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One new idea leads to another, that to a third, and so on through a
course of time until someone, with whom no one of these is original,
combines all together, and produces what is justly called a new inven-3

tion.1

1 INTRODUCTION

This chapter will discuss the development of inner models for large cardinals during6

the last part of the last century, beginning at the end of Kanamori’s chapter
[Kanamori, 2010b], which is to say at about 1965. There are two major themes
in this development: The first of these is the expansion of Gödel’s class L of9

constructible sets to obtain L-like models of ZFC which are capable of containing
any larger cardinals existing in the universe, and the second is the development of
core model theory, which provides the possibility of proving that the universe is12

well approximated by such a model.
The main part of the chapter is accordingly divided into two themes. The first

is in Section 2, which describes the process of incorporating large cardinal prop-15

erties into the constructibility paradigm, and the discovery of strong uniqueness
properties of the resulting models, allowing the class of large cardinals to be seen
as a well-ordered extension of the ordinals.18

The second theme is begun in Section 3, which describes the evolution of com-
binatorial principles in L, leading through the development of fine structure to
the discovery of the Covering Lemma. The generalization of this development21

into a core model theory for larger cardinals is described in section 4. The two
themes merge in section 5, which describes the extension of the models to the level
of Woodin cardinals, where the models involved rely on fine structure and other24

techniques of core model theory, even when the maximality implied by the core
model is not assumed.

Section 1 provides an introduction, which discusses the basic concepts of con-27

structibility, on the one hand, and of large cardinals, on the other, as they were
understood prior to the start of the main narrative. Both of these topics are cov-
ered more fully in other chapters of this volume: constructibility in [Kanamori,30

2010b] (also see [Kanamori, 2007]) and large cardinals in [Kanamori, 2010a].

1Thomas Jefferson, quoted in Bedini, ”Godfather of American Invention” 82
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1.1 Constructibility

According to Kanamori [Kanamori, 2010b], “An inner model is a transitive class
containing all the ordinals such that, with membership and quantification re-3

stricted to it, the class satisfies each axiom of ZF.” If we restrict consideration
to definable classes, we have three principal examples. The first example is the
universe V which, although not generally thought of as an inner model, does sat-6

isfy the definition; and it also provides, via the cumulative hierarchy defined by
von Neumann in 1929, the beginnings of the structural analysis which will be seen
in other inner models to be discussed.9

The second example of an inner model is the class of hereditarily ordinal de-
finable sets (HOD) which was introduced independently by several people to give
an easier proof of the consistency of the Axiom of Choice. The model HOD has12

no intrinsic structure: the cumulative hierarchy in V is needed to to see that the
class HOD is even definable, and moreover the formula defining it is not absolute,
so that the model HOD(HOD), that is, the model HOD as defined inside HOD,15

may well be a proper subclass of HOD. Its primary use has been to produce, with
the help of forcing, models which do not satisfy the Axiom of Choice. However, a
precursor to the core model and covering lemma can be seen in Vopěnka’s theorem18

[Vopěnka and Hájek, 1972] stating that any set of ordinals is in a generic extension
of HOD. The theme of HOD as a core model has recently been investigated; see,
for example, [Steel, 1995].21

The third example of an inner model, and the prototype of the models with
which this chapter is concerned, is Gödel’s class L of constructible sets, intro-
duced in [Gödel, 1938; Gödel, 1939; Gödel, 1940]. The model L is defined using a24

hierarchy like that of the first example, but the hierarchy incorporates definability
by modifying the successor step to Lα+1 = def(Lα) where def(X) is the set of
subsets of x which are first-order definable over the model (X,∈), using parame-27

ters from X. In this case the definability is restricted to the emerging class being
defined, and hence the definition of the class L is independent of the universe in
which it is being defined. Thus the class L is minimal in the sense that it is con-30

tained in any model of ZF which contains all of the ordinals. A simple induction
shows that it satisfies the Axiom of Choice and that |Lα| = |α| for all infinite or-
dinals α. To prove the Generalized Continuum Hypothesis (GCH) it then suffices33

to show that P(κ) ⊆ Lκ+ for every cardinal κ. This is a consequence of what has
become known as the principle of condensation:

LEMMA 1 Condensation. Suppose that α is an ordinal and X ≺ Lα. Then36

X ∼= Lᾱ for some ordinal ᾱ ≤ α.

This principle is one of the major themes in the developments described in this
chapter.39
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Relative Constructibility

Relative constructibility was introduced independently by Hajnal [Hajnal, 1956;
Hajnal, 1961] and Levy [Levy, 1957; Levy, 1960], who gave definitions which were3

equivalent in their original applications, but are quite different in general. Hajnal
modified the definition of L to define L(A), where A is an arbitrary transitive set,
by setting L0(A) = A. Thus L(A) is the smallest model of ZF which contains6

A ∪ {A}. The model L(A) need not satisfy the Axiom of Choice, and indeed is
most commonly used in applications where the Axiom of Choice does not hold.

Levy definition of L[A], on the other hand, retained from L the definition of9

L0[A] = ∅, and instead modified the successor step, defining Lα+1[A] = def(Lα[A], A),
the set of subsets definable in Lα[A] with parameters from Lα[A] and the predicate
A. Thus L[A] is the smallest model M of ZF which has A ∩M as a member, and12

L[A] always satisfies the Axiom of Choice; however A is not, in general, a subset
of L[A]. The model L[A] can be viewed as the smallest model which contains the
structure of the set A, and since this chapter is concerned with models including15

large cardinal structure, essentially all models discussed will be of this type.
In both cases the definability of the model requires the use of A as a parameter.

For this reason, the condensation principle, Lemma 1, is severely weakened. It18

is, in general, valid for L(A) only in the case that A ⊆ X. For L[A] there is the
general statement

LEMMA 2. Suppose π : M ∼= X ≺ Lα[A] is the inverse of the the transitive21

collapse of X. Then M = Lᾱ[Ā] for some ordinal ᾱ ≤ α, where Ā = π−1[A ∩X].
In particular, if Ā = A ∩ Lā[Ā] then X ∼= Lᾱ[A].

Levy originally applied this condensation principle in cases in which the set A24

is contained in a transitive subset of X, so that A = Ā. Using this he could prove,
for example, that if A ⊆ κ then 2λ = λ+ in L[A] for all λ ≥ κ. The successful
application of models of the form L[A] to large cardinal theory has come from27

choosing the set A to encode the large cardinal structure, and then using that
structure to see that Ā = A ∩ Lᾱ[Ā] holds even in cases that π is not the identity
on A.30

In the model L[A] the set A is being regarded as providing structure. If U is a
ultrafilter on a cardinal κ, for example, then the model L(U ∪{U}) would include
all subsets of κ, whether or not they have any relation to measurability. The model33

L[U ], on the other hand, contains only those subsets of κ which are required by
the possibility of using U as a predicate. As will be seen, these are exactly the
sets which are required by the existence of any measure on κ.36

1.2 Large Cardinals

Of the large cardinals properties known at the start of this history, two will dom-
inate it: measurability and supercompactness.39

Measurable cardinals were introduced by Ulam [Ulam, 1930], but we will use
the later formulation in terms of elementary embeddings and normal ultrafilters:
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A cardinal κ is measurable if there is an elementary embedding i : V → M into
a well-founded model M with critical point κ, that is, such that i(κ) > κ, but
i(ν) = ν for all ν < κ. The normal ultrafilter, or measure, associated with this3

embedding is U = {x ⊆ κ : κ ∈ j(x) }. The measure U in turn leads to an
embedding via the ultrapower construction, iU : V → Ult(V,U).

The concept of a measurable cardinal will serve as both a goal and a benchmark.6

The first part of the story will largely concern the effect which the presence of a
measurable cardinal has on the constructible universe L, and the understanding
of the minimal model L[U ] containing a measurable cardinal. The rest of the9

story will concern the generalization of this model and associated techniques to
accommodate larger cardinals.

A number of large cardinals weaker than a measurable cardinal were known at12

the start of this history: these include inaccessible, Mahlo, and weakly compact
cardinals. The most important for our purposes are Ramsey cardinals, which
satisfy the partition relation κ → (κ)<ω2 and their generalization the α-Erdős15

cardinals, which satisfy the partition relation κ→ (α)<ω2 .

Supercompact cardinals were introduced, at the start of the period of this his-
tory, by Reinhardt and Solovay although they were only published later in [Solovay18

et al., 1978]: a cardinal κ is λ-supercompact if there is an elementary embedding
i : V → M with critical point κ such that λM ⊆ M , and is supercompact if it
is λ-supercompact for all λ. In contrast to measurable cardinals, it enters this21

history only as a goal: as this is being written, there is still no fully developed
L-like model for even a κ+-supercompact cardinal.

Given this fact, it is natural to ask about cardinal properties intermediate be-24

tween measurable cardinals; at the start of this history, however there were, with
one possible exception, no such cardinals. The possible exception is a strongly
compact cardinal. This notion was defined by Tarski [Tarski, 1962] using infini-27

tary logic but characterized by Reinhardt and Solovay as being supercompactness
without normality: that is, with the condition λM ⊆M replaced by the covering
property ∀x ∈ [M ]λ∃y ∈ M (x ⊆ y ∧ |y| < j(κ)). It is conjectured that having30

a strongly compact cardinal is equiconsistent with having a supercompact cardi-
nal, and proving this has been described as the holy grail problem of inner model
theory.33

A number of intermediate large cardinal properties have since been discovered,
and will be described in due course. Most of these are modifications either of mea-
surability or of supercompactness, but one exception is worth mentioning here:36

Woodin cardinals, discovered in 1984, have come to have an independent impor-
tance comparable to that of measurable and supercompact cardinals.
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2 DEVELOPMENT OF INNER MODELS WITHOUT FINE STRUCTURE

2.1 Large cardinals in L

The study of L-like models for large cardinals naturally starts with L itself. Gödel3

[Gödel, 1938] observed that any inaccessible or Mahlo cardinal in V has the same
property in L, simply because these properties are downward absolute to any inner
model. After the discovery of weakly compact cardinals it was quickly realized that6

they too are downward absolute to L, by a more complicated argument. The same
was true of several related stronger properties.

The study of inner models for larger cardinals can be said to have started with9

Dana Scott’s proof in [Scott, 1961] that there cannot be any measurable cardi-
nals in L, by observing that otherwise there would be an elementary embedding
iU : L→M = Ult(L,U) in M such that i(κ) > κ, where κ is the least measurable12

cardinal in L. This is impossible because M , as an inner model of the minimal
model L, must be equal to L; but M satisfies the sentence asserting that i(κ) is
the least measurable cardinal.15

The response to Scott’s observation took two directions. The first direction,
which concentrated on the model L in order to further characterizing the conse-
quences of the existence in V of a measurable cardinal, led to Silver’s discovery of18

0#. The other direction developed the model L[U ] as the minimal model, anal-
ogous to L, which contains a measurable cardinal. These two approaches use
many of the same techniques, and they eventually merged in Dodd and Jensen’s21

construction of the core model.

2.2 What a measurable cardinal says about L

Scott’s result was followed up in the model L by Gaifman [Gaifman, 1974] and24

Rowbottom [Rowbottom, 1971]. Gaifman, working in 1963, realized that the
ultrapower embedding used by Scott could be iterated, and in the next year he
realized that this iteration could be carried out using a countable elementary27

substructure of an appropriate Vλ. This showed, for example, that every cardinal
of V is inaccessible in L. Rowbottom obtained similar results using partition
properties. He reproved an earlier result of Erdős and Hajnal that any measurable30

cardinal is a Ramsey cardinal, If U is a measure on κ and f : [κ]<ω → λ for
λ < κ then there is a set A ∈ U such that f is constant on [A]n for each n ∈ ω.
He then used this to show that κ is what came to be known as a Rowbottom33

cardinal, which is a cardinal κ with the following property: Suppose that (κ,A, . . . )
is any structure with universe κ, that ρ is a cardinal less than κ, and A ⊆ κ with
ρ < |A| < κ. Then there is a set X ⊆ κ with ρ ⊆ X and |X ∩ A| = ρ such that36

(X,A∩X, . . . ) ≺ (κ,A, . . . ). He then used condensation to show that this implies
that every successor cardinal of V is inaccessible in L.

