Iterating Forcing using Models as Side Conditions

William Mitchell

Oct 3, 2006

1. Aims

This work is designed as a first step towards answering some problems involving $I\left[\lambda^{+}\right]$.

I proved in [Mit07a]:
Theorem 1. If there is a κ^{+}-Mahlo cardinal then there is a generic extension in which there is no stationary $S \subset \operatorname{Cof}\left(\omega_{2}\right)$ such that $S \in I\left[\omega_{2}\right]$.

This, together with results of Shelah, raises several questions:
Question 2. 1. Can we get, for any regular λ, a model in which $I\left[\lambda^{+}\right] \upharpoonright \operatorname{Cof}(\lambda) \subseteq$ $\mathrm{NS}_{\lambda^{+}}$?
2. Can we get, for singular λ, a model in which for each regular μ such that $\omega<\mu<\lambda$, a stationary set $S \subseteq \operatorname{Cof}(\mu)$ which is not in $I\left[\lambda^{+}\right]$.
3. Can the conclusion of Theorem 1 hold for two successive cardinals, say $I\left[\omega_{2}\right]$ and $I\left[\omega_{3}\right]$?
I believe that I can answer item 1 affirmatively for λ of the form μ^{+} where $\mu^{<\mu}=\mu$ and $2^{\mu}=\mu^{+}$. This talk discusses a step towards answering item 3 by showing that the use of models as side conditions can be applied simultaneously at ω_{2} and ω_{3}. I expect that this will enable a full positive answer to item 3. This is likely to be a small, but necessary, step towards a positive answer to item 2 , or to item 1 with λ a limit cardinal.

2. Models as side conditions

The conditions for the $I\left[\omega_{2}\right]$ model are finite sets which contain two types of "requirements":

1. Specifications towards a nested sequence of new club sets of the κ^{+}Mahlo cardinal κ :
2. The "side conditions" - countable models $M \prec H_{\kappa^{+}}$.

The members of a condition p must satisify certain compatibility requirements. In order to simplify the discussion we will consider the simplified forcing with conditions containing only models, and with models $M \prec H_{\kappa}$ instead of $M \prec H_{\kappa}$. For this forcing we only need one compatibility condition: if p is a condition and $M, M^{\prime} \in p$ then either $M \cap M^{\prime} \in M$ or else $M \cap M^{\prime}$ is an initial segment of M.

If κ is Mahlo then this forcing gives a model in which $\kappa=\omega_{2}$ and there are no special ω_{2}-Aronszajn trees; if κ is weakly compact then the resulting model has no ω_{2}-Aronszajn trees.

Definition 3. If \mathbb{P} is a forcing and M a model, then a condition $p \in \mathbb{P}$ is strongly M, \mathbb{P}-generic if $p \Vdash$ " $\dot{G} \cap M$ is a V-generic subset of $\mathbb{P} \cap M$."

Equivalently: there is a function $r \mapsto r \mid M$ such that if $r \leq p$ then $r \mid M \in \mathbb{P} \cap M$, and every $q \leq r$ in $\mathbb{P} \cap M$ is compatible with r. The condition p is said to be tidily strongly M, \mathbb{P}-generic if \mathbb{P} has meets and the function $r \mapsto r \mid M$ satisifies $\left(r \wedge r^{\prime}\right)|M=r| M \wedge r^{\prime} \mid M$ whenever $r \leq p, r^{\prime} \leq p$, and $r \wedge r \neq \mathbf{0}$.

The forcing under consideration satisfies:
Lemma 4. 1. If $M \in p$ then p is tidily strongly M-generic.
2. If $H_{\delta} \prec H_{\kappa}$ and δ is inaccessible then any condition p is tidily strongly H_{δ}-generic.

The first statement implies that \mathbb{P} is proper, and hence preserves ω_{1}. The two together imply that the forcing has the following property: If δ is as in item 2, and $x \in V[G]$ is a subset of δ such that $x \cap \eta \in V\left[G \cap H_{\delta}\right]$ for all $\eta<\delta$, then $x \in V\left[G \cap H_{\delta}\right]$.

