
7 Multivariable calculus

We now specialize to Euclidean spaces and consider the calcu-

lus of functions from (Rn, d2), or an open subset thereof, to (Rm, d2).

As we make frequent use of the Euclidean norm, we denote it simply

by ‖ · ‖, instead of ‖ · ‖2, as we have been careful to do until now. Much of what we prove holds for any
norm—or indeed, for any normed vec-
tor space—but our focus is on Euclidean
space.
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7.1 The derivative

Recall that the derivative of the function f : (a, b) → R at the point

c ∈ (a, b) describes how the function f changes near c. The function f

is differentiable at the point c ∈ (a, b) if there is a number f ′(c) ∈ R

such that

lim
h→0

f (c + h)− f (c)

h
= f ′(c).

Unfortunately, this definition of the derivative as the value of a limit is

inherently one-dimensional. However, a slightly different perspective

does generalize. Note that if f ′(c) exists, then its defining limit can be

rewritten as

lim
h→0

f (c + h)− f (c)− f ′(c) · h

h
= 0.

This is then equivalent to

lim
h→0

| f (c + h)− f (c)− f ′(c) · h|
|h| = 0.

It is this version of the derivative that we generalize.
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Definition 7.1.1. Suppose that U ⊆ R
n is open, that c ∈ U, and that

f : U → R
m. Then f is differentiable at c if there is a linear transforma- For every point c ∈ R

n, we have a
derivative D f (c), which is by definition
a linear transformation, thus D f (c)(h)
represents this linear transformation, at
the point c, applied to the vector h.

tion D f (c) : R
n → R

m such that

lim
h→0

‖ f (c + h)− f (c)− D f (c)(h)‖
‖h‖ = 0,

and in this case D f (c) is the derivative of f at c. If f is differentiable at We prove that derivatives are unique
shortly (Proposition 7.1.4), which justi-
fies our calling this the derivative.

every point c ∈ U, then f is called differentiable (on U).

Therefore, if the function f in the above definition is differentiable

at c, then when ‖h‖ is small, we have

f (c + h) ≈ f (c) + D f (c)(h).

Let us consider an example.

Example 7.1.2. Consider the function f : R
2 → R

2 defined by f (x1, x2) = Throughout this chapter, when it is
clear from the context, we frequently
write column vectors as row vectors,
and we suppress the “extra parenthe-
ses” on functions. Strictly speaking, our
f (x1, x2) in this example should be

f

((
x1

x2

))

or f
((

x1 x2

)T
)

.

(x2
1, x1x2). Let c = (c1, c2) be fixed and define A to be the matrix

A =

(

2c1 0

c2 c1

)

.

Given a vector h = (h1, h2) ∈ R
2, we compute that

∥
∥
∥
∥
∥

f

(

c1 + h1

c2 + h2

)

− f

(

c1

c2

)

−
(

2c1 0

c2 c1

)(

h1

h2

)∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

(

h2
1

h1h2

)∥
∥
∥
∥
∥
= |h1|‖h‖.

It follows that f is differentiable at (c1, c2) and that D f (c) = LA, where

LA denotes the linear transformation defined by LA(x) = Ax.

We leave the proof of the following result to the reader as Exer-

cise 7.1.2.

Proposition 7.1.3 (Differentiability implies continuity). Suppose that

U ⊆ R
n is open, that c ∈ U, and that f : U → R

m. If f is differentiable at c,

then f is continuous at c.

We now verify that derivatives are unique.

Proposition 7.1.4 (Uniqueness of derivatives). Suppose that U ⊆ R
n

is open, that c ∈ U, and that f : U → R
m. If S, T : R

n → R
m are linear

transformations and both

lim
h→0

‖ f (c + h)− f (c)− S(h)‖
‖h‖ = 0

and

lim
h→0

‖ f (c + h)− f (c)− T(h)‖
‖h‖ = 0,

then S = T.
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Proof. Let ǫ > 0 be arbitrary. We can find a δ ∈ (0, 1) such that for

every h ∈ R
n with 0 < ‖h‖ < δ, we have c + h ∈ U, and both That we can find a δ > 0 such

that c + h ∈ U whenever ‖h‖ < δ follows
from the fact that U is open and c ∈ U.d2 ( f (c + h)− f (c), S(h)) < ǫ‖h‖

d2 ( f (c + h)− f (c), T(h)) < ǫ‖h‖.

It follows that by the triangle inequality that for every such h,

d2(S(h), T(h)) < 2ǫ‖h‖.

Now let x ∈ R
n be arbitrary. Setting λ = δ/(‖x‖+ 1) > 0, we have

‖λx‖ =
δ‖x‖

‖x‖+ 1
< δ < 1,

so

d2(S(λx), T(λx)) < 2ǫ‖λx‖ < 2ǫ.

This holds for all ǫ > 0, so it follows that we must have S(λx) = T(λx).

Since S and T are both linear transformations and λ > 0, this implies

that S(x) = T(x). Finally, since x ∈ R
n was arbitrary, we have that

S = T, as desired.

Exercises

Exercise 7.1.1. Show, directly from the definition, that the function f : R
2 → R

2

defined by

f (x1, x2) = (x2
1 − x2

2, 2x1x2)

is differentiable (on all of R
2) and compute its derivative at each point. At

which points c does the derivative D f (c) fail to be invertible?

Exercise 7.1.2. Prove Proposition 7.1.3 (differentiability implies continuity).

Exercise 7.1.3. Suppose that A is an m × n matrix and b ∈ R
m. Show that the

function f : R
n → R

m defined by

f (x) = Ax + b

is differentiable and compute D f (c) at every point c ∈ R
n.
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7.2 Directional and partial derivatives

In the previous section we defined the (total) derivative of a function

f : R
n → R

m as the multidimensional analogue of the single variable

derivative. There is another way we might think of extending the sin-

gle variable derivative to multivariable functions, which is to pick a

particular line in R
n and take a derivative of our function along this

line.