This analysis of the structure of L in the presence of a measurable cardinal
took its final form with Silver’s discovery of 0#. He observed that starting from a
Ramsey cardinal, or even an ω1-Erdős cardinal, one could obtain an uncountable
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set of indiscernibles for L, that is, a set of ordinals A such that any two finite
increasing sequences of members of A of the same length satisfy the same formulas
in L. Using the condensation property of L, together with model theoretic methods
of Ehrenfeucht and Mostowski, he then showed that any such set could be extended
to a proper class I of indiscernibles with the property that every set x ∈ L is
definable in L using only parameters from I. Furthermore, he noted that if the
class I of indiscernibles is chosen so that its ωth member is as small as possible,
then the class I would be closed and unbounded, and hence uniquely determined.
Finally he defined the set 0# ⊆ ω to be

0# = { pφ(x0, . . . , xn−1)q : L |= φ(c0, . . . , cn−1) } (1)

and showed that 0# can be used to construct, and can be constructed from, the
class I of indiscernibles. This class has since become known as the class of Silver
indiscernibles.3

Solovay independently discovered the set 0#, and observed that the singleton
{0#} is Π1

2-definable over the reals, and thus 0# is a ∆1
3 subset of ω which is not

constructible.6

The existence of 0# has three important consequences. (i) The set {0#} is
definable over the real numbers, by a Π1

2 formula which describes the process of
obtaining I from 0#. (ii) It takes the results of Rowbottom and Gaifman to a9

natural conclusion: if α is any member of I, and in particular any uncountable
cardinal of V , then α is, in L, inaccessible and weakly compact—indeed α has
every large cardinal property which can hold in L. (iii) It implies that there is12

a nontrivial elementary embedding L → L. Indeed every increasing embedding
from I into I can be extended to an elementary embedding from L into L, and
every elementary embedding i : L→ L is determined by its restriction to the class15

I. This analysis was rounded out by Kunen, who proved that the existence 0#

follows from the existence of any nontrivial embedding i : L→ L.
Other work of Silver reinforced the view that the existence of 0# is the weak-18

est large cardinal property not compatible with L. He noted that although the
existence of 0#, and hence V 6= L, follows from that of an ω1-Erdős cardinal, any
cardinal which is α-Erdős for any ordinal — or even all ordinals — less than ω121

has the same property in L [Silver, 1970].
It is evident that the same analysis which gave 0# can be carried out for any set

a ⊆ ω, by defining a# to be the theory of a closed unbounded class of indiscernibles24

for the structure (L[a],∈, a). In particular the sharp construction can be iterated:
setting 0α# = 〈 0ν# : ν < α 〉# for any countable ordinal α. This construction gives
the beginning of a hierarchy of inner models, L[〈 0α# : α < θ 〉]. The case when θ27

is equal to ω1 in the resulting model gives a minimal model for the statement that
a# exists for all reals a, which is the correct hypothesis for many results giving
consequences for the continuum of the existence of a measurable cardinal. For30

example, results of Martin and Solovay [Martin and Solovay, 1969], including the
Σ1

3-absoluteness result, follow from this hypothesis.
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2.3 L[U ]

The other direction, defining a model analogous to L with a measurable cardinal,
was initiated by Solovay. If U is a measure on a cardinal κ then it is easy to see3

that U ∩L[U ] ∈ L[U ], and that U ∩L[U ] is a measure on κ. In addition, the same
arguments as were used for L can be used to show that L[U ] satisfies the axioms
of ZFC.6

Condensation, however, is more problematic. It was straightforward to show
that it holds for any set X ≺ L[U ] such that κ ⊆ X and it follows that L[U ] |=
2λ = λ+ for all λ ≥ κ. Solovay also showed that κ is the only measurable cardinal9

in L[U ].
Condensation does not hold for arbitrary sets X ≺ Lα[U ]; however in [Silver,

1971] Silver extended Gödel’s proof that 2λ = λ+ in L to cardinals λ < κ in L[U ]12

by using Rowbottom’s theorem [Rowbottom, 1971] to find, for each x ⊆ λ in L[U ],
a set X ≺ La[U ] with X ∩ κ ∈ U and λ ∪ {x} ⊆ X but | P(λ) ∩ X| = λ. Then
condensation does hold for such X: if π : Lᾱ[Ū ] ∼= X is the transitive collapse then15

{λ ∈ κ : π(λ) = λ } ∈ U and hence Ū = π−1[U ∩X] = U ∩Lᾱ[U ]. This is precisely
what is needed to show that L[U ] |= 2λ = λ+.

The final step towards establishing L[U ] as a close analog of the model L was18

taken by Kunen in his thesis [Kunen, 1970], which adapted from Gaifman the use
of iterated ultrapowers. The thesis began by refining Gaifman’s theory of iterated
ultrapowers. He defined an M -ultrafilter on a transitive model M of set theory21

to be an ultrafilter U , not necessarily a member of M , on P(κ) ∩M such that
X ∩ U ∈ M whenever X ∈ M and |X|M = κ, and he showed that this property
sufficed for the construction of an iterated ultrapower Ultα(M,U).24

He then turned to the model L[U ], showing that if the models L[U ] and L[U ′]
satisfy that U and U ′, respectively, are measures on the same cardinal κ, then
L[U ] = L[U ′] and U ∩ L[U ] = U ′ ∩ L[U ].27

It follows that U ∩L[U ] is the only measure in L[U ], and that L[U ] is a definable
subset of any class model of ZFC + “κ is a measurable cardinal”.o GCH fails at
a measurable cardinal κ, or that every κ-complete filter can be extended to an30

ultrafilter.
Kunen’s hypothesis, that there were fewer than measurably many measurable

cardinals, was not by any means a rigid limit on the effectiveness of his techniques;33

however longer sequences of measures did entail additional complications, and a
new framework was needed to deal with these complications in a general way. This
framework came out of consideration of a much less important question: how many36

different measures could a single cardinal carry? Kunen showed that the model
L[U ] had only one measure, and Kunen and Paris had presented in [Kunen and
Paris, 1970/1971] a model in which there are 22κ measures, the maximum possible.39

However no model was known with any intermediate number of measures, and
they ended their paper with the following question: “Can the number of normal
ultrafilters on a measurable cardinal be intermediate between 1 and 22κ? Can this42

number be 2?”
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Kunen gave an inductive proof in [Kunen, 1970] that every measurable cardinal
has a measure concentrating on smaller nonmeasurable cardinals: Suppose that
for each measurable cardinal λ < κ we have such a measure Uλ on λ, and let U3

be a measure on κ which does concentrate on smaller measurable cardinals. Then
there is a second measure on κ, concentrating on nonmeasurable cardinals, can be
defined by setting Uκ = {x ⊆ κ : {λ < κ : x ∩ λ ∈ Uλ } ∈ U }, or equivalently6

Uκ = i(〈Uλ : λ < κ 〉)κ. Seeing this Mitchell, then finishing up his graduate
work at Berkeley, asked whether there could be a model in which these are the
only two measures on κ? It should be noted that the model L[U,Uκ] would not9

do: this would be equal to L[U ], since the measures U and Uκ would agree on
every set constructed using them as predicates. Two years later, driving back to
Berkeley for the summer after a digression into category theory, he realized how to12

construct such a model. In [Mitchell, 1974] he defined an order on the ultrafilters
on κ, by saying that U / U ′ if U ∈ Ult(V,U ′). Thus, for example, Uκ / U in
Kunen’s example discussed above. By an argument like that which Scott had used15

to prove that there are no measurable cardinals in L, Mitchell showed that the
partial order / is well-founded, and this fact allowed a definition of the order of a
measure, o(U) = sup{ o(U ′)+1 : U ′ /U }, and of a cardinal, o(κ) = sup{ o(U)+1 :18

U is a measure on κ }. He then defined a coherent sequence of ultrafilters to be a
function U , with domain of the form { (κ, β) : β < oU (κ) } for some function oU ,
which witnesses that o(U(κ, β)) = β in the sense that iU(κ,β)(U)(κ, α) = U(κ, α)21

for all α < β < oU (κ), and he showed that if U is a coherent sequence then many of
the basic properties of L[U ] can be extended to L[U ]. In particular, L[U ] is a model
of ZFC + GCH, and the only normal measures in L[U ] are the sets U(κ, β)∩L[U ]24

with β < oU (κ). Thus, provided suitable coherent sequences could be found, this
construction provided models with any desired number δ of normal measures on
a cardinal κ, with 0 ≤ δ ≤ κ++. Since the models satisfied GCH, this was the27

maximum possible number of measures.

For any finite n it was easy, if given a cardinal κ with o(κ) ≥ n, to find a
coherent sequence U with oU (κ) = n. This gave models which exactly n measures,30

for any finite n. Finding coherent sequences with oU (κ) infinite was more difficult.
Mitchell used what he later termed a µ-measurable cardinal to obtain sequences
with o(κ) = λ for any λ ≤ κ++. It is a commentary on the changes which our33

picture of large cardinals has changed that the smallest cardinal property generally
known at the time which implied the existence of a µ-measurable cardinal —
which is barely stronger than ∃κ o(κ) = κ++ — was supercompactness. Later36

it was determined that ∃κ o(κ) = κ++ in V was sufficient: first by using core
model theory but later, in [Mitchell, 1983], with more elementary methods: If
o(κ) = δ then there is an inner model L[U ] in which either oU (κ) = δ or else39

oU (κ) = κ++L[U ]
< δ. This was achieved by using a sequence U which might not

be fully coherent in V : instead the measures on the sequence U were only required
to have the correct order. In L[U ] the sequence becomes fully coherent, because42

no set is constructed in L[U ] which would witness a failure of coherence. This
concept was independently discovered by A. Dodd and has come to be used as an
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important tool, referred to as Doddages, in core model theory.

Iterating the Least Difference

The essential tool in the analysis of L[U ] was a generalization of Kunen’s use of3

iterated ultrapowers which has come to be known as the process of iterating the
least difference. This process is central to the development of inner model theory,
and it seems appropriate to describe it a bit more fully so as to have a framework6

for discussing how its use has influenced the development of inner models. To this
end we will give a brief sketch of the proof of a simple application: every measure
in L[U ] is a member of the sequence U .9

Supposing the contrary, we may assume that U is the shortest sequence for
which is the assertion to be proved is false, and κ is the smallest cardinal for
which there is a measure W in L[U ] which is not on the sequence U .12

The proof uses a comparison of L[U ] with the ultrapower Ult(L[U ],W ) of that
model by the supposed extraneous ultrafilter W . The comparison is made by an
iterated ultrapower of the two models,

i0,θ : L[U ]

iW

��

M0
i01 // M1

i12 // · · · Mθ

j0,θ : Ult(L[U ],W ) N0
j01 // M1

j12 // · · · Nθ

(2)

The term “iterating the least difference” describes the way the iterated ultrapowers
i0 and i1 are defined: at stage ν we have Mν = L[i0ν(U)] and Nν = L[j0ν ◦ iW (U)].
The next models Mν+1 and Nν+1 in the sequence are defined by simply identifying15

the first ultrafilter occurring in one of the sequences i0ν(U) and j0νi
U (U) which

does not occur in the other, and taking the ultrapower of that model by that
ultrafilter. A crucial fact, the proof of which we skip over, is that this process18

always terminates, with one of the models Mθ and Nθ being an initial segment of
the other.

Now we can conclude the proof of the statement: we want to show that the
ultrafilter W , supposedly not on the sequence U , is in fact equal to the first
ultrafilter used in the iterated ultrapower i0θ. It can be shown that this ultrafilter
is on κ; write it as U = U(κ, β), so i01 = iU . Now suppose to the contrary that
U 6= W , and let x be the first subset of κ on which W and U disagree. The
argument is concluded by showing that

x ∈ U ⇐⇒ κ ∈ iU (x) = i01(x) ⇐⇒ κ ∈ i0φ(x) (3)

x ∈W ⇐⇒ κ ∈ iW (x) ⇐⇒ κ ∈ j0φ ◦ iW (x) (4)

and noting that the whole construction, and in particular the set x, is definable in21

L[U ], so that i0θ(x) = j0,θ ◦ iW (x). Hence W = U .
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This concludes the proof of the assertion that there are no measures in L[U ]
other than those on the sequence U . We now isolate, for future reference, three
factors which are necessary to the success of this argument:3

Iterability. All iterated ultrapowers of L[U ], and in particular the final models
Mθ and Nθ in the comparison, are well-founded.

Equal comparison. The final models of the iteration are equal: neither of Mθ6

or Nθ is a proper initial segment of the other.

No moving generators. None of the critical points of ultrafilters used in the
iterated ultrapowers of diagram (2) are moved by later ultrapowers in the same9

iteration.

Two of these terms, iterability and moving generators, are standard. For the
models currently under consideration, iterability can be insured by using countably12

complete ultrafilters: either, as in this case, countably complete in L[U ] or, in the
case of a proof where the iteration is not definable in L[U ], countably complete
in V . Later, for larger cardinals, other methods became necessary. At the time of15

writing, iterability is still the principal limiting factor for the provable existence
of inner models.

In the proof of x ∈ U ⇐⇒ x ∈ W sketched above, the lack of moving18

generators was used only with respect to the critical point κ of the embeddings
iW and i0,1 = iU . It is also needed, with respect to all critical points, in the omitted
proof that the comparison terminates. It was not recognized as a difficulty at this21

point in the history, since it is ensured by the coherence of the sequence U of
measures. Later, in the 1980s when models for cardinals beyond a strong cardinal
are developed (as we shall describe), it will be seen to have (in a more general form)24

a critical influence: it will require a major change in the structure of the iterated
ultrapowers used for this method of comparison by iterating the least difference.
(The term “moving generators” comes from the extenders used in such models.)27

The definability technique used in the proof above to ensure equal comparison
was implicitly used by Kunen, but was isolated by Mitchell in[Mitchell, 1974] and
given the name φ-minimality. An important theme in the development of core30

models has been the introduction of new techniques to ensure equal comparison.