3. "Iterating" this forcing

The forcing \mathbb{P}_{2} can readily be extended to any cardinal $\lambda^{+}>\omega_{2}$ where $\lambda=\mu^{+}$for a regular cardinal μ such that $\mu^{<\mu}=\mu$ and $2^{\mu}=\mu^{+}=\lambda$. The forcing in this case uses as conditions sets of size less than μ containing models $M \prec H_{\kappa}$ of size μ with $\mu \subset M$. We would like to do this for two consecutive cardinals. Let $\kappa_{2}<\kappa_{3}$ be Mahlo cardinals; we will discuss a forcing $\mathbb{P}_{2} \star \mathbb{P}_{3}$ which makes $\kappa_{2} \mapsto \omega_{2}$ and $\kappa_{2} \mapsto \omega_{3}$ and which has the effect of performing the forcing above for both κ_{2} and κ_{3}.

Note that a straightforward iterated forcing $\mathbb{P}_{2} * \dot{\mathbb{P}}_{3}$ does not work forcing with \mathbb{P}_{2} makes $2^{\omega}=\omega_{2}$, while \mathbb{P}_{3} requires $2^{\omega}=\omega_{1}$. Also, $\mathbb{P}_{2} \times \mathbb{P}_{3}$ almost certainly does not work, as \mathbb{P}_{3} will undo the work of \mathbb{P}_{2}.

The forcing \mathbb{P}_{2} will be as described: Let \mathcal{M}_{2} be the set of countable $M \prec H_{\kappa_{2}}$. Then \mathbb{P}_{2} is the set of finite pairwise compatible subsets of \mathcal{M}_{2}.

The set \mathcal{M}_{3} of models for \mathbb{P}_{3} is the set of models $M \prec H_{\kappa_{3}}$ of size less than κ_{2} such that $\omega_{1} \subset M$ and ${ }^{<\delta^{M}} M \subset M$, where $\delta^{M}=\kappa_{2} \cap M \in \kappa_{2}$. Notice that if G_{2} is a generic subset of \mathbb{P}_{2}, then $M\left[G_{2} \cap M\right] \prec H_{\kappa_{3}}\left[G_{2}\right]$ will be a member of $\mathcal{M}_{3}^{V\left[G_{2}\right]}$, which would be the set of models we would use if were were trying to form $\mathbb{P}_{2} * \dot{\mathbb{P}}_{3}$.

The combined forcing $\mathbb{P}_{2} \star \mathbb{P}_{3}$ will have conditions of the form $(p,(\dot{q}, X))$ where

1. $p \in \mathbb{P}_{2}$.
2. \dot{q} is a \mathbb{P}_{2}-term for a countable subset of \mathcal{M}_{3}.
3. X can be ignored for now (and until X is introduced we write conditions in $\mathbb{P}_{2} \star \mathbb{P}_{3}$ as (p, \dot{q})

Aside from the properties of \mathbb{P}_{2}, we have four important properties which $\mathbb{P}_{2} \star \mathbb{P}_{3}$ should satisfy:

