Iterating Forcing using Models as Side Conditions

William Mitchell

Oct 3, 2006

1. Aims

This work is designed as a first step towards answering some problems involving $I[\lambda^+]$.

I proved in [Mit07a]:

Theorem 1. If there is a κ^+ -Mahlo cardinal then there is a generic extension in which there is no stationary $S \subset \operatorname{Cof}(\omega_2)$ such that $S \in I[\omega_2]$.

This, together with results of Shelah, raises several questions:

- **Question 2.** 1. Can we get, for any regular λ , a model in which $I[\lambda^+] \upharpoonright \operatorname{Cof}(\lambda) \subseteq \operatorname{NS}_{\lambda^+}$?
 - 2. Can we get, for singular λ , a model in which for each regular μ such that $\omega < \mu < \lambda$, a stationary set $S \subseteq Cof(\mu)$ which is not in $I[\lambda^+]$.
 - 3. Can the conclusion of Theorem 1 hold for two successive cardinals, say $I[\omega_2]$ and $I[\omega_3]$?

I believe that I can answer item 1 affirmatively for λ of the form μ^+ where $\mu^{<\mu} = \mu$ and $2^{\mu} = \mu^+$. This talk discusses a step towards answering item 3 by showing that the use of models as side conditions can be applied simultaneously at ω_2 and ω_3 . I expect that this will enable a full positive answer to item 3. This is likely to be a small, but necessary, step towards a positive answer to item 2, or to item 1 with λ a limit cardinal.

2. Models as side conditions

The conditions for the $I[\omega_2]$ model are finite sets which contain two types of "requirements":

1. Specifications towards a nested sequence of new club sets of the κ^+ -Mahlo cardinal κ :

2. The "side conditions" — countable models $M \prec H_{\kappa^+}$.

The members of a condition p must satisfy certain compatibility requirements. In order to simplify the discussion we will consider the simplified forcing with conditions containing only models, and with models $M \prec H_{\kappa}$ instead of $M \prec H_{\kappa}$. For this forcing we only need one compatibility condition: if p is a condition and $M, M' \in p$ then either $M \cap M' \in M$ or else $M \cap M'$ is an initial segment of M.

If κ is Mahlo then this forcing gives a model in which $\kappa = \omega_2$ and there are no special ω_2 -Aronszajn trees; if κ is weakly compact then the resulting model has no ω_2 -Aronszajn trees.

Definition 3. If \mathbb{P} is a forcing and M a model, then a condition $p \in \mathbb{P}$ is strongly M, \mathbb{P} -generic if $p \Vdash "\dot{G} \cap M$ is a V-generic subset of $\mathbb{P} \cap M$."

Equivalently: there is a function $r \mapsto r|M$ such that if $r \leq p$ then $r|M \in \mathbb{P} \cap M$, and every $q \leq r$ in $\mathbb{P} \cap M$ is compatible with r. The condition p is said to be *tidily* strongly M, \mathbb{P} -generic if \mathbb{P} has meets and the function $r \mapsto r|M$ satisifies $(r \wedge r')|M = r|M \wedge r'|M$ whenever $r \leq p, r' \leq p$, and $r \wedge r \neq \mathbf{0}$.

The forcing under consideration satisfies:

Lemma 4. 1. If $M \in p$ then p is tidily strongly M-generic.

2. If $H_{\delta} \prec H_{\kappa}$ and δ is inaccessible then any condition p is tidily strongly H_{δ} -generic.

The first statement implies that \mathbb{P} is proper, and hence preserves ω_1 . The two together imply that the forcing has the following property: If δ is as in item 2, and $x \in V[G]$ is a subset of δ such that $x \cap \eta \in V[G \cap H_{\delta}]$ for all $\eta < \delta$, then $x \in V[G \cap H_{\delta}]$.

3. "Iterating" this forcing

The forcing \mathbb{P}_2 can readily be extended to any cardinal $\lambda^+ > \omega_2$ where $\lambda = \mu^+$ for a regular cardinal μ such that $\mu^{<\mu} = \mu$ and $2^{\mu} = \mu^+ = \lambda$. The forcing in this case uses as conditions sets of size less than μ containing models $M \prec H_{\kappa}$ of size μ with $\mu \subset M$. We would like to do this for two consecutive cardinals. Let $\kappa_2 < \kappa_3$ be Mahlo cardinals; we will discuss a forcing $\mathbb{P}_2 \star \mathbb{P}_3$ which makes $\kappa_2 \mapsto \omega_2$ and $\kappa_2 \mapsto \omega_3$ and which has the effect of performing the forcing above for both κ_2 and κ_3 . Note that a straightforward iterated forcing $\mathbb{P}_2 * \mathbb{P}_3$ does not work forcing with \mathbb{P}_2 makes $2^{\omega} = \omega_2$, while \mathbb{P}_3 requires $2^{\omega} = \omega_1$. Also, $\mathbb{P}_2 \times \mathbb{P}_3$ almost certainly does not work, as \mathbb{P}_3 will undo the work of \mathbb{P}_2 .

