖ ≤ M
√

n ‖x − y‖2 < ǫ.

Therefore f is (uniformly) continuous with as a mapping from (Rn, d2)

to (R, d).

From this, it follows that the restriction f |Sn−1 is a continuous func-

tion on a compact set, so it achieves its minimum, say c ≥ 0. We must

further have c > 0 because norms can only be 0 on the zero vector, and
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the zero vector is not in the unit sphere. Thus for any x ∈ Sn−1, we

have

f (x) = ‖x‖ ≥ c.

If y 6= 0, then x = y/‖y‖2 ∈ Sn−1 so by the properties of norms it

follows that

‖y‖ =

∥

∥

∥

∥

‖y‖2
y

‖y‖2

∥

∥

∥

∥

= ‖y‖2 ‖x‖ ≥ c‖y‖2,

and the proof is complete.

Exercises

Exercise 6.2.1. Prove that the notion of equivalence of norms really is an equiv-

alence relation. That is, if ‖ · ‖a, ‖ · ‖b, and ‖ · ‖c are norms on some vector

space V, prove that

(i) ‖ · ‖a is equivalent to itself;

(ii) if ‖ · ‖a is equivalent to ‖ · ‖b, then ‖ · ‖b is equivalent to ‖ · ‖a; and

(iii) if ‖ · ‖a is equivalent to ‖ · ‖b and ‖ · ‖b is equivalent to ‖ · ‖c, then

‖ · ‖a is equivalent to ‖ · ‖c.

Exercise 6.2.2. Consider the vector space C([0, 1]) with the norms

‖ f ‖2 =

√

∫ 1

0
| f (x)|2 and ‖ f ‖∞ = max{| f (x)| : 0 ≤ x ≤ 1}.

For n ∈ N, define the function fn : [0, 1] → [0, 1] by fn(x) = xn and show that

lim
n→∞

‖ fn‖2 = 0 whereas ‖ fn‖∞ = 1 for all n ∈ N.

Conclude that the norms ‖ · ‖2 and ‖ · ‖∞ are not equivalent on C([0, 1]).
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6.3 The metric space of linear transformations

Let L(Rn, R
m) denote the set of linear transformations from R

n to R
m.

In Section 6.1, we described the canonical identification of L(Rn, R
m)

with the set

M(m, n) = {X : X is an m × n matrix with entries from R}.

In fact, this identification is an isomorphism between L(Rn, R
m) and

M(m, n), both viewed as vector spaces. Moreover, these vector spaces

are isomorphic to R
mn.

Since we have norms on R
mn, we can apply these norms to lin-

ear transformations. In particular, we can give M(m, n) the Euclidean

norm by defining

‖X‖2 =
√

∑
k,ℓ

x2
k,ℓ

for all X = (xk,ℓ) ∈ M(m, n). When viewed as a norm on linear trans-

formations, this is often called the Frobenius norm. However, there Note that all norms on linear transfor-
mations can be viewed as norms on R

mn,
and so they are all equivalent by the re-
sults of the previous section.

is another norm on linear transformations that, for most purposes, is

more natural and easier to work with, and our goal in this section is

to define and study it. We begin with a result that says that linear

transformation can only scale vectors by a certain amount, no matter

the transformation or the norms used.

Proposition 6.3.1. Suppose that ‖ · ‖Rn and ‖ · ‖Rm are norms on R
n and

R
m, respectively. If T : R

n → R
m is linear, then there is a constant C > 0 This result shows that T is uniformly

continuous when viewed as a mapping
from the space R

n with the metric in-
duced by ‖ · ‖Rn to the space R

m with
the metric induced by ‖ · ‖Rm .

such that

‖T(x)‖Rm ≤ C‖x‖Rn

for all x ∈ R
n.

Proof. Define

M = max{‖T(e1)‖Rm , . . . , ‖T(en)‖Rm},

where e1, . . . , en are the standard basis vectors for R
n. Let x ∈ R

n be

arbitrary. Writing x = ∑ xkek in the usual way, we have the bound

‖T(x)‖Rm =

∥

∥

∥

∥

∥

n

∑
k=1

xk T(ek)

∥

∥

∥

∥

∥

Rm

≤
n

∑
k=1

|xk| ‖T(ek)‖Rm

≤
n

∑
k=1

M |xk|

= M ‖x‖1.
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This is almost what we want, but it is in terms of the 1-norm, not the

arbitrary norm ‖ · ‖Rn . However, the results of the previous section

show that ‖ · ‖Rn is equivalent to the 1-norm, and so there is some

constant K > 0 such that

‖y‖1 ≤ K‖y‖Rn

for all y ∈ R
n. Combining this with our previous inequality shows

that

‖T(x)‖Rm ≤ MK ‖x‖Rn ,

which proves the result, with C = MK. Note that if T : R
n → R

n is linear and
invertible, then Proposition 6.3.1 also ap-
plies to T−1.The quantity C > 0 in the previous result is a bound on the amount

that the transformation T can stretch a vector (measured in terms of

whichever norms we are using on its domain and codomain).