This is the notion of a directional derivative, but first we need to

make an observation. Suppose that we have an open set U ⊆ R
n, a

point c ∈ U, and a unit vector u ∈ R
n. Because U is open and c ∈ U,

there is some δ > 0 such that

Nδ(c) ⊆ U.

This implies that

{c + tu : t ∈ (−δ, δ)} ⊆ U,

so U contains an open line segment centered at c.

Definition 7.2.1. Suppose that U ⊆ R
n is open, that c ∈ U, that u ∈ R

n

is a unit vector, and that f : U → R
m. The derivative of f in the direction

u at the point c is defined to be The limit in the definition of directional
derivatives is to be taken in the Eu-
clidean space (Rm, d2).Du f (c) = lim

t→0

f (c + tu)− f (c)

t
,

if this limit exists.

Our only result of this section relates these directional derivatives

to the total derivative.

Proposition 7.2.2. Suppose that U ⊆ R
n is open, that c ∈ U, that u ∈ R

n

is a unit vector, and that f : U → R
m. If f is differentiable at the point c,

then f is also differentiable in the direction u at the point c, and The equality in this proposition states
that the derivative in the direction u is
equal to the (total) derivative of f at the
point c evaluated at u.

Du f (c) = D f (c)(u).

Proof. We would like to show that

lim
t→0

f (c + tu)− f (c)

t
= D f (c)(u).

This is a limit in the Euclidean space (Rm, d2), and it holds if and

only if Recall that we denote the Euclidean
norm by ‖ · ‖ throughout this chapter.

lim
t→0

∥
∥
∥
∥

f (c + tu)− f (c)

t
− D f (c)(u)

∥
∥
∥
∥
= 0.

We are given that f is differentiable at the point c, and thus we have

lim
h→0

‖ f (c + h)− f (c)− D f (c)(h)‖
‖h‖ = 0.



advanced calculus ii 109

If we take h = tu in the above limit, we have ‖h‖ = |t| because u is a

unit vector, and thus we see that

lim
t→0

‖ f (c + tu)− f (c)− D f (c)(tu)‖
|t| = 0.

Finally, we have D f (c)(tu) = tD f (c)(u) because D f (c) is linear, and

thus the limit above implies that the limit that we seek to prove, com-

pleting the proof.

When u is one of the standard basis vectors of R
n, we obtain the

familiar partial derivatives.

Definition 7.2.3. Suppose that U ⊆ R
n is open, that c ∈ U, and that

f : U → R
m. The partial derivative of f with respect to xj at c is the

directional derivative of f in the direction ej at c and is denoted by

Dj f (c).

In the case where m = 1, so that f : R
n → R, it is customary to

write
∂ f

∂xj
(c)

instead of Dj f (c). Of course if f : R
n → R

m, then we can express f as

a column vector of functions with codomain R,

f (x) =












f1(x)

f2(x)

...

fm(x)












,

and then we have

Dj f (c) =













∂ f1
∂xj

(c)

∂ f2
∂xj

(c)

...

∂ fm

∂xj
(c)













.

Exercises

Exercise 7.2.1. Suppose f : R
n → R is differentiable. For a point c ∈ R

n,

find the unit vector u that maximizes Du f (c). This direction is the direction of

maximum increase of f at c. Compare with Exercise ??.
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Exercise 7.2.2. Suppose f : R
3 → R

2 is differentiable at 0 and

D f (0) =

(

1 0 2

3 2 1

)

.

Find the directional derivative in the direction of the vector

v =






3

1

5




 .

Exercise 7.2.3. Suppose that U ⊆ R
n is open and that f : U → R. Define what

it means for f to have a local minimum at a point c ∈ U, and prove that if f has The statement that D f (c) = 0 in Exer-
cise 7.2.3 means that D f (c) is the zero
transformation (the transformation that
maps every vector in R

n to 0 ∈ R). One
way to prove this would be to show that
D f (c)(u) = 0 ∈ R for every unit vector
u ∈ R

n.

a local minimum at c and f is differentiable at c, then D f (c) = 0.

Exercise 7.2.4. Define f : R
2 → R by

f (x, y) =







xy

x2 + y2
if (x, y) 6= (0, 0), and

0 if (x, y) = (0, 0).

Show that the partial derivatives of f exist at the origin, even though f is not

continuous there.

Exercise 7.2.5. Suppose that U ⊆ R
2 is open and that f : U → R. Prove that

if the partial derivatives of f exist and are bounded, then f is continuous.

Exercise 7.2.6. Suppose that U ⊆ R
n is open and connected and that the To start Exercise 7.2.6, one might want

to prove that if Nδ(c) ⊆ U, then f is
constant on Nδ(c). To do this, consider
the single variable function defined by
f (c + tu) for t ∈ (−δ, δ).

function f : U → R is differentiable and satisfies D f (c) = 0 for all c ∈ U.

Prove that f is a constant function.
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7.3 The chain rule

In this section we prove the multivariable chain rule. First though, we

investigate what it should say. Suppose that we have two functions,

f : R
n → R

m,

g : R
m → R

p.

If f is differentiable at the point c ∈ R
n and g is differentiable at the

point d = f (c) ∈ R
m, then the chain rule tells us what the derivative

of their composition g ◦ f : R
n → R

p is at the point c.

Since f is differentiable at c, for small h ∈ R
n we have

f (c + h)− f (c) ≈ D f (c)(h).

Similarly, since g is differentiable at d = f (c), for small k ∈ R
m,

g(d + k)− g(d) ≈ Dg(d)(k).

In order to motivate the formula in the chain rule, suppose momentar-

ily that f and g are both linear functions, and so the approximations

above are actually equalities. Then we would have

g( f (c + h)) = g ( f (c) + D f (c)(h))

= g ( f (c)) + Dg( f (c))
(

D f (c)(h)
)

= g( f (c)) +
(

Dg( f (c)) ◦ D f (c)
)

(h).