1. Strong genericity - if $M \in \mathcal{M}_{3}$ and $p \Vdash M \in \dot{q}$ then (p, \dot{q}) forces that $\dot{G} \cap M$ is a V-generic subset of $\left(\mathbb{P}_{2} \star \mathbb{P}_{3}\right) \cap M$. (Strong genericity for H_{δ}, with δ inaccessibile and $\kappa_{2}<\delta<\kappa_{3}$, is straightforward. Of course $\mathbb{P}_{2} \star \mathbb{P}_{3}$ will not have strongly M-generic conditions for $M \in \mathcal{M}_{2}$.)
2. \mathbb{P}_{3} is countably closed: if $\left(p, \dot{q}_{1}\right) \geq\left(p, \dot{q}_{2}\right) \geq \ldots$ then $\dot{q}=\bigcup_{n} \dot{q}_{n}$ is a condition and $\left(p, \dot{q}_{n}\right) \geq(p, \dot{q})$ for each n.
3. If $\left(p^{\prime}, \dot{q}^{\prime}\right) \leq(p, \dot{q})$ then there is $\dot{q}^{\prime \prime}$ so that $\left(p, \dot{q}^{\prime \prime}\right) \leq(p, \dot{q})$ and $\left(p^{\prime}, \dot{q}^{\prime \prime}\right) \leq$ $\left(p^{\prime}, \dot{q}^{\prime}\right)$.
4. Suppose that $\delta<\kappa_{2}$ is inaccessible and $H_{\delta} \prec H_{\kappa_{2}}$. Further suppose that \dot{q}_{0} and \dot{q}_{1} are terms such that $\left(p, \dot{q}_{i}\right) \leq(p, \dot{q})$ for $i=0,1$, and that p forces that $\dot{q}_{0}\left|M=\dot{q}_{1}\right| M$ for all $M \in \dot{q}$ with $\delta^{M} \leq \delta$. Then there are terms $\dot{q}^{\prime \prime}$ and $p_{0}, p_{1} \leq p$ in \mathbb{P}_{2} such that (i) $p_{0}\left|M=p_{1}\right| M$, (ii) $\left(p, \dot{q}^{\prime \prime}\right) \leq(p, \dot{q})$, and (iii) $\left(p_{i}, \dot{q}^{\prime \prime}\right) \leq\left(p, \dot{q}_{i}\right)$.
[^0]The next definition is needed so that we have any hope of satisfying the first property.

Definition 5. A model M captures a term \dot{q} below $p \in \mathbb{P}_{2}$ if $p \Vdash M \in \dot{q}$ and there is a $\mathbb{P}_{2} \cap M$-term $\dot{\tau}$ such that $p \Vdash \dot{q}=\dot{\tau}$.

Equivalently, M captures \dot{q} below p if $p \Vdash M \in \dot{q}$ and for all $r \leq p$ and $M^{\prime} \in M, r \Vdash M^{\prime} \in \dot{q}$ if and only if $r \mid M \wedge p \Vdash M^{\prime} \in \dot{q}$.

We require of a condition (p, \dot{q}) that it satisfy dense capturing - for each model $M \in \mathcal{M}_{3}$, there is a dense set of conditions $r \leq p$ such that either $r \Vdash M \notin \dot{q}$ or else M captures \dot{q} below r.

Dense capturing will not be preserved by countable unions, so in order to satisfy the second property the definition of ordering will require that capture is preserved - if $\left(p^{\prime}, \dot{q}^{\prime}\right) \leq(p, \dot{q})$ and M captures \dot{q} below some $r \leq p^{\prime}$ then M also captures \dot{q}^{\prime} below r.

The third property is needed to make use of the countable closure of \mathbb{P}_{3}. In particular it is used to show that $\mathbb{P}_{2} \star \mathbb{P}_{3}$ is proper: suppose that $M \prec H_{\tau}$ is a countable model with τ large enough that $\mathbb{P}_{2} \star \mathbb{P}_{3} \in M$. Then $M \cap H_{\kappa_{2}} \in \mathcal{M}_{2}$; Let (p, \dot{q}) be a condition with $M \cap H_{\kappa_{2}} \in p$, and $\dot{q} \in M$. Now use property 2 to find a condition $\dot{q}^{\prime} \leq q$ so that $\left\{\dot{q}^{\prime \prime} \in M: \dot{q}^{\prime \prime} \leq \dot{q}^{\prime}\right\}$ is M-generic for the partial order defined by $\left(\dot{q}_{0} \leq \dot{q}_{1}\right.$ if $\left(p \mid M, \dot{q}_{0}\right) \leq\left(p \mid M, \dot{q}_{1}\right)$. The third property then implies that $\left(p, \dot{q}^{\prime}\right)$ is a $M, \mathbb{P}_{2} \star \mathbb{P}_{3}$-generic condition.