We now specialize to only consider the 2-norm, and so our previous

result shows that there is a constant C > 0 such that The two 2-norms in this inequality are,
strictly speaking, different—the one on
the left is defined on R

m, while the one
on the right is defined on R

n.
‖T(x)‖2 ≤ C‖x‖2

for all x ∈ R
n.

We define the operator norm (sometimes called the matrix norm) on

linear transformations T : R
n → R

m by

‖T‖op = inf{C : ‖T(x)‖2 ≤ C‖x‖2 for all x ∈ R
n}.

By our previous result, the set in the above definition is nonempty, and

it is trivially bounded below by 0, so this infimum indeed exists. We

leave the proof that ‖ · ‖op is actually a norm to the reader. Recall that the norm axioms require that
for all vectors x, y ∈ V and all scalars
c ∈ R:

(i) ‖x‖ ≥ 0;
(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖cx‖ = |c| ‖x‖; and
(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proposition 6.3.2. The operator norm ‖ · ‖op is a norm on L(Rn, R
m).

The proof of the above result is made somewhat easier by the fol-

lowing reformulation of the operator norm.

Proposition 6.3.3. For all linear transformations T ∈ L(Rn, R
m), we have

‖T‖op = sup{‖T(x)‖2 : ‖x‖2 = 1},

and this supremum is attained.

Proof. By our previous results, the mapping f : Sn−1 → R defined

by f (x) = ‖T(x)‖2 is continuous as a mapping from the metric space

(Sn−1, d2) to the metric space (R, d). Because Sn−1 is a compact set

in (Rn, d2), the function f attains its supremum at some point. Let

x0 ∈ Sn−1 and M ∈ R be such that

f (x0) = sup{‖T(x)‖2 : x ∈ Sn−1} = M.
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For every nonzero y ∈ R
n, we have (by the linearity of T and the

axioms of norms) that

‖T(y)‖2 = ‖y‖2

∥

∥

∥

∥

T

(

y

‖y‖2

)∥

∥

∥

∥

2

≤ M ‖y‖2.

This inequality also holds for the zero vector because

‖T(0)‖2 = 0 = M‖0‖2.

This implies that the infimum in the definition of ‖T‖op is at most M.

In the other direction, if ‖T(x)‖2 ≤ C‖x‖2 for all x ∈ R
n, then

C ≥ M = ‖T(x0)‖2, so the infimum in the definition of ‖T‖op is at

least M, and this completes the proof.

As a consequence of our result above, we see that for any linear

transformation T : R
n → R

m, we have

‖T(x)‖2 ≤ ‖T‖op‖x‖2

for all vectors x ∈ R
n, and equality is attained for at least some vectors.

Exercises

Exercise 6.3.1. Prove Proposition 6.3.2, which states that the operator norm is

in fact a norm on the space L(Rn, R
m).

Exercise 6.3.2. Given a vector y ∈ R
n, define the linear transformation fy : R

n → R

by fy(x) = 〈x, y〉, where 〈·, ·〉 is the usual inner product on R
n. Compute ‖ f ‖op.
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6.4 Invertible matrices

In the previous section, we introduced the operator norm for linear

transformations and proved that it can be defined as

‖T‖op = sup{‖T(x)‖2 : ‖x‖2 = 1}.

As linear transformations from R
n to R

m are equivalent to m × n real

matrices, we can extend this norm to the context of real matrices.

Given a matrix A ∈ M(m, n), we define

‖A‖op = ‖LA‖op

where LA : R
n → R

m is the linear transformation defined by LA(x) = Ax

for all x ∈ R
n. All of our previous results about the operator norm

translate directly to the matrix context; in particular, we have If A is square (so that it has eigenvalues)
and its entries are all real (as in our con-
text), then this inequality can be used
to show that the operator norm of A is
equal to the absolute value of the largest
eigenvalue of A (this is called the spectral
radius of A). If A is not square, one can
instead look at its singular values. We
utilize neither approach here.

‖Ax‖2 ≤ ‖A‖op‖x‖2

for all vectors x of the appropriate size, and equality is achieved for at

least one such vector. From this inequality we see that given matrices

A and B of the appropriate sizes and any appropriately sized vector x,

we have

‖ABx‖2 ≤ ‖A‖op‖Bx‖2 ≤ ‖A‖op‖B‖op‖x‖2,

from which it follows that

‖AB‖op ≤ ‖A‖op‖B‖op.

This shows that the operator norm is submultiplicative on matrices.

We now consider inverses of matrices (or equivalently, inverses of

linear transformations between Euclidean spaces). Let A be an m × n

real matrix, so LA : R
n → R

m. If A is not square, then neither A

nor the mapping LA can be invertible—if m < n, then LA cannot be

one-to-one, while if m > n, then LA cannot be onto.

On the other hand, if A is square, then we have the following result

from linear algebra, which we state without proof.

Proposition 6.4.1. For an n × n real matrix A, the following are equivalent:

(a) A is invertible;

(b) LA is one-one;

(c) LA is onto;

(d) there exists an n × n matrix B such that BA = In (and in this case

B = A−1);

(e) there exists an n × n matrix C such that AC = In (and in this case

C = A−1);

(f) the null space of A is {0}; and
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(g) det(A) 6= 0.