Thus if f and g are both linear, then the derivative of the composition

g ◦ f is given by the composition Dg( f (c)) ◦ D f (c).

Since differentiability means that functions can be locally approxi-

mated by a linear transformations, we might hope that this conclusion

holds in general. We just need to quantify and control the approxima-

tions involved.

Theorem 7.3.1 (Chain rule). Suppose that U ⊆ R
n and V ⊆ R

m are open

and that f : U → V and g : V → R
p. If f is differentiable at c ∈ U and g is

differentiable at f (c) ∈ V, then g ◦ f is differentiable at c and

D(g ◦ f )(c) = Dg( f (c)) ◦ D f (c).

Proof. Define d = f (c) and k = f (c + h)− f (c), so d + k = f (c + h).

Ultimately, we seek to show that

∥
∥
∥g(d + k)− g(d)−

(

Dg(d) ◦ D f (c)
)

(h)
∥
∥
∥

‖h‖ → 0
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as h → 0. Thus we need to bound the numerator of this fraction in

terms of ‖h‖. By the triangle inequality, this numerator is at most

∥
∥
∥g(d + k)− g(d)− Dg(d)(k)

∥
∥
∥+

∥
∥
∥Dg(d)(k)−

(

Dg(d) ◦ D f (c)
)

(h)
∥
∥
∥.

We bound these two terms separately. Let ǫ ∈ (0, 1) be arbitrary.

First, because g is differentiable at d, there is some δ > 0 such that Since g is differentiable at d, there is a
linear transformation Dg(d) such that

lim
k→0

‖g(d + k)− g(d)− Dg(d)(k)‖
‖k‖ = 0

if ‖k‖ ∈ (0, δ), then

∥
∥
∥g(d + k)− g(d)− Dg(d)(k)

∥
∥
∥ < ǫ‖k‖.

This bounds one of the terms we are interested in, but we want to

bound it in terms of ‖h‖, not ‖k‖.

Because f is differentiable at c, there is some γ > 0 such that if

‖h‖ ∈ (0, γ), then

‖ f (c + h)− f (c)
︸ ︷︷ ︸

k

−D f (c)(h)‖ < ǫ‖h‖ < ‖h‖.

We can obtain a bound on ‖k‖ from this inequality. By the triangle We have ǫ‖h‖ < ‖h‖ here because ǫ < 1.

inequality, we have

‖k‖ < ‖D f (c)(h)‖+ ‖h‖ ≤
(

1 + ‖D f (c)‖op

)

‖h‖.

From this inequality we obtain two things. First we see that if The ‖D f (c)‖op here is just a constant,
so we have bounded ‖k‖ by a constant
times ‖h‖.

‖h‖ < min

{

γ,
δ

1 + ‖D f (c)‖op

}

,

then we have both ‖h‖ < γ and ‖k‖ < δ, and thus our inequalities

above will hold. Secondly, we see that for such vectors h, we have

∥
∥
∥g(d + k)− g(d)− Dg(d)(k)

∥
∥
∥ < ǫ

(

1 + ‖D f (c)‖op

)

‖h‖,

which gives us the bound in terms of ‖h‖ that we need.

It remains to bound the quantity

∥
∥
∥Dg(d)(k)−

(

Dg(d) ◦ D f (c)
)

(h)
∥
∥
∥.

From the linearity of Dg(d), we see that

∥
∥
∥Dg(d)(k)−

(

Dg(d) ◦ D f (c)
)

(h)
∥
∥
∥ =

∥
∥
∥Dg(d)

(

k − D f (c)(h)
)∥
∥
∥

≤ ‖Dg(d)‖op ‖k − D f (c)(h)‖
< ǫ‖Dg(d)‖op‖h‖,

provided that ‖h‖ < γ. This bounds the second quantity we sought to

bound.
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Combining our two bounds, we see that for

‖h‖ < min

{

γ,
δ

1 + ‖D f (c)‖op

}

,

we have

∥
∥
∥g(d + k)− g(d)−

(

Dg(d) ◦ D f (c)
)

(h)
∥
∥
∥

< ǫ
(

1 + ‖D f (c)‖op + ‖Dg(d)‖op

)

‖h‖.

Since ǫ > 0 was arbitrary, this implies that

lim
h→0

∥
∥
∥g(d + k)− g(d)−

(

Dg( f (c)) ◦ D f (c)
)

(h)
∥
∥
∥

‖h‖ = 0,

proving the theorem.

Exercises

Exercise 7.3.1. Suppose that f : R → R
n and g : R

n → R are differentiable.

Write out the chain rule for g ◦ f explicitly in terms of the partial derivatives

of f and g.

Exercise 7.3.2. Suppose that f , g : R
2 → R

2 are differentiable. Write out the

chain rule for g ◦ f explicitly in terms of the partial derivatives of f and g.
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7.4 The contraction mapping theorem

Definition 7.4.1. Let (X, dX) and (Y, dY) be metric spaces. The func-

tion f : X → Y is Lipschitz continuous if there is a constant c ∈ (0, ∞)

such that for all x1, x2 ∈ X, we have

dY( f (x1), f (x2)) ≤ cdX(x1, x2).

Any constant c ∈ (0, ∞) that satisfies this condition is called a Lipschitz

constant for f . If f has a Lipschitz constant c ∈ (0, 1], then f is called

a contraction. If f has a Lipschitz constant c ∈ (0, 1), then f is called a

strict contraction.

For example, if T : R
n → R

m is any linear transformation, then it is

Lipschitz continuous with Lipschitz constant ‖T‖op, because

‖T(x1)− T(x2)‖ = ‖T(x1 − x2)‖ ≤ ‖T‖op‖x1 − x2‖

for all x1, x2 ∈ X.