3 FINE STRUCTURE AND THE COVERING LEMMA IN L

Most of Jensen’s work was originally distributed as handwritten, mimeographed33

notes made shortly after the results were obtained. These notes, though mostly
undated, provide a valuable source for viewing his evolving views.

The first suggestion of fine structure came in his Habilitationsschrift [Jensen,36

1967], completed in 1967. The introduction states that the main problem is to
determine, given a transitive set M , for which ordinals α is the structure Lα(M)
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closed under given logical operations, and states that some of this is related to
interests of his advisor, G. Hasenjaeger. The first theorem stated asserts that
P(M) ∩ Lα+1(M) ⊆ Lα(M) if and only if there is no Lα(M)-definable map from3

M onto Lα, which recognizably presages (in contrapositive form) the basic theo-
rems of fine structure. An appendix specifically gives the Σ1 case: every subset of
M which is Σ1-definable over Lα(M) is a member of Lα(M) if and only if there6

is no map from M onto Lα(M) which is Σ1-definable over Lα(M). Jensen has
stated that the name “fine structure” came from Gandy’s comments on the Habil-
itationsschrift. Jensen has regretted the name, as it also names an unfashionable9

area of algebraic geometry.
In [Jensen, c] Jensen proved that there is a Suslin tree in L. The proof was

based on Tennenbaum’s [Tennenbaum, 1968] forcing construction of a Suslin tree:12

Jensen observed that the tree T given by Tennenbaum’s construction, the nodes
Tα of T at level α < ω1 were generic branches through the first α levels of T , and
noted that it would be enough if they were generic only over the countable model15

Lβ , where β ≥ α is least such that P(ω)∩Lβ+1 * Lβ . Shortly after that, Solovay
used a similar method to prove that there is a Kurepa tree in L, and several people
then independently discovered the combinatorial principle ♦, and proved that ♦ is18

true in L and allows the construction of a Suslin tree. In [Jensen, 1969], written at
the Rockefeller University in 1969, Jensen discussed results of Kunen and himself
concerning ♦ as well as the stronger principle ♦+ which is needed to prove that21

there is a Kürepa tree.
In the notes [Jensen, 1970], expanded from lectures at Kiev, he presented a

number of results relating to ♦ and trees, including generalizations of ♦ (which is24

♦ω1) and Suslin trees to larger cardinals. At the end he considered the question of
a Suslin tree on an inaccessible cardinal κ in L. Now if κ is weakly compact then
there is no Aronszajn tree on κ, and hence no Suslin tree. His argument needed27

another constraint. The construction of a ω1-Suslin tree T proceeded by recursion
on the level α of T , and for limit α the definition of the αth level of the tree had
two parts: first showing that tree of height α constructed so far had branches, and30

then selecting countably many of these branches to continue the tree. To define a
κ-Suslin tree for larger κ, these two parts had conflicting requirements: there must
be a stationary set E ⊆ κ on which fewer than κ many nodes would be selected33

to continue the tree, but to ensure that there are branches at each level α there
must be a closed unbounded subset Cα ⊆ α whose limit points are disjoint from
E in order that a branch can be defined by recursion along Cα. This was not a36

problem in defining a κ+-Suslin tree for a regular cardinal κ, as one could take E
to be the sets of cofinality κ and let the sets Ca be of order type at most κ. Thus
the limit points of Cα all have cofinality less than κ. In [Jensen, 1970] Jensen39

described a new combinatorial principle which he called K∗κ, and shows that K∗κ
+ ♦κ implies that there is a κ-Suslin tree. The principle K∗κ asserts that there
are sets E and Cν as needed, and Jensen states as a theorem that K∗κ holds in L42

for every cardinal κ which is inaccessible, but not weakly compact. He omits the
proof: “Der Beweis hiervon ist leider sehr lang and wird deshalb nicht gebracht”.
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The principle K∗κ is essentially a square principle, but omits the vital coherence
condition: Cβ = Cα∩β whenever β is a limit point of Cα. This coherence condition
appears at the end of [Jensen, b], in an addendum in which Jensen corrects an3

error in section I of the note pointed out by Solovay. The correction, which Jensen
characterizes as “restoring the ‘unsimplified’ proof”, uses a principle which he
calls +, and which we can recognize as essentially �ω1 . In this note Jensen uses a6

preliminary forcing extension to make the principle + true.
In [Jensen, 1972], Jensen finally gave a complete exposition of the fine structure

of L, ending up with the definition of �κ and of global square, and completing the9

proof that in L there is a Suslin tree on every regular cardinal κ > ω which is not
weakly compact. In this result the case in which κ was the successor of a singular
cardinal λ was new, relying on the principle �λ. This principle was also critical in12

a final section written by Silver which proved that L satisfies the transfer property
(κ, δ) → (λ+, λ) for any cardinals λ and κ > δ. This notation means that any
theory with a model of type (κ, δ) also has a model of type (λ+, λ), where a model15

(M,U, · · · ) is said to have type (κ, λ) if M has size κ and the unary predicate U
has size λ.

Details of the fine structure construction are far out of the scope of this pa-18

per, but it will be useful to have a simplified (and in some aspects inaccurate)
description. We begin with an innovation which, though inessential and technical,
was important to the later study of L and of fine structure models in general:21

the introduction of the Jα hierarchy in place of the usual Lα hierarchy. The Jα
hierarchy was based on the set of rudimentary functions, defined by Gandy in
[Gandy, 1974]. The two hierarchies are essentially equivalent (whence the char-24

acterization of the innovation as ’inessential’), however the new sequence allowed
a much cleaner analysis, largely because every finite sequence of members of Jα
is a member of Jα. The fact that the parameters, which were finite sequences of27

ordinals, could not be treated as single objects in Lα had greatly complicated the
fine structure analysis of the Lα hierarchy. The Jα hierarchy has been widely used
since, and is universally used in any inner model theory involving fine structure.30

We will use the Jα hierarchy henceforth; however a reader who prefers to read Jα
as Lα will lose little or nothing in accuracy or comprehension.

Jensen took from Kripke and Platek the term projectum. He defined the projec-33

tum of Jα to be the least ordinal ρ ≤ α such that there is a subset of ρ which is in
Jα+1 \Jα, and for n ∈ ω he defined the Σn projectum of Jα to be the least ordinal
ραn such that such a subset is Σn-definable over Jα with parameters from Jα. He36

answered the question left open in [Jensen, 1967] by showing that there is, for each
ordinal α and each n ∈ ω, a Σn-definable map from ραn onto Jα; however what
is more important is the construction by which the map is obtained. He defined39

by recursion on n ∈ ω the Σn-core Cn(Jα) as a structure (Jραn , A
α
n) in which Aαn

coded the Σn theory of Jα, with parameters from ραn. In the recursion step, he
used the method from his Habilitationsschrift to define a ΣCn(Jα)

1 -definable map42

from the Σ1-projectum of Cn(Jα), which is the Σn+1 projectum ραn+1 of Jα. He
then defined Cn+1(Jα) = (Jραn+1

, Aαn+1) where Aαn+1 encoded in a natural way the
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Σ1 theory of Cn(Jα) and hence, by extension, the Σn+1 theory of Jα.
The construction was entirely canonical. In particular, given Cn(Jα) one could

recover Jα. In addition—and this is a critical point—it is preserved by embeddings:3

he showed that any substructure X ≺Σ1 Cn(Jα) of the Σn-code of Jα is isomorphic
to the Σn code of some Jᾱ, and furthermore the collapse map π : Cn(Jᾱ)

∼= X ≺Σ1

Cn(Jα) can be extended to a Σn+1 elementary map from Jᾱ → Jα. We will refer6

to this property as downward extension of embeddings, but it should be noted that
it can be regarded as an enhancement of the Condensation Lemma 1: it says that
condensation applies at each of the infinitely many levels of the Levy hierarchy9

between Jα and Jα+1.
The importance of this may be seen in the proof of the principle �κ, which

states that there is a sequence of closed unbounded subsets of Cα, defined for12

limit ordinals α < κ+, such that the order type of Cα is at most κ, and if β is
a limit point of Cα then Cβ = Cα ∩ β. Jensen’s construction has a number of
cases, but the interesting case is that in which κ < α < κ+ and α has uncountable15

cofinality. Jensen considers the first ordinal γ such that α is singular in Jα+1.
Then the least witness σ : ξ → α to this singularity is Σn+1-definable over Jγ
for some n ∈ ω. By careful use of the Σn code of Jγ , Jensen finds a tower of18

Σn+1 elementary substructures Xν ≺Σn+1 Jγ with the following property: For
limit ν < ξ set αν = supσ“ν and let πν : Xν

∼= Jγν be the collapse map. Then
πν preserves the definition of the map σ, so that σ�ν is the least witness to the21

singularity of αν , just as σ was for α. In particular, if σ is used to define Cα and
β is any limit member of Cα, then β = αν for some ν < ξ, so Cβ is defined using
σ�ν in the same way as the definition of Cα used σ. Thus Cβ = Cα ∩ β.24

The property �κ has given rise to an extensive literature. In addition to its
consequences, a number of weaker principles have been considered, starting with
weak square, �∗κ, which was defined by Jensen by allowing κ many club subsets of27

each α < κ+ instead of only one. In particular, some of the scale and club guessing
principles which Shelah has introduced in connection with his pcf theory can be
regarded as weak versions of �κ. Little of this theory is relevant, however, to this30

history: since square holds in the inner models we are discussing, the study of
weaker properties is moot. The reader may see chapter [Kojman, 2010], covering
singular cardinal combinatorics, for more about these properties.33

Following the completion of [Jensen, 1972], Jensen went on to prove that the
gap-1 transfer property is true in L. The gap-1 transfer property states that if
α > β+ are cardinals then any theory which has a model of type (α, β) also has36

models of type (κ++, κ) for any cardinal κ. For this he defined a new combinatorial
structure, which he called a gap 1 morass, and used the fine structure to show
that such a morasses exists in L on every cardinal. The gap 1 ω2-morass, for39

example, expressed Jω2 as an intricate direct limit of countable structures. This
structure permitted a structure of size ω2 to be defined as a limit of recursively
defined countable models, in somewhat the same way as Chang’s original proof42

that (α+, α) → (ω1, ω) constructed a model of size ω1 as a limit of countable
models.
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From here, Jensen went on to define gap n morasses for each n ∈ ω, and he
used these to prove transfer theorems with larger gaps: If V = L and n ∈ ω then
(λ+n, λ)→ (κ+n, κ) for any infinite cardinals λ and κ. Part of the motivation here3

was in the hope that this would lead to a solution to the leading open problem
of set theory of the time: the Singular Cardinal Hypothesis (SCH). The hope was
this construction would lead to a forcing notion over L which would give a model6

in which 2ωn = ωn+1 for all n < ω, but 2ωω > ωω+1. The actual outcome was
quite different.

Before continuing, it is worth noting that while the combinatorial principles9

described above had their origin in the constructible sets L, they have largely
moved away from constructivity and inner model theory in general — indeed a
primary part of the motivation for their definition was to abstract away from L12

the combinatorial properties used in applications. This is not true of the next
topic: the covering lemma remains tightly tied to the inner model program and
has remained at its center.15

3.1 The Singular Cardinal Hypothesis and the Covering Lemma

The origins of the Singular Cardinal Hypothesis are described in chapter [Kanamori,
2010b]. Shortly after Cohen’s proof of the independence of the Continuum Hy-18

pothesis, Easton [Easton, 1970] completely settled the general question of the size
of the power sets of regular cardinals; however this left the size of the power set of
a singular cardinal λ completely open. The Singular Cardinal Hypothesis, SCH, is21

the assertion that λcf(λ) = max(λ+, 2cf(λ)) for every singular cardinal λ, which for
the case when λ is a strong limit cardinal can be simplified to 2λ = λ+. Easton’s
models satisfies SCH, but Silver showed that a model in which SCH failed could be24

constructed by starting with a κ++ supercompact cardinal; but it was commonly
believed that no such hypothesis was necessary: there should be an Easton-like
theorem for singular cardinals with no large cardinal hypothesis.27

While trying to prove such a theorem for singular cardinals, Silver discovered
a new restriction [Silver, 1975] to the size of the power set of a singular cardinal:
Suppose that λ is a singular cardinal of uncountable cofinality, and 2γ = γ+ for30

stationarily many γ < λ. Then 2λ = λ+. In particular, if λ is the first singular
cardinal at which SCH fails, then λ has cofinality ω.