The forcing \mathbb{P}_2 will be as described: Let \mathcal{M}_2 be the set of countable $M \prec H_{\kappa_2}$. Then \mathbb{P}_2 is the set of finite pairwise compatible subsets of \mathcal{M}_2 .

The set \mathcal{M}_3 of models for \mathbb{P}_3 is the set of models $M \prec H_{\kappa_3}$ of size less than κ_2 such that $\omega_1 \subset M$ and ${}^{<\delta^M}M \subset M$, where $\delta^M = \kappa_2 \cap M \in \kappa_2$. Notice that if G_2 is a generic subset of \mathbb{P}_2 , then $M[G_2 \cap M] \prec H_{\kappa_3}[G_2]$ will be a member of $\mathcal{M}_3^{V[G_2]}$, which would be the set of models we would use if were were trying to form $\mathbb{P}_2 * \dot{\mathbb{P}}_3$.

The combined forcing $\mathbb{P}_2 \star \mathbb{P}_3$ will have conditions of the form $(p, (\dot{q}, X))$ where

- 1. $p \in \mathbb{P}_2$.
- 2. \dot{q} is a \mathbb{P}_2 -term for a countable subset of \mathcal{M}_3 .
- X can be ignored for now (and until X is introduced we write conditions in P₂ ★ P₃ as (p, q)

Aside from the properties of \mathbb{P}_2 , we have four important properties which $\mathbb{P}_2 \star \mathbb{P}_3$ should satisfy:

- 1. Strong genericity if $M \in \mathcal{M}_3$ and $p \Vdash M \in \dot{q}$ then (p, \dot{q}) forces that $\dot{G} \cap M$ is a V-generic subset of $(\mathbb{P}_2 \star \mathbb{P}_3) \cap M$. (Strong genericity for H_{δ} , with δ inaccessibile and $\kappa_2 < \delta < \kappa_3$, is straightforward. Of course $\mathbb{P}_2 \star \mathbb{P}_3$ will not have strongly M-generic conditions for $M \in \mathcal{M}_2$.)
- 2. \mathbb{P}_3 is countably closed: if $(p, \dot{q}_1) \ge (p, \dot{q}_2) \ge \ldots$ then $\dot{q} = \bigcup_n \dot{q}_n$ is a condition and $(p, \dot{q}_n) \ge (p, \dot{q})$ for each n.
- 3. If $(p', \dot{q}') \leq (p, \dot{q})$ then there is \dot{q}'' so that $(p, \dot{q}'') \leq (p, \dot{q})$ and $(p', \dot{q}'') \leq (p', \dot{q}')$.
- 4. Suppose that $\delta < \kappa_2$ is inaccessible and $H_{\delta} \prec H_{\kappa_2}$. Further suppose that \dot{q}_0 and \dot{q}_1 are terms such that $(p, \dot{q}_i) \leq (p, \dot{q})$ for i = 0, 1, and that p forces that $\dot{q}_0|M = \dot{q}_1|M$ for all $M \in \dot{q}$ with $\delta^M \leq \delta$. Then there are terms \dot{q}'' and $p_0, p_1 \leq p$ in \mathbb{P}_2 such that (i) $p_0|M = p_1|M$, (ii) $(p, \dot{q}'') \leq (p, \dot{q})$, and (iii) $(p_i, \dot{q}'') \leq (p, \dot{q}_i)$.

¹

¹Do I actally want this? — Write $\operatorname{Mrest}_{\delta}(\dot{q}) = \bigcup \{ M' : \delta^{M'} \leq \delta \& \exists p' \in G_2 \ p \Vdash M' \in \dot{q} \}.$

The next definition is needed so that we have any hope of satisfying the first property.

Definition 5. A model M captures a term \dot{q} below $p \in \mathbb{P}_2$ if $p \Vdash M \in \dot{q}$ and there is a $\mathbb{P}_2 \cap M$ -term $\dot{\tau}$ such that $p \Vdash \dot{q} = \dot{\tau}$.

Equivalently, M captures \dot{q} below p if $p \Vdash M \in \dot{q}$ and for all $r \leq p$ and $M' \in M, r \Vdash M' \in \dot{q}$ if and only if $r \mid M \land p \Vdash M' \in \dot{q}$.