Specializing to the real line (with the standard metric), we see that

the function defined by f (x) = |x| is Lipschitz continuous with Lips-

chitz constant 1. Thus it is a contraction. It is not a strict contraction,

however, and it is not everywhere differentiable. The function defined

by f (x) = x + 2 is also a contraction but not a strict contraction. The

function defined by f (x) = x/2 is Lipschitz continuous with Lipschitz

constant 1/2, so it is a strict contraction.

The proof of the following result is left to the reader in Exercise 7.4.1.

Proposition 7.4.2. Let (X, dX) and (Y, dY) be metric spaces. If f : X → Y

is Lipschitz continuous, then it is uniformly continuous.

We are particularly interested in points that are mapped to them-

selves by contractions. Obviously, for there to be any such point, our

function must map a metric space onto itself.

Definition 7.4.3. The point x ∈ X is a fixed point of the mapping

f : X → X if f (x) = x.

When strict contractions have fixed points, they are unique.

Proposition 7.4.4. Let (X, d) be a metric space and f : X → X be a strict

contraction. Then f has at most one fixed point.

Proof. Let f : X → X be a strict contraction and let c ∈ (0, 1) be a

Lipschitz constant for f . If x, y ∈ X are both fixed points, then on the

one hand we have

d( f (x), f (y)) = d(x, y),



advanced calculus ii 115

because f (x) = x and f (y) = y, while on the other hand we have

d( f (x), f (y)) ≤ cd(x, y).

We can only have d(x, y) ≤ cd(x, y) for c ∈ (0, 1) if d(x, y) = 0, which

implies that x = y, as desired.

The result this section is named for shows that if a metric space is

complete, then every strict contraction has a unique fixed point.

Theorem 7.4.5 (Contraction mapping theorem). Let (X, d) be a nonempty

complete metric space and f : X → X be a strict contraction. Then f has a

unique fixed point.

Proof. By our previous result, it suffices to find a fixed point of f . Let

f : X → X be a strict contraction and let c ∈ (0, 1) be a Lipschitz

constant for f . Choose x0 ∈ X arbitrarily, and define a sequence (xn) We may choose a point x0 ∈ X because
we have assumed that X is nonempty.recursively, letting

xn+1 = f (xn)

for each n ≥ 0. For all n ≥ 1, we have

d(xn+1, xn) = d( f (xn), f (xn−1)) ≤ cd(xn, xn−1).

It follows by induction that

d(xn+1, xn) ≤ cnd(x1, x0)

for all n ≥ 0. We can use this inequality to show that the sequence

(xn) is Cauchy. Indeed, for m ≥ n, we have The first inequality here comes from the
triangle inequality for the metric d.

d(xm, xn) ≤
m−1

∑
k=n

d(xk+1, xk)

≤ (cn + cn+1 + · · ·+ cm−1) d(x1, x0)

≤ cn d(x1, x0)

1 − c
.

Since d(x1, x0)/(1 − c) can be viewed as a constant and c < 1, this

inequality implies that (xn) is Cauchy. Because we have assumed that

(X, d) is complete, lim xn = x for some x ∈ X. Finally, because f is

continuous (Proposition 7.4.2), we have that

f (x) = lim
n→∞

f (xn) = lim
n→∞

xn+1 = x,

proving that x is a fixed point, as desired.
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Exercises

Exercise 7.4.1. Prove Propposition 7.4.1: Lipschitz continuity implies uniform

continuity.

Exercise 7.4.2. Define the mapping f : [0, 1] → [0, 1] by f (x) = x − x2, with

the standard metric on [0, 1]. Show that f is a contraction but not a strict

contraction.

Exercise 7.4.3. What does the contraction mapping theorem say when (X, d)

is a discrete metric space? Provide a simple proof of this specialization.
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7.5 Continuous differentiability

Suppose that U ⊆ R
n and that f : U → R

m. We have defined the

(total) derivative of f as a function

D f : U → L(Rn, R
m).

Here we are interested in what it means for this derivative to be con-

tinuous.

Definition 7.5.1. Suppose that U ⊆ R
n is open and that f : U → R

m.

We say that f is continuously differentiable if D f : U → L(Rn, R
m) exists

and is continuous at every point of U.

In the definition above, we interpret L(Rn, R
m) as a metric space

with the metric induced by the operator norm. Thus for D f to be con-

tinuous simply means that for every point c ∈ U and every ǫ > 0, there

is a δ > 0 (possibly depending on c) such that ‖D f (x)− D f (c)‖op < ǫ

whenever x ∈ U satisfies ‖x − c‖ < δ.

On the other hand, if we represent f in terms of its components as

f (x) =







f1(x)
...

fm(x)







,

then if D f (x) exists, its matrix representation is given by






D1 f1(x) · · · Dn f1(x)
...

...

D1 fm(x) · · · Dn fm(x)







.

Thus it is natural to ask how the continuity of D f relates to the conti-

nuity of the partial derivatives Dk fi.

Our first result shows that the continuity of D f implies the conti-

nuity of every directional derivative of f . Recall that we have proved

previously that the directional derivative Du f (x) is equal to D f (x)(u).

Proposition 7.5.2. Suppose that U ⊆ R
n is open and that f : U → R

m

is continuously differentiable. Then for every unit vector u ∈ R
n, the direc-

tional derivative

Du f : U → R
m

is continuous.
The converse of Proposition 7.5.2 is true
too. In fact if all of the partials Dk fi

are continuous, then D f is continuous.
It is a little more work, though, and we
only need this direction to establish the
inverse function theorem.

Proof. Suppose that f is continuously differentiable and let c ∈ U and

ǫ > 0 be given. There is some δ > 0 such that

‖D f (x)− D f (c)‖op < ǫ
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whenever x ∈ U satisfies ‖x − c‖ < δ. Thus for these vectors x, we

have

‖Du f (x)− Du f (c)‖ = ‖D f (x)(u)− D f (c)(u)‖
= ‖ (D f (x)− D f (c)) (u)‖
≤ ‖D f (x)− D f (c)‖op‖u‖
< ǫ,

proving the result.