Silver’s proof started by forcing to obtain a generic ultrafilter U on PV (cf(λ)) ex-33

tending the closed unbounded filter, and then considered the embedding iU : V →
M = Ult(V,U). The model M is not well-founded; however if we set λ̄ =
sup{ i(α) : α < λ } then the set of ordinals below λ̄ in M is λ-like,2 and that36

of (λ̄+)M is λ+-like. Also M |= 2λ̄ = λ̄+ by the  Los theorem, and from these facts
he deduced that 2λ = λ+ in V .

Only a few weeks later, Jensen distributed a handwritten note entitled Margina-39

lia to a Theorem of Silver [Jensen, 1974b], which gave the first statement of the

2A linear ordering (R,≤) is said to be λ-like, where λ is a cardinal, if R has size λ but each
proper initial segment has size less than λ.
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covering lemma. In spite of the name of the note, the proof of the covering lemma
is not closely related to the proof of Silver’s theorem: the only thing they have in
common is that both involve embeddings on a singular cardinal. A close reading of3

the main theorem of [Jensen, 1974b] gives a hint as to how thinking about Silver’s
result led Jensen to the covering lemma.

The main theorem of [Jensen, 1974b] is in three parts, all of which concern6

a singular cardinal β of uncountable cofinality. The first part, Theorem I(i), is
essentially a straightforward application of Silver’s method, though Jensen (in-
dependently of Baumgartner and Prikry) eliminated the use of forcing from the9

proof: Assume that A ⊆ β is such that3 Lβ [A] = Hβ and 2λ = λ+ on a stationary
subset of β, and that cf(β)L = cf(β) and (β+)L = β+. Then P(β) ⊆ L[A]. The
second part, Theorem I(ii) applies Theorem I(i) in the special case A = ∅. The12

hypothesis that 2λ = λ+ for all λ < β follows automatically from the hypothesis
that Hβ = Lβ , but there remain the awkward extra assumptions cf(β)L = cf(β)
and (β+)L = β+. Jensen used his newly developed fine structure to show that15

these assumptions also follow automatically. Consider, for example, the statement
that cf(β)L = cf(β). Jensen used the singularity of β to obtain an elementary
substructure X of Lβ of size cf(β) < β such that X ∩ β is cofinal in β. By the18

condensation property, there is an isomorphism π : Lβ̄ ∼= X ≺ Lβ for some β̄ < β.
Since Hβ = Lβ , the preimage σ̄ of σ is in L. In particular, β̄ is singular in L. Let
ᾱ ≥ β̄ be least such that β̄ is singular in Lᾱ+1.21

To complete the proof, Jensen introduced two innovations. First, he gener-
alized the ultrapower construction to extend the embedding π to an embedding
π̃ : Lᾱ → Lα for some α ≥ β. This generalization later gave rise to notion of an24

extender, which has become central to the theory of inner models for large cardi-
nals. Second, an upward extension of embeddings principle, a counterpart to the
downward extension of embedding principle used for the � principles, enabled this27

extension to be further extended to preserve the definition over Lᾱ of a witness
to the singularity of β̄. It followed that the same definition, applied to Lα, gave a
witness to the singularity of β: thus β was singular in L.30

In Theorem I(iii) Jensen let this argument stand on its own, and replaced the
hypothesis that Lβ = Hβ with the much weaker assumption that 0# does not
exist. The result is recognizably the covering lemma (for uncountable cofinality):33

if β is a singular cardinal with cf(β) > ω, and if cfL(β) = β or (β+)L < β+, then
0# exists.

The argument again uses the embedding π as an extender: If σ̄ is not singular36

in L then π�LM̄ can be extended to a nontrivial map π̃ : L→ L, which by Kunen’s
theorem implies that 0# exists.

The restriction in [Jensen, 1974b] to cardinals β of uncountable cofinality came39

from the need to show that the target of the extended embedding π̃, which was
obtained by the use of π as an extender, was well-founded. The main theorem
of the second note, [Jensen, 1974c], removes this restriction: Assume ¬0#. Then42

3Here Hβ is the set of all sets which are heriditarily of size less than β, that is, sets whose
transitive closure has size less than β.
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cfL(λ) ≥ ω2 =⇒ cf(λ) = cfL(λ). The proof replaces the previous use of the
assumption that cf(λ) > ω with the facts that λ+ and ω1 each have uncountable
cofinality. The use of ω1 in the proof dictates the restriction cfL(λ) ≥ ω2. As he3

remarks, it would be “reasonable but wrong to suppose the theorem to hold for
cf(λ) ≥ ω1” because of the counterexample in [Namba, 1971].

The third and final note in this series, [Jensen, 1974a], gives the final form6

to the statement of the covering lemma: “Theorem: Assume ¬0#. Let X be an
uncountable set of ordinals. Then there is a set Y ∈ L such that |X| = |Y | and
X ⊆ Y .”9

As we have seen, the fine structure was a basic component of Jensen’s proof
of the covering lemma; however some have considered its use to be a flaw in the
theory. Silver has given a proof which avoids fine structure by using what he called12

“machines”; these machines were perhaps simpler than the fine structure but were,
at least in this author’s opinion, less intuitive. In any case they have not been
generalized to the larger theory described in the rest of this chapter. Another15

proof, due to Magidor [Magidor, 1990], replaces the fine structure with the näıve
Skolem function for Σn sets: using, for a Σn relation R over Lα, the function
h(x) = µy R(x, y). This function is not Σn-definable over Lα, but surprisingly18

the covering lemma can be proved by replacing the use of the Σn code Cn(Jα)
with the closure of Jα under the function h. Magidor has had some success in
generalizing this method to core models with sequences of measurable cardinals,21

but unfortunately it does not appear to be suitable even for the full theory of such
sequences, let alone the larger core models we describe in section 5.3.

The main result of Magidor’s paper [Magidor, 1990] cited above gave an in-24

teresting alternate conclusion from the proof of the covering lemma: If 0# does
not exist then every primitively closed set of ordinals is a countable union of sets
in L. Another interesting development is the strong covering theorem, an obser-27

vation contained in an unpublished note of Carlson: If 0# does not exists, then
for any pair of uncountable cardinals δ < κ there is a set C ⊆ [κ]δ in L which
is unbounded and closed under increasing unions of sequences whose length has30

uncountable cofinality.

4 THE CORE MODEL

4.1 Up to One Measurable Cardinal33

It now seemed that, with the new machinery available, the truth of any question
could be decided, and attention turned to larger models. An obvious choice was
L[U ], and in fact Solovay verified that ♦κ and �κ held there for all κ. However,36

while the model L[U ] is, in many respects, a suitable generalization of L, it has
number of defects centering on the fact that its construction requires a known
ultrafilter U . In some applications this problem was overcome, notably in the39

use by Solovay and Kunen of models L[F ], where F was the cardinal filter or
the closed unbounded filter, under hypotheses which implied that F became an
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ultrafilter in L[F ]. The usefulness of such strategies was limited, however. There
is, for example, no evident filter associated with the failure of Singular Cardinal
Hypothesis. Furthermore, the model L[U ] gives little insight into large cardinal3

properties lying between L and L[U ]: it does not for example, provide a minimal
model for a Ramsey cardinal.

Solovay had already investigated fine structure in the model L[U ], verifying
that ♦ and � properties held there. Jensen and Anthony Dodd approached the
fine structure differently. Instead of assuming that there is a model L[U ] with a
measurable cardinal, they used approximations to such a model, which they called
mice. According to Jensen, the term “mouse” was chosen because he felt that the
concept was important enough to give it a name which was not used anywhere else
in mathematics. A mouse is a structure M = Jα[U ] which has three properties:
(i) it satisfies the statement that U is a measure on some κ, (ii) all of its iterated
ultrapowers are well-founded, and (iii) it admits a fine structure analysis, with
projectum ρM smaller than the critical point of the ultrapower. The paradigmatic
example of a mouse comes from 0#. If U is a measure on κ, then Jκ+1[U ] is equal
to Jκ+1, but 0# is Σ1-definable in the structure (Jκ+1[U ],∈, U): the Gödel number
pφ(c0, . . . , cn)q is in 0# if and only if

∃X ∈ Un ∩ Jκ+1[U ] ∀(ν0, . . . , νn−1) ∈ X Jκ+1[U ] |= φ(ν0, . . . , νn−1).

This fact is rather awkward for the fine structure of L[U ], taken by itself: what is6

“fine” about a subset of ω which does not appear until after a measurable cardinal?
Taking the transitive collapse of the Σ1-Skolem hull of Jκ+1[U ], however, gives a
countable structure M = Jκ̄+1[Ū ], over which 0# is similarly definable. Thus M9

and 0# are equiconstructable.
Another way to view the equivalence between M and 0# is to take an iterated

ultrapower of M of length Ω, the class of ordinals. In the resulting class model,12

the measurable cardinal is Ω and the initial segment below Ω is isomorphic to L,
with the critical points of the embedding being the Silver indiscernibles. This can
be compared with Gaifman [Gaifman, 1974], in which he started with a countable15

substructure of an appropriate Vτ containing a measurable cardinal, and obtained
a countable model X whose iterations generated a closed unbounded class of in-
accessibles of L containing the cardinals of V . The 0# mouse M is the ultimate18

refinement of Gaifman’s model X, and is the weakest Dodd-Jensen mouse.
It is important to realize that the measure U in a mouse M = Jα[U ] is not

a measure in V ; indeed the fine structure analysis ensures that Jα+1 |= |α| =21

ρM < crit(U), so that U is not a measure in any model larger than M . Thus if
M = Jα[U ] and Jα′ [U ′] are two mice then neither is an initial part of the other,
as always happens at two levels Jα and Jα′ of the L hierarchy. However the mice24

M and M ′ can be compared by use of iterated ultrapowers, as Kunen did with
L[U ] and L[U ′], because the fact that a mouse M has a fine structure, and that its
projectum ρ is smaller than its critical point, ensures that the iterated ultrapowers27

will preserve the definition of the new subset of its projectum ρ. Thus the fine
structure of a mouse can be used to ensure the criterion of equal comparison from
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section 2.3, similarly to the way φ-minimality was used at that point.
The use of comparison by iterated ultrapowers gave a well-ordering of the mice,

defined by setting M ≺ M ′ if M is a member of an iterated ultrapower of M ′.3

This opened the way for Dodd and Jensen to define the core model as L[M], where
M is the class of all mice. Although they called this model K, we will refer to it
as KDJ to distinguish it from later generalizations. Using properties of mice, they6

showed that KDJ had most of the basic properties of L: It is a model of ZFC, it has
a condensation property and hence satisfies GCH, and it satisfies ♦κ and �κ for
all cardinals κ. One important difference was in the complexity of its definition:9

while a model M = Jα need only be well-founded to be an initial segment of L,
a model M = Jα[U ] must have all of its iterated ultrapowers well-founded. This
meant that for x ⊆ ω, the formula “x ∈ KDJ ” is Σ1

3 while the sentence “x ∈ L” is12

Σ1
2, and thus the canonical well-ordering of the reals of K is ∆1

3 as in L[U ], instead
of ∆1

2 as in L.
Dodd and Jensen showed that KDJ bridged the gap between L and L[U ] in the15

sense that we would have KDJ = L in the event 0# did not exist, while if there were
a model L[U ] with a measure U on κ, then KDJ was equal to the initial ordinal
length segment of UltON(L[U ], U) or, equivalently, to

⋂
α∈ON Ultα(L[U ], U). In18

particular, V K
DJ

κ = V
L[U ]
κ .