The preservation of capturing is not enough to make the third condition true. The next definition fills this gap:

Definition 6. We say that a triple $\left(M, p, p^{\prime}\right)$ is a \dot{q}-linkage if $p_{2}\left|M=p_{1}\right| M$, M captures \dot{q} below either p and p^{\prime}, and the witnessing term $\dot{\tau}$ is the same in each case.

As a special case, a triple (M, p, p) is a \dot{q}-linkage if and only if M captures \dot{q} below p.

Other linkages arise when a model $M \in \mathcal{M}_{3}$ captures \dot{q} below both p and p^{\prime}, where p and p^{\prime} are conditions such that $p\left|M=p^{\prime}\right| M$ and $p \wedge p^{\prime} \neq \mathbf{0}$. If the captures are witnessed by $\dot{\tau}$ and $\dot{\tau}^{\prime}$, respectively, then we must have that $p \mid M \Vdash \dot{\tau}=\dot{\tau}^{\prime}$. Further linkages can be added to the ends to create longer chains.

This is a problem in the following sort of situation: Suppose that $\left(p^{\prime}, \dot{q}^{\prime}\right) \leq$ (p, \dot{q}) and that p_{0}, p_{1} and p_{2} are conditions below p such that $p_{i} \mid M$ is the same for all, and M captures \dot{q} below any p_{i}. Suppose further that the four adjacent pairs of conditions in the chain $\left(p^{\prime}, p_{0}, p_{1}, p_{2}, p^{\prime}\right)$ are compatible, and the other two pairs are incompatible. Then $\left(M, p^{\prime} \cap p_{0}, p^{\prime} \cap p_{2}\right)$ is a \dot{q} linkage,
and since it is implies by captures of \dot{q}, preservation of capture implies that it must be a $\dot{q}^{\prime \prime}$ linkage for any $\left(p, \dot{q}^{\prime \prime}\right) \leq(p, \dot{q})$. However preservation of capture below p, as would be required for the extension $\left(p^{\prime}, \dot{q}^{\prime}\right) \leq(p, \dot{q})$ in the third requirement, is not enough to insure that it is a \dot{q}^{\prime}-linkage. Thus we require that linkages, as well as captures, are preserved when $\left(p^{\prime}, \dot{q}^{\prime}\right) \leq(p, \dot{q})$.

This completes the description of the forcing, except for one problem: the forcing, as described so far, does not have meets. Suppose \dot{q}_{0} and \dot{q}_{1} are two compatible terms, and assume for simplicity that $\dot{q}_{0} \cup \dot{q}_{1}$ preserves all links holding in either \dot{q}_{0} or \dot{q}_{1}. If the forcing has meets, then $\left(\emptyset, \dot{q}_{0}\right) \wedge\left(\emptyset, \dot{q}_{1}\right)$ must be equal to $\left(\emptyset, \dot{q}_{0} \cup \dot{q}_{1}\right)$, since any \dot{a}^{\prime} extending both terms must also contain $\dot{q}_{0} \cup \dot{q}_{1}$. However it is possible to choose \dot{q}_{0} and \dot{q}_{1} so that there is a $\dot{q}_{0} \cup \dot{q}_{1}$-linkage ℓ which is not a \dot{q}_{0}-linkage or a \dot{q}_{1}-linkage. In this case we can find extensions $\dot{q}_{i}^{\prime} \supset \dot{q}_{i}$ for $i=0,1$ which violate the linkage ℓ in such a way that ℓ is not a \dot{q}^{\prime}-linkage for any $\dot{q}^{\prime} \supseteq \dot{q}_{0}^{\prime} \cup \dot{q}_{1}^{\prime}$. Then $\left(\emptyset, \dot{q}_{0}^{\prime} \cup \dot{q}_{1}^{\prime}\right)$ is a common extension of $\left(\emptyset, \dot{q}_{0}\right)$ and $\left(\emptyset, \dot{q}_{1}\right)$ which is not compatible with $\left(\emptyset, \dot{q}_{0} \cup \dot{q}_{1}\right)$.