Our next result requires an additional hypothesis on our domain.

Definition 7.5.3. A subset U ⊆ R
n is said to be convex if for every

x, y ∈ U and every t ∈ [0, 1], the linear combination ty + (1 − t)x also

lies in U.

Note that neighborhoods are convex.

Proposition 7.5.4. Suppose that U ⊆ R
n is open and convex and that

f : U → R
m is differentiable. If the derivative D f satisfies ‖D f (x)‖op ≤ M The condition that D f satisfy

‖D f (x)‖op ≤ M for all x ∈ U is
equivalent to D f being bounded, as a
mapping from U to L(Rn, R

m).

for all x ∈ U, then f is Lipschitz continuous on U with constant M, meaning

that

d2( f (y), f (x)) ≤ M d2(y, x)

for all x, y ∈ U.

Proof. Let x, y ∈ U be arbitrary. Since U is convex, we know that

ty + (1 − t)x ∈ U

for all t ∈ [0, 1], but actually since U is open, there is some δ > 0 so that

this holds for all t ∈ (−δ, 1+ δ). Define the function s : (−δ, 1 + δ) → U

by

s(t) = ty + (1 − t)x,

and let g(t) = f ◦ s : (−δ, 1 + δ) → R
m. Since both f and s are

differentiable, the chain rule implies that g is differentiable and that

Dg(t) = D f (s(t))s′(t) = D f (s(t))(y − x).

Thus

‖Dg(t)‖ ≤ ‖D f (s(t))‖op ‖y − x‖ ≤ M‖y − x‖

for all t ∈ (−δ, 1 + δ).

From the first fundamental theorem of calculus applied to the com-

ponents of g, it follows that

f (y)− f (x) = g(1)− g(0) =
∫ 1

0
Dg(t) dt.
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We would like to claim that

‖ f (y)− f (x)‖ ≤
∫ 1

0
‖Dg(t)‖ dt ≤ M‖y − x‖,

which would complete the proof if we knew we were allowed to move

the norm inside the integral like this. That can be justified, but here is

another way to get what we want.

Viewing x and y as constants, define the function h : [0, 1] → R by

h(t) = 〈 f (y)− f (x), g(t)〉.

We have

h(1)− h(0) = 〈 f (y)− f (x), g(1)〉 − 〈 f (y)− f (x), g(0)〉
= 〈 f (y)− f (x), f (y)〉 − 〈 f (y)− f (x), f (x)〉
= 〈 f (y)− f (x), f (y)− f (x)〉
= ‖ f (y)− f (x)‖2.

We also see that h is differentiable, and

h′(t) = 〈 f (y)− f (x), Dg(t)〉.

Therefore by the single-variable mean value theorem,

h(1)− h(0) = 〈 f (y)− f (x), Dg(ξ)〉

for some point ξ ∈ (0, 1). By the Cauchy–Schwarz inequality and our

hypotheses,

〈 f (y)− f (x), Dg(ξ)〉 ≤ ‖ f (y)− f (x)‖‖Dg(ξ)‖
≤ ‖ f (y)− f (x)‖ · M‖y − x‖.

It follows that

‖ f (y)− f (x)‖2 = |h(1)− h(0)|2 ≤ ‖ f (y)− f (x)‖ · M‖y − x‖,

proving the result.

As a consequence of this result, we see that if f is continuously

differentiable and if c is a point such that D f (c) = 0, then in some

neighborhood of c, f acts as a strict contraction. This follows because

the continuity of D f implies that there is a neighborhood Nδ(c) of c

on which ‖D f (x)‖op < 1/2, and then our previous result shows that

on this neighborhood, f is Lipschitz with constant 1/2.
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7.6 The inverse function theorem

In this section we prove a single theorem.

Theorem 7.6.1 (The inverse function theorem). Suppose that U ⊆ R
n

is open and that f : U → R
n. If f is continuously differentiable on U and

D f (c) is invertible for some point c ∈ U, then there is an open set V ⊆ U

containing the point c such that

(a) f |V : V → f (V) is a bijection,

(b) f (V) is open,

(c) ( f |V)−1 is continuously differentiable, and

(d) D( f |V)−1( f (c)) = (D f (c))−1.

Before we begin the proof, note that the final part of the theorem—

the computation of the derivative of f−1 at the point f (c)—follows

routinely from the other parts of the theorem and the chain rule. If we

know that f−1 exists and is differentiable near f (c), then since f−1 ◦ f

is the identity, the chain rule says that

D( f−1)( f (x)) ◦ D f (x)

is equal to the derivative of the identity (which is also the identity),

and thus

D( f−1)( f (x)) = (D f (x))−1.

To keep our proof of the other parts of the theorem as clean as

possible, we additionally assume that c = 0 and that D f (c) is the

identity transformation. The first assumption is clearly harmless; we

can simply shift the function to make this true. To see that the second

assumption is also harmless, suppose that D f (c) = T. Our assump-

tions imply that T is invertible, so T−1 exists and (as with all linear

transformations) the mapping x 7→ T−1x is continuous and is its own

derivative. Therefore the function x 7→ T−1 f (x) satisfies all of the

hypotheses of the theorem and has derivative equal to the identity.

We are now ready to begin the proof.

Proof of the inverse function theorem. As explained above, we assume that

c = 0 and that D f (0) = I, where I is the identity transformation. We

define the function g by g(x) = x − f (x). Because f is continuously

differentiable, so is g, and we have Here, Dg(0) = 0 means the derivative of
g at the origin is the zero linear trans-
formation (that sends every vector to the
zero vector).

Dg(0) = I − I = 0.