Finally, they proved a pair of covering lemmas. The covering lemma for KDJ,
which assumed that there is no model with a measurable cardinal, had the same21

statement as that for L: If there is no model with a measurable cardinal, then
for any uncountable set x of ordinals there is a set y ⊇ x in KDJ of the same
cardinality. The covering lemma for the case that a model L[U ] with a measurable24

cardinal existed assumed that 0†, the sharp of U , does not exist, but the conclu-
sion bifurcated. As Prikry had shown in his thesis [Prikry, 1970], there is a forcing
notion which, given a measurable cardinal κ, adds an ω sequence sequence C of27

ordinals, cofinal in κ, without collapsing any cardinals. However the necessary
modification to the covering lemma was minimal. With the term “covering prop-
erty” having the expected meaning from above: Suppose that U is a measure in30

L[U ], and the critical point κ is as small as possible, and 0† does not exist. Then
either L[U ] has the covering property, or else there is a Prikry sequence C such
that the model L[U,C] has the covering property. Furthermore the model L[U,C]33

is unique, though the sequence C is unique only up to finite changes.
The first publication of this work was in a handwritten note, [Dodd and Jensen,

] titled A Modest Remark. The title referred not to the covering lemma, but36

to an alleged theorem claiming that the existence of a measurable cardinal was
inconsistent with ZF. The error was quickly discovered independently by several
parties in widespread location: Jensen had incorrectly assumed that a cardinal39

κ of cofinality ω could be collapsed onto ω1 without also collapsing κ+. Jensen
had, as he admitted, written and hurriedly distributed the note without consulting
its putative coauthor Dodd. In spite of the error, this note provided a valuable42

early exposition of Dodd and Jensen’s theory of the core model. The formal
publication of the theory came in three papers: [Dodd and Jensen, 1981] gave the
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basic construction of KDJ and the two papers [Dodd and Jensen, 1982a; Dodd and
Jensen, 1982b] gave the proof of the covering lemma for KDJ and L[U ] respectively.
In addition Dodd wrote a book, [Dodd, 1982], giving an exposition of KDJ and3

looking towards extensions of this model.
They showed that, just as the existence of a nontrivial embedding i : L → L

implies that 0# exists, the existence of a nontrivial embedding i : K → K implies6

that there is a model L[U ] with a measurable cardinal. Where the critical point of
an embedding i : L → L is always a Silver indiscernible, however, Jensen showed
[[Citation?]] that the critical point of an embedding i : K → K may be smaller9

than the measurable cardinal in L[U ].
The most important immediate consequence of the Dodd-Jensen core model

theory is that a failure of the Singular Cardinal Hypothesis entails the failure of12

the hypothesis for KDJ, that is, that 0†, the sharp for a model L[U ] with a measure,
exists. The proof of this implication was the same as the proof using L: if 0† does
not exist, then there is a model of one of the forms KDJ, L[U ] or L[U,C] which15

has the covering property. Since all of these models satisfy GCH, this implies that
SCH holds in V .

An important later consequence was Jensen’s extension in [Donder et al., 1981]18

of Shoenfield’s theorem [Shoenfield, 1961] that any model M of set theory contain-
ing ω1 is absolute for Σ1

2 formulas. Jensen’s theorem stated: Assume a# exists for
every real a, and that there is no inner model with a measurable cardinal. Then21

K is absolute for Σ1
3 formulas. His proof actually showed that the same is true

of any model M ⊇ K.
Another consequence of the Dodd-Jensen covering lemma was a generalization,24

due to Mitchell, of Kunen’s theorem in [Kunen, 1970] that all Jónsson cardinals
in L[U ] are Ramsey: Mitchell [Mitchell, 1979b] showed that all Jónsson cardinals
in V are Ramsey in KDJ. It followed that a minimal model for a Ramsey cardinal27

could be constructed by taking the least initial segment of KDJ which satisfies
that there is a Ramsey cardinal. This was generalized by Jensen [Donder et al.,
1981] to show that any δ-Erdős, and even any δ-Jónsson cardinal, is δ-Erdős in30

KDJ. Thus the core model provides minimal models for these cardinals.
Before going on, a word about terminology is in order. At this point we have

three covering lemmas for three different models: for the model L if 0# does not33

exist, for the Dodd-Jensen core model KDJ if 0# exists but L[U ] does not, and for
L[U ] if it exists but 0† does not. In the current terminology any of these models
would, under the appropriate hypothesis, be called the core model. Much of the36

rest of this chapter is concerned with the continuing effort to extend this theory
to encompass larger cardinals.

It will be useful here to consider some of the properties of the core model as39

described so far in the article in order to get some sense of what can be expected
of larger core models, both those in the remainder of this history and those to
come in the future. One such property is that it is structured in a hierarchy, with42

each step in the hierarchy containing only sets which self evidently must be in any
model containing the previous steps of the hierarchy together with a measurable
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cardinal. Thus the result is guaranteed to be the smallest possible model of set
theory containing all of the ordinals and every fragment of a measurable cardinal.
Following this intuition, the model which is today called the core model, and is3

denoted by the symbol K, can be defined — as a goal, though not mathematically
— as the minimal model of ZFC containing all of the large cardinal structure
existing in the universe (cf. [Mitchell, 2009], section 5).6

Some of the other properties of the core model K, whether L, KDJ or L[U ],
described so far provide evidence that the core model constructions described thus
far satisfy this definition, provided that 0† does not exist. The core model is rigid,9

in the sense that there is no nonidentity embedding i : K → K, although this
sense of rigidity is weakened in the case of L[U ] by the existence of embeddings
i : L[U ] → M given by iterated ultrapowers. The core model is absolute: in the12

case K = L or K = KDJ this is true in the strong sense that KM = K∩M for any
uncountable model M of set theory, but again the statement in the case K = L[U ]
is weaker as KM may be an iterated ultrapower of L[U ].15

Finally, the covering lemma shows that the model K is close to V , though it is
perhaps surprising that the closeness involved can be regarded as instances of large
cardinal structure. Again, the statement of the covering lemma is significantly18

weakened in the case K = L[U ].

4.2 More Measures

The obvious next step was to incorporate the new core model theory into Mitchell’s21

model L[U ] for a sequence of measures, thereby extending the core model construc-
tion to include any number of measures. Mitchell had been attempting to do so
even before Dodd and Jensen completed their work on KDJ. Now, with notes24

available on the Dodd-Jensen techniques, he was able to proceed.
Mitchell called his model K(F); however we will write K[F ], using square

brackets to agree with the standard notation for relative constructibility. The27

sequence F was a sequence of filters in V , which was intended to become a sequence
of ultrafilters in K[F ]; however it is noteworthy that neither the definition of K[F ]
nor the fine structure analysis made any use of the structure of F : what is defined30

is really a relativized core model, built about an arbitrary set F .4

The model K[F ] was defined to be L[F ,M], whereM was the class of structures
called F-mice. The part of this work which was published in [Mitchell, 1984a]33

ended at the point where fine structure was to be introduced. It proved that the
model K[F ] was the union of the class of F-mice, and that if F was strong —
that is, it was a coherent iterable sequence of measures in K[F ] — then K[F ] was36

a model of ZFC + GCH + the set of reals has a ∆1
3 well-ordering + every normal

ultrafilter is a member the sequence F .
The rest of this paper was never published, though it had some distribution as39

the manuscript [Mitchell, 1985]. Section 4, which analyzed the fine structure of

4Of course this statement assumes (as will we, unless stated otherwise) that F is not a proper
class.
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the model, took up more than half of this manuscript, 65 out of about 110 double-
spaced pages. Much of this was a straightforward extension of the Dodd-Jensen
fine structure of L[U ], as extended to sequences of measures by using Mitchell’s3

techniques from L[U ]. An F-mouse M was a structure Jα[G], where G has F as an
initial segment and, above that, a coherent sequence of measures corresponding to
the single measure in the Dodd-Jensen mice. Some technical adaptations were, of6

course, needed to accommodate new sets being directly defined from the members
of the sequence, and from the fact of working above the arbitrary set F . The major
complication involved the criterion of equal comparison: a new complement was9

needed to the use of mice, as described in section 2.3. We will return to this point
when we look at the Dodd-Jensen lemma, which is a more general alternative to
the technical trick used in this paper.12

Only at this point was it possible to prove the crucial observation that if F is
strong then K[F�α] ⊆ K[F ], and in particular that the definition of K[F ] in the
case that F is a proper class, K[F ] =

⋃
α∈ONK[F�α], makes sense.15

Perhaps the most important change from Dodd and Jensen’s analysis of KDJ

is that the fine structure analysis took on a new role: it enabled a sequence F
to be defined by recursion. More specifically, the main theorem of section 4 was:18

Suppose F is a sequence of filters such that for each (α, β) in the domain of F ,
the filter F(α, β) (i) is a normal ultrafilter of order β on K[F�(α, β)] and (ii) is
countably complete. Then F is strong in the sense that each filter F(α, β) in21

the sequence F is an ultrafilter in K[F ]. This was used to define a preliminary
version of the core model, which is now known as Kc, the countably complete core
model, by setting Kc equal to the model K[F ] where F is the maximal sequence24

of countably complete measures, defined recursively by adding a filter F(α, β)
whenever it satisfies the criterion above.

A full covering lemma, in the style of that in the case that the core model is27

equal to L or KDJ, or even L[U ], is not possible for these models. Mitchell in-
stead used what the reader may recognize as Jensen’s first version of the covering
lemma in [Jensen, 1974b]: he said that an inner model M satisfies the weak cov-30

ering lemma if, for every sufficiently large strong limit cardinal λ, the successor
(λ+)M of λ as evaluated in M is the same as the successor λ+ as calculated in V .
Mitchell used recursion to define what came to be known as the countably complete33

(later, with Steel’s work, countably certified) core model Kc = K[F ], by requiring
that each filter F(α, β) on the sequence F be a countably complete K[F�(α, β)]-
ultrafilter. The countable completeness ensured that all iterated ultrapowers were36

well-founded, and this in turn allowed the use of fine structure to show that each
filter F(α, β) was still an ultrafilter in the full model Kc. Mitchell’s proof that
Kc has the weak covering property was essentially the same as Dodd and Jensen’s39

proof that KDJ has the covering property, here applied to κ = (λ+)K
c

which has,
if it is smaller than λ+ of V , cofinality less than λ.

One important consequence of the weak covering lemma is that it provides a new42

technique for satisfying the criterion of equal comparison: a model K[F ] which
satisfies the weak covering property is universal in the sense that when K[F ] is
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compared, using iterated ultrapowers, with any other model K[F ′] then the model
K[F ] will compare at least as long as K[F ′]: the final model in the iteration of
K[F ′] will always be an initial segment of the final model in the iteration of K[F ].3

In particular, if K[F ′] is also universal then the final models of the two iterations
will be equal.

The weak covering lemma not only showed that Kc is universal; it also provided6

a criterion for the transitive collapse of an elementary submodel X ≺ Kc to be
universal. This criterion is a counterpart to the particular case of condensation
for L that any elementary subset of L which contains a proper class of ordinals is9

isomorphic to L. For K[F ] it was not enough to assume that X is a proper class:
Mitchell defined X to be thick if, for a stationary class of singular cardinals λ the
order type of X ∩ (λ+) is equal to λ+. It follows from the weak covering lemma12

that not only is Kc universal, but also the transitive collapse of any thick X ≺ Kc

is universal. This fact was used in Section 7 to obtain the true core model, which
was written K[FM] but today would be written simply as K. The sequence FM15

was defined recursively in the same way as Fc, but with countable completeness
replaced with the requirement that Ult(K[G],F(α, β)) be well-founded whenever
G is a strong sequence which extends F�(α, β). This fact was used to show that18

K[FM] is iterable by showing that it is an elementary submodel of Kc.
An addendum, dated July 1985, stated a fact which Steel had pointed out as

missing from the manuscript, though it had been widely used: If there is no inner21

model with a cardinal κ such that o(κ) = κ++ then every embedding i : K[FM]→ N
into a well-founded model N is an iterated ultrapower by measures in K[FM].

An additional technique which came into use at this time is the Dodd-Jensen24

lemma which, as was pointed out earlier, serves as an important complement
to the use of mice in the verification that the criterion of equal comparison is
satisfied. The lemma states that an iterated ultrapower is minimal among all27

Σ0-elementary embeddings mapping into the same final model; more specifically:
Suppose i : M →M ′ is an iterated ultrapower of the premouse M , and σ : M →M ′

is a Σ0-elementary embedding. Then range(σ) is cofinal in M ′, and σ(α) ≥ i(α)30

for all ordinals α in M . A typical application occurs in the fine structure analysis:
in this case σ = j ◦ π, where π : M → Jν [U ] arises from the transitive collapse of
a Skolem hull, and j and i are iterated ultrapowers on M and Jα[U ] arising from33

the comparison of these models. The model M can be treated as a mouse, and
since its projectum is not moved by the iterated ultrapower i on M this implies
that the last model M ′ of this iteration is not a proper initial segment of the last36

model of the iteration j. It is not immediately clear, however, that the embedding
j does not move the projectum, and hence the mouse criterion cannot be used to
rule out the possibility that the last model of the iteration j is a proper initial39

segment of M ′. The Dodd-Jensen lemma does rule this out, since i is an iterated
ultrapower and hence minimal.

The author’s memory is that the discovery of the Dodd-Jensen lemma came42

was a result of a message from Jensen pointing out a hole in [Mitchell, 1985].
The author, after some thought, filled the hole, and Dodd and Jensen turned
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the argument in the correction into a general lemma. The author remembers
doubting an application the general statement and being told that the proof was
his own. Some doubt—perhaps not fatal—may be thrown on this story by the fact3

that [Mitchell, 1985] does contain a quite different and apparently valid argument
covering the same question.

Consequences of the covering lemma for sequences of measures6

The unpublished article [Mitchell, 1985] concluded with a number of applications of
the weak covering lemma in K: Any of the following assertions imply the existence
of an inner model of ∃κ o(κ) = κ++: (i) κ and κ+ are both weakly compact,9

(ii) κ is κ+ strongly compact, (iii) κ is measurable and κ+ > (κ+)K[F ], (iv) κ is
measurable and 2κ > κ+, (v) there is a κ-complete ultrafilter U on κ such that
iU (κ) = κ+ (in particular, the Axiom of Determinacy holds), (vi) every κ-complete12

filter can be extended to a κ-complete ultrafilter, or (vii) there is a κ+-saturated
ideal on a successor cardinal κ.