We require of a condition (p, \dot{q}) that it satisfy *dense capturing* — for each model $M \in \mathcal{M}_3$, there is a dense set of conditions $r \leq p$ such that either $r \Vdash M \notin \dot{q}$ or else M captures \dot{q} below r.

Dense capturing will not be preserved by countable unions, so in order to satisfy the second property the definition of ordering will require that capture is preserved — if $(p', \dot{q}') \leq (p, \dot{q})$ and M captures \dot{q} below some $r \leq p'$ then M also captures \dot{q}' below r.

The third property is needed to make use of the countable closure of \mathbb{P}_3 . In particular it is used to show that $\mathbb{P}_2 \star \mathbb{P}_3$ is proper: suppose that $M \prec H_{\tau}$ is a countable model with τ large enough that $\mathbb{P}_2 \star \mathbb{P}_3 \in M$. Then $M \cap H_{\kappa_2} \in \mathcal{M}_2$; Let (p, \dot{q}) be a condition with $M \cap H_{\kappa_2} \in p$, and $\dot{q} \in M$. Now use property 2 to find a condition $\dot{q}' \leq q$ so that $\{\dot{q}'' \in M : \dot{q}'' \leq \dot{q}'\}$ is M-generic for the partial order defined by $(\dot{q}_0 \leq \dot{q}_1 \text{ if } (p|M, \dot{q}_0) \leq (p|M, \dot{q}_1)$. The third property then implies that (p, \dot{q}') is a $M, \mathbb{P}_2 \star \mathbb{P}_3$ -generic condition.

The preservation of capturing is not enough to make the third condition true. The next definition fills this gap:

Definition 6. We say that a triple (M, p, p') is a \dot{q} -linkage if $p_2|M = p_1|M$, M captures \dot{q} below either p and p', and the witnessing term $\dot{\tau}$ is the same in each case.

As a special case, a triple (M, p, p) is a \dot{q} -linkage if and only if M captures \dot{q} below p.

Other linkages arise when a model $M \in \mathcal{M}_3$ captures \dot{q} below both pand p', where p and p' are conditions such that p|M = p'|M and $p \wedge p' \neq \mathbf{0}$. If the captures are witnessed by $\dot{\tau}$ and $\dot{\tau}'$, respectively, then we must have that $p|M \Vdash \dot{\tau} = \dot{\tau}'$. Further linkages can be added to the ends to create longer chains.

This is a problem in the following sort of situation: Suppose that $(p', \dot{q}') \leq (p, \dot{q})$ and that p_0 , p_1 and p_2 are conditions below p such that $p_i|M$ is the same for all, and M captures \dot{q} below any p_i . Suppose further that the four adjacent pairs of conditions in the chain (p', p_0, p_1, p_2, p') are compatible, and the other two pairs are incompatible. Then $(M, p' \cap p_0, p' \cap p_2)$ is a \dot{q} linkage,

and since it is implies by captures of \dot{q} , preservation of capture implies that it must be a \dot{q}'' linkage for any $(p, \dot{q}'') \leq (p, \dot{q})$. However preservation of capture below p, as would be required for the extension $(p', \dot{q}') \leq (p, \dot{q})$ in the third requirement, is not enough to insure that it is a \dot{q}' -linkage. Thus we require that linkages, as well as captures, are preserved when $(p', \dot{q}') \leq (p, \dot{q})$.

This completes the description of the forcing, except for one problem: the forcing, as described so far, does not have meets. Suppose \dot{q}_0 and \dot{q}_1 are two compatible terms, and assume for simplicity that $\dot{q}_0 \cup \dot{q}_1$ preserves all links holding in either \dot{q}_0 or \dot{q}_1 . If the forcing has meets, then $(\emptyset, \dot{q}_0) \land (\emptyset, \dot{q}_1)$ must be equal to $(\emptyset, \dot{q}_0 \cup \dot{q}_1)$, since any \dot{a}' extending both terms must also contain $\dot{q}_0 \cup \dot{q}_1$. However it is possible to choose \dot{q}_0 and \dot{q}_1 so that there is a $\dot{q}_0 \cup \dot{q}_1$ -linkage ℓ which is not a \dot{q}_0 -linkage or a \dot{q}_1 -linkage. In this case we can find extensions $\dot{q}'_i \supset \dot{q}_i$ for i = 0, 1 which violate the linkage ℓ in such a way that ℓ is not a \dot{q}' -linkage for any $\dot{q}' \supseteq \dot{q}'_0 \cup \dot{q}'_1$. Then $(\emptyset, \dot{q}'_0 \cup \dot{q}'_1)$ is a common extension of (\emptyset, \dot{q}_0) and (\emptyset, \dot{q}_1) which is not compatible with $(\emptyset, \dot{q}_0 \cup \dot{q}_1)$.