Thus ‖Dg(0)‖op = 0. Since g is continuously differentiable and U is In proving that f is one-to-one on V, we
use only the easier of our two contrac-
tion results, which does not guarantee
the existence of a fixed point, only that
any such fixed point must be unique.
We use the more substantial contraction
mapping theorem, which guarantees a
unique fixed point if the domain is com-
plete, to prove that f (V) is open.

open, there is some open neighborhood of 0 on which ‖Dg(x)‖op < 1/2.
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Let V ⊆ U denote this neighborhood. By Proposition 7.5.4, g is Lip-

schitz continuous on V with constant 1/2, or in other words, g is a

strict contraction on V. Also since ‖Dg(x)‖op < 1/2 for x ∈ V and

f (x) = x − g(x), it follows from Proposition ?? that the linear transfor- Proposition ?? states that if A is an n × n
matrix and ‖A‖op < 1, then In − A is in-
vertible.

mation D f (x) = I − Dg(x) is invertible for all x ∈ V.

To prove (a), it suffices to prove that f |V : V → f (V) is an injection,

since every function is surjective on its range. For any point y ∈ R
n,

define a function gy : V → R
n by

gy(x) = y + x − f (x).

Note that gy(x) = x if and only if f (x) = y. Since we are treating y as a

constant, we have Dgy(x) = Dg(x) for all x ∈ V, so every one of these

functions is a strict contraction on V. Because every strict contraction

has at most one fixed point (Proposition 7.4.4), for every point y ∈ R
n,

there is at most one point x ∈ V such that gy(x) = x. This means that

there is at most one point x ∈ V with f (x) = y, and so f is injective on

V, which is enough to prove part (a) of the theorem.

Now we would like to show that f (V) is open. Let y0 ∈ f (V) be

arbitrary. Since y0 ∈ f (V), there is some x0 ∈ V such that f (x0) = y0.

Since V is open, there is some radius r > 0 such that Here Nr(x0) is the closure of the (open)
neighborhood Nr(x0).

Nr(x0) ⊆ V.

We would like to show that Nr/2(y0) ⊆ f (V), which will prove that

f (V) is open. To this end, fix y ∈ Nr/2(y0), so ‖y − y0‖ < r/2, and let

x ∈ Nr(x0) be arbitrary. By the triangle inequality, we have

‖gy(x)− x0‖ ≤ ‖gy(x)− gy(x0)‖+ ‖gy(x0)− x0‖.

We know that gy is Lipschitz continuous on V with constant 1/2, so

‖gy(x)− gy(x0)‖ ≤ 1

2
‖x − x0‖ ≤ r

2
.

We also have

‖gy(x0)− x0‖ = ‖y + x0 − f (x0)− x0‖ = ‖y − y0‖ <
r

2
.

Together, these two inequalities show that

‖gy(x)− x0‖ < r

for all x ∈ Nr(x0). This means that gy(x) ∈ Nr(x0) whenever x ∈ Nr(x0),

so gy is a strict contraction on Nr(x0). Since Nr(x0) ⊆ R
n is closed, it is Proposition ?? says that a closed subset

of a complete metric space is complete.complete. Therefore the contraction mapping theorem (Theorem 7.4.5)

implies that gy has a unique fixed point. Thus there is some point

x ∈ Nr(x0) for which gy(x) = x, which shows that y ∈ f (V), complet-

ing our proof that f (V) is open.
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It remains only to show that ( f |V)−1 is continuously differentiable.

Committing a slight abuse of notation, we denote ( f |V)−1 simply by

f−1 for the rest of the proof. The harder part of this is simply showing

that f−1 is differentiable. Choose y, y + k ∈ f (V). Thus there exist

x, x + h ∈ V for which y = f (x) and y + k = f (x + h). Let T = D f (x);

we know that T is invertible because we showed at the beginning of

the proof that D f (x) is invertible for all x ∈ V. We would like to

show that the derivative of f−1 exists at the point y and that it is equal

to T−1. To this end we compute that

f−1(y + k)− f−1(y)− T−1(k) = h − T−1(k)

= T−1 (k − T(h))

= −T−1 ( f (x + h)− f (x)− T(h)) .

Thus

‖ f−1(y + k)− f−1(y)− T−1(k)‖
≤ ‖T−1‖op‖ f (x + h)− f (x)− T(h)‖.

This inequality relates the numerators in the definitions of D f (x) and

D( f−1)(y). We only need to bound the denominators. For this we

have

g(x + h)− g(x) = x + h − f (x + h)− x − f (x)

= h − k,

and since gy is Lipschitz continuous on V with constant 1/2, the above

calculation implies that

‖h − k‖ ≤ 1

2
‖(x + h)− x‖ =

1

2
‖h‖.

From the triangle inequality and the inequality above, it follows that

‖h‖ = ‖h − k + k‖ ≤ ‖h − k‖+ ‖k‖ ≤ 1

2
‖h‖+ ‖k‖,

and thus

‖k‖ ≥ 1

2
‖h‖.

Putting everything together, we see that

‖ f−1(y + k)− f−1(y)− T−1(k)‖
‖k‖ ≤ 2‖T−1‖op

‖ f (x + h)− f (x)− T(h)‖
‖h‖ ,

and from this it follows that f−1 is differentiable at y = f (x).

We have now established that f−1 is differentiable on f (V), and

thus as we remarked before the proof, we have

D( f−1)( f (x)) = (D f (x))−1,
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or putting this in terms of y and f−1(y),

D( f−1)(y) = (D f ( f−1(y)))−1.

The righthand side here is the composition of three functions: f−1

followed by D f followed by inversion. We have just shown that f−1 is

differentiable, so it must be continuous. We have assumed that D f is

continuous (because f is continuously differentiable). Finally, we have

proved earlier that inversion is continuous (Proposition ??). Therefore,

since the composition of continuous functions is continuous, D( f−1)

is continuous. This completes the proof of part (c) of the theorem, and

as we have already shown how part (d) follows from first three parts,

the proof of the theorem is complete.