These results relied on consequences of the weak covering lemma, and in par-15

ticular on one which did not originally appear, at least in its strongest form, in
[Mitchell, 1985]: If there is no model of ∃κ o(κ) = κ++ then every elementary
embedding i : K[FM] → N into a well-founded model N is an iterated ultrapower18

by measures in F
submax.

The arguments from K used in this proof seemed much stronger than the core21

model K itself, and it was expected that, once larger core models had been con-
structed, the same arguments would yield a stronger conclusion. This turned out
to be true for all but clause (iii): A more closer at this look led Mitchell to suggest24

∃κ o(κ) = κ++ was the exact large cardinal strength of the failure of GCH at a
measurable cardinal. This was later confirmed by work of Woodin (using a slightly
stronger assumption) and Gitik [Gitik, 1989].27

Of the the topics one might have expected to see in [Mitchell, 1985], two were
omitted. One was the weak covering lemma for the case of cardinals κ which are
not countably closed, that is, such that λω ≥ κ for some λ < κ, and the other was30

the Singular Cardinal Hypothesis, or, indeed, any version of the covering lemma
beyond the weak covering lemma. The first of these was the less consequential,
but the longest to resolve: the proof for κ which are not ω closed does not re-33

quire any techniques except [Mitchell, 1985], together with those used for L by
Jensen in [Jensen, 1974c]; however no published, or even manuscript, exposition of
the extension of the covering lemma for sequences of measures to the non-closed36

case appeared until [Mitchell and Schimmerling, 1995] (for a much more powerful
version of the core model).

Applying this model to SCH was much more troublesome. The most compli-39

cated case of the Dodd-Jensen covering lemma is that in which 0† does not exist
and there is a model L[U ] with a measurable cardinal along with a Prikry sequence
C for that measure. Then the model L[U,C] provides a covering set. The set C is42
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not quite unique — this is a change from previous versions of the covering lemma
— but the model L[U,C] is unique. Mitchell showed in [Mitchell, 1984b] that a
straightforward generalization of this is false in general. If λ is an inaccessible3

limit of a set I of measurable cardinals in V , then there is a generic extension
V [G] in which each κ ∈ I is made singular by Prikry sequence over V , but there is
no sequence of Prikry sequences which is uniform: for any sequence 〈Cκ : κ ∈ I 〉6

of Prikry sequences there is a sequence of sets 〈Aκ : κ ∈ I 〉 in the ground model,
with each set Aκ a member of the measure on κ, such that {κ ∈ I : Cκ * Aκ } is
unbounded in κ.9

In this model, there is a uniform sequence of Prikry sequences for witnesses
for each subset of I which is bounded in κ, and this proved to be the general
situation. Mitchell defined a notion of a system of indiscernibles which generalized,12

in a natural way, the notion of a Prikry sequence, and he proved a version of the
covring lemma stating that for any uncountable set X in V , there is a system C
of indiscernibles for K such that X is contained in a set Y ∈ K[C] of the same15

cardinality. However the system C is, in contrast to the case in the Dodd-Jensen
covering lemma for L[U,C], essentially local: it depends on the set X, and its size
is at most that of X. Furthermore, while there is a sense in which the choice of18

C is, on its domain, unique up to finite variations, this is not enough to directly
generalize the Jensen proof that the nonexistence of 0# implies SCH.

This version of the covering lemma was published in [Mitchell, 1987], which21

included several of its consquences. The simplest of these gave a converse to
Magidor’s construction in [Magidor, 1978]: Suppose that there is no inner model
satisfying ∃κ o(κ) = κ++, and that λ is a singular cardinal of uncountable cofinal-24

ity δ which is regular in K. Then o(λ) ≥ δ in K. An additional result in [Mitchell,
1987] showed that if there is a model of ZF in which the closed unbounded ultra-
filter on ω1 is an ultrafilter then κ is a (weak) repeat point, a result which Mitchell27

later showed (in unpublished work) is best possible. A final result considered the
model L[i], constructed from an embedding i : V →M : it was shown that if there
is no inner model of ∃κ o(κ) = κ++ then the model L[j] contains an iterate of the30

core model K, and is equal to an iterate of K if the embedding is an ultrapower
embedding i : V → Ult(V,U).

Several succeeding papers yielded further consequences: notably [Mitchell, 1991],33

which characterized the ways (assuming no inner model of ∃κ o(κ) = κ++) in which
a cardinal could become singular. Not until [Mitchell, 1992b] did he publish the
partial results he obtained on the strength of SCH, and by this time Gitik’s[Gitik,36

1991] had already appeared, giving the final solution to this question: If SCH fails,
then there is an inner model satisfying ∃κ o(κ) = κ++. His proof of this result
required deep techniques from Shelah’s pcf theory in addition to Mitchell’s results.39

As related above, he had already strengthened a result of Woodin to prove that
the existence of such a model is sufficient to obtain a forcing extension in which κ
is measurable and 2κ = κ++, and hence one in which SCH failed.42

At about the same time, Mitchell [Mitchell, 1992a] generalized Jensen’s abso-
luteness result mentioned earlier: If there is no model of ∃κ o(κ) = κ++ and a#
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exists for every real a, then every model M containing K, or an iterated ultrapower
of K, is Σ1

3 absolute. But, as we shall see, Steel shortly afterward had a stronger
result, which was actually published earlier.3

5 EXTENDER MODELS: WOODIN CARDINALS AND BEYOND)

5.1 Moving Beyond Measurable Cardinals

With the core model understood up to ∃κ o(κ) = κ++, both Mitchell and the6

team of Dodd and Jensen turned their attention to larger cardinals. The smallest
of these was a µ-measurable cardinal, defined by Mitchell in [Mitchell, 1979a] to
be a cardinal κ such that there exists an embedding i : V → M with κ = crit(i)9

such that the induced ultrafilter µ = {x ⊆ κ : κ ∈ i(x) } is a member of M . Such
an embedding cannot be obtained from an ultrapower using a normal ultrafilter,
but it can be obtained by using a nonnormal ultrafilter on Vκ, namely W =12

{x ⊆ Vκ : µ ∈ i(x) }. The next natural step beyond a µ-measurable cardinal is a
P2(κ) strong cardinal, that is, a cardinal κ with an embedding i : V → M such
that P2(κ) ⊆ M . Such an embedding cannot be represented by a ultrafilter on15

Vκ, since any such ultrafilter would be a member of M . Thus significant progress
beyond ∃κ o(κ) = κ++ depended on the invention of a more flexible representation
for large cardinal embeddings.18

Such a representation was discovered independently by Jensen and by Mitchell.
Of these two, it was Jensen’s formulation which has become standard. This notion,
which Jensen called an extender, is the same construction as was used to extend the21

collapse embedding in the proof of the covering lemma. An embedding i : V →M ,
with critical point κ is said to be an ultrapower by a (κ, λ)-extender if crit(i) = κ
and M = { i(f)(a) : a ∈ [λ]<ω }. In this case the (κ, λ)-extender E such that24

M = Ult(V,E) is as a sequence of ultrafilters 〈Ea : a ∈ [λ]<ω 〉, with Ea =
{x ∈ κ|a| : a ∈ i(x) }. The embedding i is then a direct limit of the ultrapower
embeddings ia : V → Ult(v,Ea), with the image of [f ]Ea in Ult(V,E) being written27

as [f ]E,a.
Mitchell’s construction in [Mitchell, 1979a] was effectively the same, but com-

plicated by using, instead of all ordinals less than λ, only the generators of the30

embedding i, that is, the set of ordinals α < λ such that α 6= i(f(a)) for any
a ∈ [α]<ω. This decision to separate out the generators proved to be unnecessary
and undesirable: for example, the question of which ordinals are generators de-33

pends on the power set of κ, and hence may differ between an embedding i : V →M
and the restriction of that embedding to an inner model.

Jensen’s notion of an extender had a side effect of eliminating a significant36

complication in Mitchell’s models L[U ]: the need for coherence functions. If
α < β < o(κ) then the requirement that U(κ, α) / U(κ, β) entails that there is
a function f ∈ κκ such that α = [f ]U(α,β). Mitchell’s core model construction, for39

example, required special care to ensure that no measure U(κ, β) was used in the
construction until all of its coherence functions had appeared. If this same model
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is recast by representing the measures as extenders then this becomes unnecessary:
the measure U = U(κ, β) has the single generator κ and is most conservatively
represented as a (κ, κ+ 1) extender; however it can be equivalently represented as3

a (κ, λ) extender for any λ > κ. If λ ≥ β then, since α = i(id)(α), where id is the
identity function. Thus α = [id]U(κ,β),{α} for all α < β, so the identity function is
the only coherence function needed:6

Overlapping Extenders and Iteration Trees

The use of extenders instead of normal ultrafilters made it straightforward to
define models L[E ] large enough to contain a strong cardinal, that is, a cardinal9

κ such that for all λ there is an embedding i : V → M with critical poing κ such
that Vλ ⊆ M . Beyond this a new problem arose. Recall that one of the three
criteria given in section 2.3 for the success of a comparison by iterating the least12

differences was that generators not be moved. The use at that point of the term
“moving generators” was somewhat anachronistic: because the only generator of a
normal ultrafilter U is its critical point, the coherence of the sequence of ultrafilters15

was enough to ensure that no generators were moved. For a (κ, λ)-extender E, in
contrast, every ordinal in the interval [κ, λ) is a generator, so that the principle of
no moving generators would seem to require that if E is used in an iteration, then18

the rest of the iteration cannot involve any (κ′, λ′)-extender E′ with κ′ < λ. Up
to a strong cardinal, this difficulty does not occur; however it is easy to see that
having two strong cardinals is more than enough to make it unavoidable.21

A secondary problem at this level involves the indexing of the sequence. The
indexing U(κ, β) used by Mitchell relied on the fact that given two measures on
different cardinals, the one on the larger cardinal is stronger. Again, this is not24

a problem up to a strong cardinal; however if κ is a strong cardinal, and there is
also an extender E′ with critical point κ′ > κ, then there is an extender E on κ
such that E′ is in a member of the codomain Ult(V,E) of the embedding iE , so27

that E′ / E.
Baldwin [Baldwin, 1986] proposed one solution to both problems. He relied on

a different, carefully defined indexing of the extenders, designed so that, although30

the iteration did have moving generators, there was guaranteed to be a closed
unbounded set of stages of the iteration where the generators of the extender used
were not later moved. This was sufficient to ensure the success of the comparison.33

The apparent problem with Baldwin’s idea is that there did not seem to be a clear
scheme for finding a suitable indexing as one moved to larger cardinals.

Mitchell proposed a second possibility. The iterated ultrapowers up to this point
had been linear: they looked like

L[E ] = M0
i0,1−−→M1

i1,2−−→ · · · Mω
iω,ω+1−−−−→Mω+1

iω+1,ω+2−−−−−−→ · · · Mθ (5)

where θ is the length of the iteration. In this construction, each model Mα+1 is36

the ultrapower of the previous model: Mα+1 = Ult(Mα, Eα) where Eα is the least
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extender in the sequence i0,α(E) of Mα = L[i0,α(E)] which is not in the corre-
sponding sequence on the other side of the comparison. In the new construction,
the extender Eγ is chosen in the same way, but Mα+1 may be an ultrapower by an3

earlier model in the sequence: Mα+1 = Ult(Mα∗ , Eα) where α∗ is the least ordinal
such that iEα moves generators of the extender Eα∗ used to define Mα∗+1. This
gives a tree ordering, defined by taking the ordinal α∗ to be the immediate prede-6

cessor of α+ 1. If Mγ and Mγ′ are two models of the iteration, then the iteration
provides an embedding iγ,γ′ : Mγ → Mγ′ between them if and only if γ precedes
γ′ in the tree. Any branch of this tree looks like a linear iteration, except that the9

extenders used to construct the embeddings along the branch are typically taken
from models in other branches, rather than from the models to which they are
applied.12

The resulting iteration trees satisfy the criterion of no moving generators, and
they can be used in much the same way as linear iterations: in particular, a
comparison between two models L[E ] and L[E ′], using the process of iteration by15

the least difference but organized as a tree iteration, will terminate if it can be
carried out far enough.

This task of verifying that this process can be carried out “far enough” — the18

iterability problem — proved to be far more difficult than for linear iterations.
There was some question even at successor stages: Since the extender Eα used
to define Mα+1 is not a member of Mα∗ , why does Ult(Mα∗ , Eα) even exist,21

and if it does, why is it well-founded? The primary difficulty, however comes
a limit stages. Suppose that the iteration has been carried out for ν stages, where
ν is a limit ordinal. If b is any branch of the tree (ν,≺) then iα,α′ is defined24

for any α < α′ in b, so we can define Mb to be the direct limit of the system
(〈Mα : α ∈ b 〉, 〈 iα,α′ : α ≺ α′ ∈ b 〉). If there is a branch b which is cofinal in the
tree such that Mb is well-founded then the model Mb is a possible choice for Mν ,27

but it is not evident that there should be any such branch. Indeed it is not clear
that the tree even has a cofinal branch b, let alone a well-founded one: one could
imagine a worst case in which α∗ = 0 for all α > 0, so that the tree has length ω,30

but every branch has length 2.

