Homework \#2

1 Let S denote the sector in the complex plane defined by $r \leq 1$ and $0 \leq \theta \leq \pi / 4$. Sketch the regions onto which S is mapped by the following functions. No reasoning is required, just the sketches.
(a) $f(z)=z^{2}$.
(b) $f(z)=z^{3}$.
(c) $f(z)=z^{4}$.

There are many theorems which make computing limits easier. However, when a question asks you to compute a limit from the definition, that means that to show that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

you must show that for every positive real number $\varepsilon>0$, there is another positive real number $\delta>0$ such that

$$
\left|z-z_{0}\right|<\delta \quad \text { implies } \quad\left|f(z)-w_{0}\right|<\varepsilon
$$

2 Using only the definition, show that $\lim _{z \rightarrow z_{0}} \operatorname{Re} z=\operatorname{Re} z_{0}$.
3 Let a and b denote arbitrary complex constants. Using only the definition, show that $\lim _{z \rightarrow z_{0}}(a z+b)=a z_{0}+b$.