Exercises

Exercise 7.6.1. Consider the function f : R
2 → R

2 defined by For Exercise 7.6.1, note that if xy = ab
and x − y = a − b, then

x2 + y2 = a2 + b2,

and hence both (x, y) and (a, b) are
points of intersection of the same line
and circle.

f (x, y) = (xy, x − y).

Verify that the inverse function theorem applies at the point (1, 1) and find an

open set V containing (1, 1) on which f is injective. Then find ( f |V)−1.

Exercise 7.6.2. In real coordinates, the complex function z 7→ z2 takes the form

f : R
2 → R

2 where f (x, y) = (x2 − y2, 2xy). Prove that if (a, b) 6= (0, 0), then

there is an open set V containing (a, b) such that f (V) is open and f |V : V →
f (V) is a bijection.

Exercise 7.6.3. Let f be the function described in Exercise 7.6.2. For both of

the points (1, 0) and (−1, 0), find a set V that satisfies those conditions and

compute ( f |V)−1.

Exercise 7.6.4. Define the mapping f : R
3 → R

3 by Fixing ρ = 1 in the function of Exer-
cise 7.6.4 gives a mapping g : R

2 → R
3

defined by

g(θ, φ) =





cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)



 .

What is the image of g?

f (ρ, θ, φ) =






ρ cos(θ) sin(φ)

ρ sin(θ) sin(φ)

ρ cos(φ)




 .

What does the inverse function theorem say about f ?
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7.7 The implicit function theorem

The implicit function theorem tells us when a relation can be

used to define a function. The quintessential example is the defining

relation of the unit circle,

x2 + y2 = 1.

Where does this relation define y as a function of x? Certainly not

near the point (1, 0), because in any open set containing this point, the

points on the unit circle fail the vertical line test. The same is true near

the point (−1, 0). On the other hand, near the point (1/2,
√

3/2), the

relation can be used to define y as a function of x, namely

y(x) =
√

1 − x2.

In this case we are able to give an explicit
closed form expression for y(x), but that
is not generally possible, which is why
this is an implicit definition of y.

By defining

f (x, y) = x2 + y2 − 1,

we can view the unit circle as the set

{(x, y) : f (x, y) = 0}.

We observed above that there is some ǫ > 0 so that we can define a

function y : (1/2 − ǫ, 1/2 + ǫ) → R that satisfies y(1/2) =
√

3/2 and

f (x, y(x)) = 0

for all x ∈ (1/2 − ǫ, 1/2 + ǫ).

What is the difference between the point (1/2,
√

3/2) where we can

define such a function y(x) and the point (1, 0) where we cannot define

one? As we will see, the difference between these two points is that

Dy f (1/2,
√

3/2) =
√

3 6= 0 while Dy f (0, 0) = 0.

In the general situation, we have a relation f : R
n+m → R

m, and we

view f as being a function of two vectors, x = (x1, . . . , xn) ∈ R
n and

y = (y1, . . . , ym) ∈ R
m, so

f (x, y) = f (x1, . . . , xn, y1, . . . , ym) ∈ R
m.

Letting f (x, y) = ( f1(x, y), . . . , fm(x, y)), we see that the matrix repre-

sentation of D f at a given point in R
n+m is










∂ f1

∂x1
· · · ∂ f1

∂xn

∂ f1

∂y1
· · · ∂ f1

∂ym
...

...
...

...
∂ fm

∂x1
· · · ∂ fm

∂xn

∂ fm

∂y1
· · · ∂ fm

∂ym










.
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We denote by Dy f the linear transformation in L(Rm, R
m) whose ma-

trix representation is given by the rightmost m columns of this matrix.

Theorem 7.7.1 (The implicit function theorem). Suppose that the func-

tion f : R
n+m → R

m is continuously differentiable and fix a point (a, b) =

(a1, . . . , an, b1, . . . , bm) with f (a, b) = 0. There is nothing special about f (a, b)
equaling 0 ∈ R

m. The implicit function
theorem holds for any level set, where
f (a, b) = c for a constant c ∈ R

m. (Sim-
ply replace f (x, y) by f (x, y)− c in the
statement of the theorem.)

If Dy f (a, b) is invertible, then we can find a neighborhood Nr(a) ⊆ R
n so

that there there is a unique continuous function g : Nr(a) → R
m satisfying

g(a) = b and f (x, g(x)) = 0 for all x ∈ Nr(a). Moreover, Nr(a) can

be chosen in such a way that this unique continuous function g is in fact

continuously differentiable.

Proof. We prove the theorem by applying the inverse function theorem

to the function F : R
n+m → R

n+m defined by

F(x, y) = (x, f (x, y)),

where x ∈ R
n and y ∈ R

m. Note that

F(a, b) = (a, f (a, b)) = (a, 0).

Our hypotheses imply that f is differentiable. It follows that F is

differentiable as well and that the matrix representation of the deriva-

tive of F is given by the block matrix

(

In 0

Dx f Dy f

)

.

Indeed, our hypotheses tell us that f is continuously differentiable,

and it follows that F is also continuously differentiable (Exercise 7.7.4).

From the matrix representation of DF(a, b) and the fact that Dy f (a, b)

is invertible, we see that DF(a, b) is invertible (Exercise ??). Therefore

F satisfies all of the hypotheses of the inverse function theorem, so

there is an open set V ⊆ R
n+m containing the point (a, b) such that

(a) F|V : V → F(V) is a bijection,

(b) F(V) is open,

(c) (F|V)−1 is continuously differentiable, and

(d) D(F|V)−1(F(a, b)) = D(F|V)−1(a, 0) = (DF(a, b))−1.

Since F(V) is open and contains the point F(a, b) = (a, 0), there is

some radius r > 0 so that

Nr((a, 0)) ⊆ F(V).