When Mitchell introduced the notion of iteration trees at the end of a talk at
the 1979 Association of Symbolic Logic meeting in Biloxi, Mississippi he confi-33

dently asserted that they would soon yield a model for a supercompact cardinal;
however further investigations were discouraging. A proof of iterability seemed to
be difficult even for cardinals not far above a strong cardinal; at a supercompact36

cardinal it seemed that iterability provably failed—a conclusion later confirmed by
Neeman’s discovery [Neeman, 2004] of an infinite iteration tree with no branches
of length 4. Since there didn’t seem to be any very interesting large cardinal39

properties between measurability and supercompactness, Mitchell largely stopped
work on the problem.
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Woodin Cardinals

It is not clear whether Steel discovered the notion of iteration trees entirely in-
dependently, as he remembers, or whether he took a hint from comments at the3

end of Mitchell’s 1979 talk (of which not even an abstract seems now to exist). In
any case he and Woodin continued to work on the problem, but little progress was
made for the first five years.6

The breakthrough came from Foreman, Magidor and Shelah [Foreman et al.,
1988] and did not immediately involve inner models at all; indeed it contradicted
some of the aims of the inner model program. One of the results in this paper was9

that if it is consistent that there is a supercompact cardinal, then it is consistent
that the filter of nonstationary sets on ω1 is saturated. This in turn implies that,
in a generic extension, there is an embedding i : V → M which, if it were in V12

rather than in a generic extension, would be much stronger than a supercompact
embedding, and this contradicted an implicit premise of the inner model program:
that any such embedding would extend a large cardinal embedding from the ground15

model.
Woodin and Shelah [Woodin, 1988], building on the techniques and results of

[Foreman et al., 1988], showed if there is a supercompact cardinal then in the18

model L(R) (i) all sets of reals are Lebesgue measurable, (ii) all sets of reals
have the property of Baire, and (iii) the partition property ω → (ω)ω2 holds. As
a consistency result this was not strong: all three are true in Solovay’s model21

[Solovay, 1970] arising from the Levy collapse of a inaccessible cardinal to become
ω1 (with (iii) having been added to Solovay’s results by Mathias [Mathias, 1977]).
However the fact that, given a supercompact cardinal, these consequences were24

outright true in L(R) was striking, especially in view of the fact that all are
consequences of the Axiom of Determinacy.

Attempts to weaken the hypothesis ultimately led to Woodin’s definition of27

what came to be called a Woodin cardinal : a cardinal δ is said to be Woodin if for
all functions f : δ → δ there is an embedding i : V → M with critical point κ < δ
such that Vi(f)(κ) ⊆M . The last theorem in [Woodin, 1988] stated that if there is30

a model with a Woodin cardinal, together with a sharp for that model, then every
Σ1

3 set of reals is Lebesgue measurable.
An important tool in dealing with Woodin cardinals was a modification, in-33

vented by Woodin, of the forcing of [Foreman et al., 1988]. The new forcing,
which he called the stationary tower, came in two forms. The first, which was
used for results such as that stated in the last paragraph, collapsed cardinals to36

make the Woodin cardinal ω1. The other left δ as a Woodin cardinal and defined,
in the generic extension V [G], an elementary embedding iG : V → M with the
remarkable property that (Vδ)M = Vδ[G]. This forcing ruled out a core model39

L[E ] with the expected properties which has a single Woodin cardinal: The forc-
ing collapses many successors of singular cardinals, so L[E ] could not satisfy the
weak covering lemma. Furthermore M = L[iG(E)], which would evidentially be42

the core model in V [G], contained mice which were not in the ground model L[E ]
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and were not iterable enough to compare with the original model L[E ]. If the core
model was not changed by small forcing, then these ‘mice’ should not be in the
core model; however there could not be any grounds in L[E ][G] to exclude them3

without going beyond Vδ of that model.
The introduction of Woodin cardinals spurred the development of inner models

in two ways: first, it gave as a goal an important new large cardinal property which6

was more accessible than supercompactness, and, second, it helped to explain
some of the difficulties which had been encountered. Martin and Steel [Martin
and Steel, 1988; Martin and Steel, 1989] proved that if there is a model with n9

Woodin cardinals with a measurable cardinal above them then all Π1
n+1 sets are

determined. They also used a result of Woodin to prove that if there is a model
with ω many Woodin cardinals with a measurable cardinal above them, then the12

Axiom of Determinacy holds in L(R). The proof involved first developing the
theory of iteration trees far enough to show that no countable iteration tree, using
countably complete extenders, could have ill-founded limits on all branches with15

the ill-foundedness witnessed by a continuous function on the nodes. Thus, by
constructing a tree having such a witness to ill-foundedness on all but one of its
branches, they could ensure that the remaining branch did have a well-founded18

limit. They then used the Woodin cardinal to find a special type of iteration tree,
which they called an alternating chain, consisting of just two branches, each of
length ω. They constructed the tree so that the well-foundedness of one of the21

branches implied the existence of a strategy, and they ensured that the limit on
that branch was well-founded by constructing the other branch to be ill-founded.

In the search for inner models for a Woodin cardinal, one key fact was observed24

by Martin and Steel: Suppose that M is an extender mode, and T is an iteration
tree on M having two distinct branches b and c with well-founded limits Mb an Mc.
Then there is model with a Woodin cardinal. In fact if δ is the supremum of the27

lengths of the extenders used in T , then δ is Woodin with respect to any function
f ∈Mb ∩Mc. In particular δ is Woodin in L[E ], where E = EMb�δ = EMc�δ.

This meant that, in order to reach a minimal model with a Woodin cardinal,30

it would be enough to define a sequence E by recursion in such a way that, so
long as it did not reach a Woodin cardinal, every iteration tree had a branch with
well-founded limits. Their strategy for doing so was to assume one had an ill-33

founded tree, take an elementary substructure to obtain a countable model with
a ill-founded tree, and then define maps from models in this iteration tree into V
which commuted with the tree embeddings, thus obtaining a contradiction since36

the union of the range of the maps would be ill-founded. Using this strategy,
they succeeding in proving [Martin and Steel, 1994] that if there are n Woodin
cardinals, for n < ω, then there is a proper class model Mn satisfying ZFC + there39

are n Woodin cardinals + R has a Σ1
n+2 well-order. This result was essentially

best possible in the sense that by their previous result the existence of n Woodin
cardinals plus a measurable cardinal above them implies that Π1

n+1 determinacy42

holds, which implies that there is no ∆1
n+2 well-ordering of the reals.

This Martin-Steel model does have a serious weakness, however. The models
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introduced in this paper have the form L[E ], where E is a sequence of extenders.
The comparison process for these models, however, does not use ultrapowers of the
models themselves, but instead relies on ultrapowers in a larger model constructed3

from a sequence F of background extenders. For each extender E in the sequence
E there is a background extender F in the sequence F . The extender F extends
E, however it is substantially stronger than E: it is an extender in V , not just6

L[E ], and if E is a (κ, λ)-extender then F is satisfies Vλ+2 ⊆ Ult(V, F ).
Because of this use of external iterations, many of the structural properties of

their model were unclear: for example, they were not able to show that GCH holds9

in their model, although they did show, using a result of Woodin, that it satisfies
CH.

In the summer of 1986 Woodin discovered the second of the forcing orders12

associated with a Woodin cardinal, the extender algebra. This forcing goes back
to the class forcing of Vopěnka [Vopěnka and Hájek, 1972], by which any set is
generic, by a class forcing, over any given class model of set theory. Let M be a15

model of set theory with a Woodin cardinal δ such that the Woodinness of δ is
witnessed by extenders in M which are iterable in the universe V (though perhaps
not in M). The extender algebra is a forcing of size δ, defined in M , with the18

property that, for any set x in V , there is an iterated ultrapower i : M →M∗ of M
such that x is M∗-generic over i(P ). Thus, for example, if there is a supercompact
cardinal in V then there is, for each λ, a generic extension of M which has a21

λ-supercompact cardinal — even if the model M has no more than one Woodin
cardinal. The apparent contradiction is avoided because the model M does not
know the strategy for iterating itself, and hence the argument cannot be carried24

out inside M . Indeed this forcing can be used to show that there is no fully iterable
model of the form L[A], with A a set, having a Woodin cardinal: any such model
would have, in a generic extension, a model L[A′] having the same property with27

A′ contained in the smallest measurable cardinal of L[A].
This does not exclude the possibility there is a a strategy in V for iterating the

model M , but it does imply that an iteration of the model M will not, in general,30

be fully internal to M even if it is internal in the sense that all extenders involved
are members of the appropriate model of the iteration tree, and even if (as in the
case of the genericity iteration of the last paragraph) the iteration is defined inside33

M . Of course this is not always such a difficulty as it may appear, since in most
cases an iteration tree is used which is not defined inside M . The iteration trees
used to compare two models M and N , for example, require knowledge of both36

models and hence cannot be carried out inside of either.

5.2 Fine Structural Extender Models

Encouraged by the work of Martin and Steel, and prodded by work of Baldwin,39

Mitchell returned to work on inner models with extenders in 1987. Since he in-
tended that the end result was a core model, he assumed from the start that the
models would include mice as well as extenders.42
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One complication from the presence of mice came from the need for mixed
iteration trees, that is, iterations involving several models. A comparison of two
models M and N by means of iterating the least difference will sometimes reach3

a stage where first difference between the models Mα and Nα lies in the mice
they contain, rather than in their extenders. If, say, the mouse M∗α is in Mα but
not in Nα, then the tree could only continue by substituting M∗α for Mα. Since6

there is no embedding from M into M∗α, the final argument needs to consider cases
depending on whether the branch through the final tree at some point drops to a
mouse M∗α.9

The opposite situation is also possible. Recall that, as was seen previously in
the case of the Dodd-Jensen lemma, mice can be used to ensure equal comparison
only if the embedding does not move the projectum of the mouse. The presence12

of extenders presents another way in which this can fail: a mouse M can include a
(κ, λ)-extender E with ρM < λ, so that E lies above the projectum ρM of M , but
has critical point κ < ρM so that the embedding iE moves the projectum. In order15

to avoid this problem, a comparison in which the initial model is a mouse uses a
full class model to “back up” the iteration: if an extender with critical point less
than the projectum of the mouse is called for, then it will be applied to the full18

class model instead of to the mouse. The criterion of equal comparison can then be
satisfied in one of two ways. The well-founded branch will either originate at the
mouse or will, as a result of the backing up operation, originate at the model L[E].21

If the well-founded branch of the iteration originates at the the mouse then equal
comparison would be ensured by using the mouse as in previous models, while if
the well-founded branch ends below the class model then equal comparison can be24

verified using universality or φ-minimality arguments applied to this model.
The other innovation was suggested by Baldwin and greatly simplified the pre-

sentation of the model. Recall that Mitchell’s original core model K(F) had the27

form L[F ,M] where F was the sequence of ultrafilters of the model and M was
a class of mice. This was awkward at the time, and promised to become more
so in the newer models, as the mice would be expected to mimic the full core30

model and hence would need to themselves contain mice. In the new presentation
the model had the form L[E ], being constructed entirely from extenders Eγ in the
sequence E . However these extenders were not necessarily extenders on the full33

model L[E ]; instead Eγ was an extender on the model Jγ [E�γ] constructed up to
that point. The result was that the mice in the model L[E ] were just the initial
segments M = Jα[E ] of L[E ].36

As a consequence, the Condensation Property, Lemma 1, would (apart from
some technical complications which were realized later) literally hold in these
models: a sufficiently closed substructure of a model Jα[E ] would be isomorphic39

to Jα′ [E ] for some α′ ≤ α.
Mitchell did not write any detailed notes on this work, and did not attempt

to prove that there was an iterable model of this form. However he did present42

this work in a seminar at UCLA in 1988, after which Steel adapted the techniques
from his work with Martin in [Martin and Steel, 1994]. The result, published in
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[Mitchell and Steel, 1994], proved that if there is a Woodin cardinal, then there is
an inner model L[E ] which has a Woodin cardinal, satisfies GCH and ♦, and has
a ∆1