The coordinate X in a condition $(p,(\dot{q}, X))$, which has been ignored to this point, avoids this problem. It is a countable set of \dot{q}-linkages which is large enough to witness dense capturing, and which is closed under the chains of linkages described earlier. Here "witnesses dense capturing" means that for any $p^{\prime}<p$ and any $M \in \mathcal{M}_{3}$ such that $p^{\prime} \Vdash M \in \dot{q}$ there is a capture - that is a linkage (M, r, r)-in X such that $r \wedge p^{\prime} \neq \mathbf{0}$.

Now the ordering on $\mathbb{P}_{2} \star \mathbb{P}_{3}$ is defined by $\left(p^{\prime},\left(\dot{q}^{\prime}, X^{\prime}\right)\right) \leq(p,(\dot{q}, X))$ if $p^{\prime} \leq p, p \Vdash \dot{q}^{\prime} \supseteq \dot{q}$, and $X^{\prime} \supseteq X$. Since each member of X^{\prime} is a \dot{q}^{\prime}-linkage, this ensures that the linkages in X are preserved by the extension.

To be more explicit about the use of the set X, we make another definition.

Definition 7. We define the link closure $\mathcal{L}_{X}(\dot{q})$ to be the smallest term $\dot{q}^{\prime} \supseteq \dot{q}$ such that X is a set of \dot{q}^{\prime}-links.

In other words, whenever $\left(M, r, r^{\prime}\right) \in X$ and $\left(p, M^{\prime}\right) \in \dot{q}$ for some $M^{\prime} \in$ $\mathcal{M}_{3} \cap M$ and some condition p such that $p \wedge r \neq \mathbf{0}$, then $\left((p \wedge r) \mid M \wedge r^{\prime}, M^{\prime}\right) \in$ \dot{q}^{\prime}.

In general, the members of the set denoted by the term \dot{q}^{\prime} need not be compatible, but we do have the following observation:

Proposition 8. Suppose that $\dot{q}^{\prime \prime} \supseteq \dot{q}$ is a term denoting a compatible set such that X is a set of $\dot{q}^{\prime \prime}$-linkages. Then $\mathcal{L}_{X}(\dot{q})$ is a term denoting a set of pairwise compatible models, and $\dot{q}^{\prime \prime} \supseteq \mathcal{L}_{X}(\dot{q}) \supseteq \dot{q}$.

Thus the meet of two compatible terms $\left(p_{0},\left(\dot{q}_{0}, X_{0}\right)\right)$ and $\left(p_{1},\left(\dot{q}_{1}, X_{1}\right)\right)$ is given by $\left(p_{0} \wedge p_{1},\left(\mathcal{L}_{X_{0} \cup X_{1}}\left(\dot{q}_{0} \cup \dot{q}_{1}\right), X_{0} \cup X_{1}\right)\right)$.

The link closure is also used for the proof of the last two of the four properties. For the third property, suppose that $\left(p^{\prime},\left(\dot{q}^{\prime}, X^{\prime}\right)\right) \leq(p,(\dot{q}, X))$. We can assume that p is a support of \dot{q}^{\prime} in the sense that $r \leq p^{\prime}$ whenever there is M such that $r \Vdash M \in \dot{q}^{\prime}$. Then the required term $\dot{q}^{\prime \prime}$ is $\mathcal{L}_{X}\left(\dot{q}^{\prime}\right) \cup \dot{q}$. An easy argument shows that $\dot{q}^{\prime \prime}=\mathcal{L}_{X \cup X^{\prime}}\left(\dot{q} \cup \dot{q}^{\prime}\right)$ and that $\dot{q}^{\prime \prime}$ is as required.