This implies that for every x ∈ Nr(a) ⊆ R
n, we have (x, 0) ∈ F(V).

This means that for each such x, there is some vector yx ∈ R
m with

(x, yx) ∈ V and f (x, yx) = 0. Indeed, since F|V is a bijection between

V and F(V), if x ∈ Nr(a), then this vector yx is unique (otherwise,

(x, 0) would have multiple preimages).
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Therefore, we can define the function

g : Nr(a) → R
m

by g(x) = yx, where yx is the unique vector in R
m satisfying (x, yx) ∈ V

and F(x, yx) = (x, 0). We can express the function g symbolically as

g(x) = projy

(

(F|V)−1(x, 0)
)

,

where projy denotes the projection of a vector in R
n+m onto its last m

coordinates. This expression shows that g is the composition of three

continuously differentiable functions: the inclusion mapping x 7→ (x, 0),

the function (F|V)−1, and finally the projection mapping (x, y) 7→ y. It

follows that g is continuously differentiable.

It remains only to establish the uniqueness of g. Let h : Nr(a) → R
m For an example of the uniqueness is-

sues we are considering here, think back
to the unit circle. Say that we choose
(a, b) = (1/2,

√
3/2) and Nr(a) = (1/3, 2/3).

(So r = 1/6.) Then there are a lot of
choices of some function g : Nr(a) → R

m.
We must have g(1/2) =

√
3/2, but then

for every point x ∈ Nr(a) \ {a}, we
may choose either g(x) =

√
1 − x2 or

g(x) = −
√

1 − x2. However, there is
only one way to choose a continuous
function g that satisfies the desired con-
ditions.

be any continuous function that satisfies h(a) = b and f (x, h(x)) = 0

for all x ∈ Nr(a). Our proof shows that if (x, h(x)) ∈ V, then since F|V
is a bijection between V and F(V), h(x) must equal g(x). However, we

need to worry that we might have (x, h(x)) /∈ V.

Define the set

A = {x ∈ Nr(a) : g(x) = h(x)} = (g − h)−1({0}).

The set A is closed in the space (Nr(a), d2), because it is the preimage

of a closed set under a continuous function (Exercise ??). The set A

is also open in the space (Nr(a), d2), because if h(x0) = g(x0), then

that means that (x0, h(x0)) = (x0, g(x0)) ∈ V, and since V is open and

h is continuous, we must then have (x, h(x)) ∈ V for all x in some

neighborhood of x0, which implies that h(x) = g(x) for these values

of x.

This shows that A is clopen in the space (Nr(a), d2), but we know

that (Nr(a), d2) is connected (Exercise ??), so its only clopen subsets

are itself and the empty set (Proposition ??). Clearly A 6= ∅, because

a ∈ A, so it must be that A = Nr(a), which implies that g and h are

identical and completes the proof.

Exercises

Exercise 7.7.1. Using the conclusion of Exercise 7.7.5 to show that yz = log(x + z)−
log(3) defines z as a function of (x, y) near the point (2, 0, 1), and find ∂z/∂x

at this point.

Exercise 7.7.2. Consider the folium of Descartes, described implicitly as Exercise 7.7.2 shows that it is possible (in
principle) to solve for y as a function of x
or x as a function of y near any point on
the folium of Descartes, except possibly
at the origin. (And a plot shows that this
relation is certainly not the graph of a
function near the origin.)

f (x, y) = x3 + y3 − 3axy = 0,

for a fixed parameter a > 0. Show that the implicit function theorem says

that f is locally the graph of a function for any point (x0, y0) 6= (0, 0) with

f (x0, y0) = 0.
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Exercise 7.7.3. The parabolic folium is described implicitly as

x3 = a(x2 − y2) + bxy

for fixed parameters a, b > 0. What does the implicit function theorem say

about this curve?

Exercise 7.7.4. Prove the fact used in the proof of the implicit function theo-

rem that if f : R
n+m → R

m is continuously differentiable, then the function

F : R
n+m → R

n+m defined by F(x, y) = (x, f (x, y)) is also continuously dif-

ferentiable (where here, as in that proof, x ∈ R
n and y ∈ R

m).

Exercise 7.7.5. Suppose that f = f (x, y, z) : R
3 → R is continuously dif-

ferentiable. Show that if f (a, b, c) = 0 and
∂ f
∂z (a, b, c) 6= 0, then the relation Exercise 7.7.5 is implicit differentiation.

Note that the necessary assumption that
∂ f
∂z (a, b, c) 6= 0 is sufficient to establish
that, at least locally, z is indeed a func-
tion of x and y. (An issue that is not di-
rectly addressed in most calculus texts.)

f (x, y, z) = 0 defines z = g(x, y) near the point (a, b, c). Show further that

∂g

∂x
(a, b) = −

∂ f
∂x (a, b, c)
∂ f
∂z (a, b, c)

.

Exercise 7.7.6. The point (x, y, u, v, w) = (1, 1, 1, 1,−1) ∈ R
5 satisfies the sys-

tem of equations

u5 − xv2 + y + w = 0

v5 − yu2 + x + w = 0

w4 + y5 − x4 − 1 = 0.

Explain why there is an open set U ⊆ R
2 containing the point (x, y) = (1, 1)

and continuously differentiable functions

u(x, y), v(x, y), w(x, y) : U → R

such that u(1, 1) = 1 = v(1, 1), w(1, 1) = −1, and so that the point

(x, y, u(x, y), v(x, y), w(x, y))

satisfies the system of equations for all (x, y) ∈ U.

Exercise 7.7.7. What can you say about solving the system

x2 − y2 + 2u3 + v2 = 3

2xy + y2 − u2 + 3v4 = 5

for (u, v) in terms of (x, y) near the point (x, y, u, v) = (1, 1, 1, 1)?
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