4 well-ordering of the reals.3

Steel later extended this work in [Steel, 1993] to models with arbitrarily many
Woodin cardinals, and Neeman [Neeman, 2002] has defined such extender models
as far as a Woodin limit of Woodin cardinals. This is the best result known6

giving, from the assumption of a large cardinal, an iterable extender model L[E ]
for that (or even a smaller) cardinal. However if one is willing to add appropriate
iterability hypotheses to the large cardinal assumptions then this construction can9

be carried out as far as, and even somewhat beyond, a superstrong cardinal, that
is, a cardinal κ such that there is an embedding i : V → M with critical point κ
such that Vj(κ) ⊆ κ. Doing so relies on a modification, due to Jensen and using12

a suggestion of Sy Friedman, of the construction of L[E ]. Suppose that E is a
(κ, λ)-extender to be added to the sequence E , where E cannot be represented as
an extender of length less than λ. The construction of [Mitchell and Steel, 1994]15

adds E as Eγ where γ = λ+ in L[E�λ+], because this value of γ was the least choice
so that the mapping E 7→ γ would be one-to-one. The Jensen construction sets
γ = iE(κ+), which avoids some anomalies in the construction but makes it more18

difficult to define a suitably coherent sequence E . This approach was introduced
in [Jensen, 1997], and a detailed exposition is given in the last part of the book
[Zeman, 2002].21

Most applications of the models L[E ] rely on core model techniques, which
will be discussed in the next subsection; however one striking application can be
described here. This history started with the development of Jensen’s definition of24

the principle �κ and the proof that it holds in L. This result had been extended
a number of times to larger models: by Solovay to L[U ], to KDJ by Welch [Welch,
1979], and for arbitrary sequences with measures of order 0 by Wylie [Wylie, 1989].27

Schimmerling [Schimmerling, 1995] extended this to a model with ∃κ o(κ) = κ++

and proved weaker square principles for larger models. Finally Schimmerling and
Zeman, working first independently and then together, completed this program.30

Jensen had defined a subcompact cardinal to be a cardinal κ such that for each
B ⊆ κ+ there is a µ < κ, A ⊆ µ+ and an elementary embedding j : (Hµ+ ,∈, A)→
(Hκ+ ,∈, B). This is a property somewhat stronger than superstrong, but weaker33

then κ+-supercompact, and Jensen had proved that �κ fails for any subcompact
cardinal. In [Schimmerling and Zeman, 2001; Schimmerling and Zeman, 2004],
Schimmerling and Zeman proved a partial converse: that �κ holds in any extender36

model L[E ] for any cardinal κ which is not subcompact.

5.3 L[E ] as a core model

The models presented in [Mitchell and Steel, 1994] gave the form for a core model.39

Like the core models previously developed by Dodd and Jensen and by Mitchell,
and unlike L[U ], they were built up recursively from below using mice, and so could
present an apparently minimal model for any cardinal smaller than a Woodin car-42
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dinal. Furthermore all of the previously described core models could be presented
as a model in the new form L[E ]. In the case of the Mitchell’s core model for
sequences of measures, and arguably even for the Dodd-Jensen core model KDJ,3

doing so yielded a great gain in clarity. However, [Mitchell and Steel, 1994] did
not present a core model construction: they relied on the Martin-Steel technique
for the proof of iterability, and that required starting with extenders in the real6

world, called background extenders. Indeed, the background extenders had to be
stronger than the extenders in the model L[E ]. Thus, like the model L[U ], they
would not give a model with a Woodin cardinal unless a Woodin cardinal was9

already known to exist in the universe. A core model construction, in contrast,
should expose the latent large cardinal structure even if the large cardinal has
been destroyed by, for example, a forcing extension collapsing cardinals.12

Before proceeding, it will be useful to compare the effect of Woodin cardinals
in an inner model with that of measurable cardinals. The presence of measurable
cardinals changed the theory in two major respects: (i) models were required to15

be iterable, rather than merely well-founded, and (ii) the covering lemma had to
be adapted to allow for the possible presence of Prikry sequences.

In the case of measurable cardinals, iterability can be ensured by using only18

countably complete measures. Furthermore, if M is a model with only measurable
cardinals for which all countable iterations are well-founded, then M us iterable
for arbitrary iterations. Hence any model M containing ω1 is iterable in V if21

and only if M |= “I am iterable” — indeed any iterated ultrapower in V can be
embedded into an iterated ultrapower which is defined inside M .

None of these observations are true for extenders. Two important conjectures24

assert that the first is true for countable iteration trees: If T is a countable iteration
tree, using only extenders which are countably complete in the model in which they
appear, then the cofinal branch hypothesis (CBH) asserts that T has a cofinal27

branch with a well-founded limit, and the unique branch hypothesis (UBH) asserts
that it has at most one such branch. Surprisingly, and fortunately, ω1+1-iterability,
that is, iterability for trees of length at most ω1, is sufficient for much of inner30

model theory.
This increased complexity of the concept of iterability does not actually begin

at a Woodin cardinal; in fact it is a consideration in any model with overlapping33

extenders. However it is mitigated, short of a Woodin cardinal, by the Martin-Steel
result in [Martin and Steel, 1994] that any iteration tree with two well-founded
branches of length δ induces a model in which δ is Woodin. This means that,36

except at a Woodin cardinal, the property of an iteration tree having a well-
founded branch is not changed by homogeneous forcing, such as a Levy collapse.

Clause (ii) above, the effect of Prikry forcing on the covering lemma at a mea-39

surable cardinal, is paralleled by a much larger effect at a Woodin cardinal: as
was pointed out earlier, the stationary tower forcing witnesses that a model with
a Woodin cardinal δ may not have even the weak covering property below δ.42

This goal of eliminating the need for background extenders in V was reached,
or nearly reached, by Steel [Steel, 1996] in 1990. The key observation was that a
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much weakened background extender could be used: an extender on a cardinal κ
would only need background extenders for κ-sized restrictions of the extender, and
such background extenders could be obtained by assuming the presence of a single3

measurable cardinal in V . By adapting the recursive construction of [Mitchell and
Steel, 1994] to this weaker notion of background extenders, he defined a model of
height Ω which he called Kc, corresponding to Mitchell’s countably closed core6

model Kc; in this case Steel took the superscript ‘c’ to mean “certified.” He
proved, assuming there is no inner model with a Woodin cardinal, that this model
satisfies what he called a “cheapo” covering lemma: if µ is the given measure on9

κ, then Kc is a model of height κ such that the set of cardinals λ < κ such that
λ+ = (λ+)K

c
is a member of µ. This version of the weak covering theorem implies

that Kc is universal (as a model of height Ω), and enabled him to define the true12

core model K as a elementary submodel of Kc. As with Mitchell’s core model
for sequences of measures, this proof gave an alternate direct definition of K, as
a model L[E ] where the members Eγ of the sequence are chosen by induction on15

γ; however the characterization of which extenders to add to the sequence so as
to ensure the final model is iterable is somewhat more delicate than in the case of
Mitchell’s model.18

Among the applications given in [Steel, 2002], Steel showed that if there is a
measurable cardinal Ω then the existence of a model with a Woodin cardinal follows
from the existence of a presaturated ideal on ω1, and the existence of a tree on VΩ21

with two cofinal well-founded branches implies the existence of a model with two
Woodin cardinals. In other applications, the assumption of a measurable cardinal
could be dispensed with because it was implied by the hypothesis, either in V or24

in an inner model. Thus the existence of a model with a Woodin cardinal follows
from Martin’s Maximum, from the assumption that every set of reals is weakly
homogeneous, or (using an unpublished result of Woodin) from the existence of27

a strongly compact cardinal. Steel also reproved Woodin’s result that a model
with a Woodin cardinal follows from ∆1

2 determinacy plus the assumption that a#

exists for all reals a, and in 1993 he extended a result of Jensen by showing that30

if there are two measurable cardinals in V , and there no Woodin cardinals in Kc,
then Kc is Σ1

3 correct.
The results of [Steel, 1996] raised several obvious questions. Is the measur-33

able cardinal really necessary? Does Steel’s core model satisfy the weak covering
property? Is there a core model for more than a single Woodin cardinal?

The first question was still unanswered at the end of the century. Although it36

was easy to see that the full strength of a measurable cardinal was not necessary,
it did not seem possible to fully eliminate the need for some large cardinal in V .
This has continued to be an active field of research during the first decade of the39

current century, and it seems likely that this problem has been solved by work of
Jensen and Steel.

The second question was answered by Mitchell, Schimmerling and Steel [Mitchell42

et al., 1997], who showed that if there is no model with a Woodin cardinal, then
(κ+)K = κ+ for all countably closed singular cardinals. The assumption of count-
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able closure was eliminated shortly afterward by Mitchell and Schimmerling in
[Mitchell and Schimmerling, 1995]. Another answer was given by Schimmerling
and Woodin in [Schimmerling and Woodin, 2001]: Suppose that L[E ] is an iterable3

extender model with no measurable cardinals and no extenders of superstrong type.
Then either a sharp exists for L[E ], or else cf((κ+)L[E]) ≥ |κ| whenever |κ| is a
countably closed cardinal. Note that although L[E ] does not have any measurable6

cardinals, it may have submodels L[E�γ] with Woodin or stronger cardinals.

Steel tackled the third question, of getting larger core models, in [Steel, 2002].
He succeeded in defining a model Kc as in [Steel, 1996], having the ‘cheapo’9

covering lemma, so long as there is no model of a non-tame mouse, that is, no
mouse having a Woodin cardinal δ and also an extender Eγ with crit(Eγ) < δ ≤ γ.
This construction of Kc required only ω1 + 1-iterability, that is, every suitable12

iteration tree of length at most ω1 has a branch. In order to obtain the model
K, however, he needed to show that the model was Ω + 1-iterable, that is, that
any iteration tree of height at most the measurable cardinal Ω had a well-founded15

branch. He was successful enough in this to show thatK exists, provided that there
is no model with infinitely many Woodin cardinals, and used this to show that
the existence of an Ω-iterable premouse of height Ω with infinitely many Woodin18

cardinals is equivalent to any of the following three statements: (i) the first-order
theory of L(R) is unchanged by small forcing, (ii) the Axiom of Determinacy Is
true in L(R) after any small forcing, and (iii) no small forcing extension adds21

an uncountable sequence of distinct reals in L(R). This was a result that had
been reached independently, and slightly different methods, by Woodin. Steel also
showed in [Steel, 2002] that a failure of the Unique Branch Hypothesis for trees of24

arbitrary length, that is, the existence of a nonoverlapping iteration tree T with
two distinct well-founded branches, implies that there is an inner model with ω
many Woodin cardinals.27

One of the obstacles to extending the construction Kc beyond the restriction to
tame mice in [Steel, 2002] was removed by Neeman and Steel [Neeman and Steel,
1999]. The proof of the Dodd-Jensen lemma, which is heavily used in establishing30

the basic fine structure, depends on the fact that iteration trees have at most one
well-founded branch, and this is not known to be true for the trees needed for
larger models. In this paper Neeman and Steel gave a variant of the Dodd-Jensen33

lemma, which they called the weak Dodd-Jensen lemma, which does not require
unique branching but which is strong enough for the construction of Kc. With
this result, iterability is the only gap that remains to be filled in order to construct36

Kc for any cardinal up to a superstrong cardinal. Andretta, Neeman and Steel
[Andretta et al., 2001] used the weak Dodd-Jensen lemma to show that Kc exists
provided that there is no non-domestic mouse, that is, that there is no sharp for39

a model with a proper class of Woodin cardinals and a proper class of strong
cardinals. This is currently the best result known on the existence of Kc.
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6 EPILOGUE

The end of the twentieth century is the cutoff date for this volume, but it is far
from being a natural end point for the subject of this chapter. The idea of trying3

to continue the exposition to the present, however, is countered by the observation
that the present is unlikely to be a better ending point, and that stopping at the
end of the century yields the benefit of a few years perspective. However it seems6

desirable to mention two recent advances which give at least partial answers to
major questions raised in this history, and which promise to be major subjects of
investigation in the future.9

One of these questions concerns the elimination of the measurable cardinal
which was needed by Steel in [Steel, 1996] to obtain a core model up to a Woodin
cardinal. After progress was made by several people, the problem appears to have12

been solved by the use of a new technique of Jensen, which he calls stacks of mice.
The technique was introduced in a paper by Jensen, Schimmerling, Schindler and
Steel [Jensen et al., 2009], which applies the technique to obtain a model with a15

nondomestic mouse from any of several hypotheses, including the failure of both
�κ and �(κ) at a countably closed cardinal κ ≥ ω3. The construction of K up to
a Woodin cardinal is due to Jensen and Steel, and is currently unpublished.18

The other major advance is due to Woodin, who has discovered a framework
which gives inner models for essentially every larger cardinal property which has
been considered, including properties involving nontrivial embeddings i : Vλ → Vλ.21

He avoids a problem, which Steel had called moving spaces and which seemed
to show that an extender model L[E ] could not contain cardinals larger than a
supercompact cardinal, by defining a modified extender model L[E ] in which the24

critical points of the extenders in the sequence E are bounded, and then showing
that the desired embeddings with larger critical point are constructed from E . This
work is as yet unpublished.27
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