Similarly, for the fourth property we are given (p, \dot{q}) and $\left(p, \dot{q}_{i}\right)$ for $i=$ 0,1 . We use the fact that \mathbb{P}_{2} is a member of any $M \in \mathcal{M}_{3}$ to show that there are incompatible $p_{i} \leq p$ for $i=0,1$ such that $p_{i} \backslash p$ is a member of any model $M^{\prime} \in \dot{q}$ with $\delta^{M^{\prime}}>\delta$. Now let q_{i}^{\prime} be q_{i} restricted to p_{i}, that is, $p_{i} \Vdash \dot{q}_{i}^{\prime}=\dot{q}_{i}$ and $r \Vdash \dot{q}_{i}^{\prime}=\emptyset$ whenever $r \wedge p_{i}=\mathbf{0}$. Then it can be shown that the hypotheses imply that $\dot{q}^{\prime \prime}=\dot{q} \cup \mathcal{L}_{X_{0}}\left(\dot{q}_{0}^{\prime}\right) \cup \mathcal{L}_{X_{1}}\left(\dot{q}_{1}^{\prime}\right)$ is as required. ${ }^{2}$

Conditions 3 and 4 are based on the hypothesis of the main result of [Mit07b]. They are used in order to show that if $M \in \mathcal{M}_{3}$ and $p \Vdash M \in \dot{q}$, and if x is a subset of $\delta=\delta^{M}$ in the extension $V\left[G_{2} \star G_{3}\right]$ such that every initial part of x is in $V\left[\left(G_{2} \star G_{3}\right) \cap M\right]$, then $x \in V\left[\left(G_{2} \star G_{3}\right) \cap \operatorname{Mrest}_{\delta}(\dot{q})\right]$.

If the main result of [Mit07b] held, as stated in that paper, for this forcing then we would have the conclusion $x \in V\left[\left(G_{2} \star G_{3}\right) \cap M\right]$ instead of $x \in V\left[\left(G_{2} \star G_{3}\right) \cap \operatorname{Mrest}_{\delta}(\dot{q})\right]$. I don't know whether the stronger conclusion holds, and I also don't know of any way to use the weaker conclusion to show that there are no Aronszajn trees on κ_{2}, as Uri Abraham does in [Abr83] starting with the assumption that κ_{3} is supercompact. However the proof that δ is not collapsed by $\left(\mathbb{P}_{2} \star \mathbb{P}_{3}\right) \cap M$ does seem to extend to show that it is not collapsed by $\left(\mathbb{P}_{2} \star \mathbb{P}_{3}\right) \cap$ Mrest. This is sufficient to get a model with no special ω_{2} - or ω_{3}-Aronszajn trees, and will probably be sufficient to prove that the forcing for the $I\left[\omega_{2}\right]$ and $I\left[\omega_{3}\right]$ property has the desired properties.

References

[Abr83] Uri Abraham. Aronszajn trees on \aleph_{2} and \aleph_{3}. Ann. Pure Appl. Logic, 24(3):213-230, 1983.

[^1][Mit07a] William J. Mitchell. $I\left[\omega_{2}\right]$ can be the nonstationary ideal on $\operatorname{Cof}\left(\omega_{1}\right)$. submitted to Transactions of the American Mathematical Society, arXiv:math.LO/0407225, 2007?
[Mit07b] William J. Mitchell. On the hamkins approximation property. to appear in the Proceedings of the Baumgartner Festival, held 2003 at Dartmouth University, in the Annals of Pure and Applied Logic, 2007?

[^0]: ${ }^{1}$ Do I actally want this? - Write $\operatorname{Mrest}_{\delta}(\dot{q})=\bigcup\left\{M^{\prime}: \delta^{M^{\prime}} \leq \delta \quad \& \quad \exists p^{\prime} \in G_{2} p \Vdash\right.$ $\left.M^{\prime} \in \dot{q}\right\}$.

[^1]: ${ }^{2}$ For the more general forcing in which models in \mathcal{M}_{2} are $M \prec H_{\kappa_{2}^{+}}$this leads to a problem, which can be solved by having \mathcal{M}_{2} have as models elementary substructures of both $H_{\kappa_{2}}$ and $H_{\kappa_{2}^{+}}$. I've noticed that this is probably also needed with \mathcal{M}_{3} for other reasons. In this case we would require $M \cap H_{\kappa_{2}}: q$ whenever $M \prec H_{\kappa_{2}^{+}} \in \dot{q}$. (Actually the same effect can probably be reached without the extra models.