To establish the main result of this section, we need the following

computation.

Proposition 6.4.2. If A is an n × n matrix and ‖A‖op < 1, then In − A is

invertible. Moreover,

‖(In − A)−1‖op ≤ 1

1 − ‖A‖op
.

Proof. First observe that for x ∈ R
n,

‖Ax‖2 ≤ ‖A‖op‖x‖2

by the definition of the operator norm. Therefore (using the triangle

inequality on ‖ · ‖2 for the first inequality) we have

‖x‖2 = ‖(In − A)x + Ax‖2

≤ ‖(In − A)x‖2 + ‖Ax‖2

≤ ‖(In − A)x‖2 + ‖A‖op‖x‖2.

This implies that

‖(In − A)x‖2 ≥ (1 − ‖A‖op)‖x‖2.

In particular, if x 6= 0, then (In − A)x 6= 0, so In − A is invertible.

Given any x ∈ R
n, the inequality above shows us that

‖x‖2 =
∥

∥

∥(In − A)
(

(In − A)−1x
)∥

∥

∥

2

≥
(

1 − ‖A‖op

)

‖(In − A)−1x‖2.

Therefore

‖(In − A)−1x‖2 ≤ 1

1 − ‖A‖op
‖x‖2.

It follows that ‖(In − A)−1‖op ≤ (1 − ‖A‖op)−1.

The result below is the first in which we explicitly consider the met-

ric space of matrices under the metric induced by the operator norm.

As usual, this metric is defined by

dop(A, B) = ‖A − B‖op.

By the equivalence of norms, Proposi-
tion 6.4.3 holds not just for the dop metric
on M(m, n), but also for all other metrics
induced by a norm, such as the Frobe-
nius norm.

Proposition 6.4.3. For every n, the set In of invertible n × n matrices is

an open subset of the metric space (M(n, n), dop). Moreover, the mapping

f : In → In defined by

F(A) = A−1

is continuous with respect to the dop metric.
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Proof. Let A ∈ In be arbitrary. We want to show that there is some

η > 0 such that if dop(A, B) < η, then B is also invertible. Setting

H = B − A, since dop(A, B) = ‖A − B‖op = ‖H‖op, it suffices to show

that A + H is invertible.

To this end, set η = 1/2‖A−1‖op and suppose that ‖H‖op < η. We

have

A + H = A(In + A−1H).

By our choice of H, we also have

‖ − A−1H‖op ≤ ‖A−1‖op ‖H‖op <
1

2
.

Therefore In + A−1H is invertible by our previous result. Consequently,

B = A+ H = A(In + A−1H) is invertible, proving that the η-neighborhood

of A lies in In, and thus that In is open in the space (M(n, n), dop).

To prove the second part of the result, first note that our previous

result shows that

‖(A + H)−1‖op =

∥

∥

∥

∥

(

A(In + A−1H)
)−1

∥

∥

∥

∥

op

=
∥

∥

∥
(In + A−1H))−1 A−1

∥

∥

∥

op

≤ ‖A−1‖op ‖(In + A−1H))−1‖op

≤ ‖A−1‖op
1

1 − ‖A−1H‖op

≤ 2‖A−1‖op.

To see that F is continuous, again suppose ‖H‖op < η and note that

‖F(A + H)− F(A)‖op = ‖(A + H)−1 (A − (A + H)) A−1‖op

≤ ‖A + H‖−1
op ‖H‖op ‖A−1‖op

≤ 2‖A−1‖2
op ‖H‖op.

To complete the proof, let ǫ > 0 be arbitrary and choose 0 < δ ≤ η

such that δ < ǫ/2‖A−1‖op.

Exercises

Exercise 6.4.1. Suppose that D is an n × n diagonal matrix with diagonal en-

tries λ1, . . . , λn. Prove that

‖D‖op = max{|λj| : 1 ≤ j ≤ n}.

Then prove that D is invertible if and only if all the diagonal entries are

nonzero.
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Exercise 6.4.2. For a fixed λ > 0, define the matrix

A =







0 λ 0

0 0 λ

0 0 0






.

Show that ‖A‖op = λ. Also show that I3 − A is invertible even if λ ≥ 1.

Compare this result with Proposition 6.4.2.

Exercise 6.4.3. Suppose that A ∈ M(n, n), B ∈ M(m, n), and C ∈ M(m, m),

and define

X =

(

A 0

B C

)

.

Prove that X is invertible if and only if both A and B are.

Exercise 6.4.4. Complete the outline of the following alternate proof of Propo-

sition 6.4.2. Suppose that A is an n × n matrix with ‖A‖op < 1. Show that the

series
∞

∑
k=0

Ak

is Cauchy in (M(n, n), dop). Therefore this series converges to some matrix

A∗ ∈ M(n, n), and moreover, we have

‖A∗‖op ≤
∞

∑
k=0

‖A‖k
op =

1

1 − ‖A‖op
.

Show further that

(In − A)
m

∑
k=0

Ak = In − Am+1,

and that the righthand side converges to 0 as m → ∞. Conclude that In − A

and A∗ are inverses.
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