The coordinate X in a condition $(p, (\dot{q}, X))$, which has been ignored to this point, avoids this problem. It is a countable set of \dot{q} -linkages which is large enough to witness dense capturing, and which is closed under the chains of linkages described earlier. Here "witnesses dense capturing" means that for any p' < p and any $M \in \mathcal{M}_3$ such that $p' \Vdash M \in \dot{q}$ there is a capture—that is a linkage (M, r, r)—in X such that $r \land p' \neq \mathbf{0}$.

Now the ordering on $\mathbb{P}_2 \star \mathbb{P}_3$ is defined by $(p', (\dot{q}', X')) \leq (p, (\dot{q}, X))$ if $p' \leq p, p \Vdash \dot{q}' \supseteq \dot{q}$, and $X' \supseteq X$. Since each member of X' is a \dot{q}' -linkage, this ensures that the linkages in X are preserved by the extension.

To be more explicit about the use of the set X, we make another definition.

Definition 7. We define the *link closure* $\mathcal{L}_X(\dot{q})$ to be the smallest term $\dot{q}' \supseteq \dot{q}$ such that X is a set of \dot{q}' -links.

In other words, whenever $(M, r, r') \in X$ and $(p, M') \in \dot{q}$ for some $M' \in \mathcal{M}_3 \cap M$ and some condition p such that $p \wedge r \neq \mathbf{0}$, then $((p \wedge r)|M \wedge r', M') \in \dot{q'}$.

In general, the members of the set denoted by the term \dot{q}' need not be compatible, but we do have the following observation:

Proposition 8. Suppose that $\dot{q}'' \supseteq \dot{q}$ is a term denoting a compatible set such that X is a set of \dot{q}'' -linkages. Then $\mathcal{L}_X(\dot{q})$ is a term denoting a set of pairwise compatible models, and $\dot{q}'' \supseteq \mathcal{L}_X(\dot{q}) \supseteq \dot{q}$.

Thus the meet of two compatible terms $(p_0, (\dot{q}_0, X_0))$ and $(p_1, (\dot{q}_1, X_1))$ is given by $(p_0 \wedge p_1, (\mathcal{L}_{X_0 \cup X_1}(\dot{q}_0 \cup \dot{q}_1), X_0 \cup X_1)).$

The link closure is also used for the proof of the last two of the four properties. For the third property, suppose that $(p', (\dot{q}', X')) \leq (p, (\dot{q}, X))$. We can assume that p is a support of \dot{q}' in the sense that $r \leq p'$ whenever there is M such that $r \Vdash M \in \dot{q}'$. Then the required term \dot{q}'' is $\mathcal{L}_X(\dot{q}') \cup \dot{q}$. An easy argument shows that $\dot{q}'' = \mathcal{L}_{X \cup X'}(\dot{q} \cup \dot{q}')$ and that \dot{q}'' is as required.

Similarly, for the fourth property we are given (p, \dot{q}) and (p, \dot{q}_i) for i = 0, 1. We use the fact that \mathbb{P}_2 is a member of any $M \in \mathcal{M}_3$ to show that there are incompatible $p_i \leq p$ for i = 0, 1 such that $p_i \setminus p$ is a member of any model $M' \in \dot{q}$ with $\delta^{M'} > \delta$. Now let q'_i be q_i restricted to p_i , that is, $p_i \Vdash \dot{q}'_i = \dot{q}_i$ and $r \Vdash \dot{q}'_i = \emptyset$ whenever $r \wedge p_i = \mathbf{0}$. Then it can be shown that the hypotheses imply that $\dot{q}'' = \dot{q} \cup \mathcal{L}_{X_0}(\dot{q}'_0) \cup \mathcal{L}_{X_1}(\dot{q}'_1)$ is as required.²

Conditions 3 and 4 are based on the hypothesis of the main result of [Mit07b]. They are used in order to show that if $M \in \mathcal{M}_3$ and $p \Vdash M \in \dot{q}$, and if x is a subset of $\delta = \delta^M$ in the extension $V[G_2 \star G_3]$ such that every initial part of x is in $V[(G_2 \star G_3) \cap M]$, then $x \in V[(G_2 \star G_3) \cap \operatorname{Mrest}_{\delta}(\dot{q})]$.

If the main result of [Mit07b] held, as stated in that paper, for this forcing then we would have the conclusion $x \in V[(G_2 \star G_3) \cap M]$ instead of $x \in V[(G_2 \star G_3) \cap \operatorname{Mrest}_{\delta}(\dot{q})]$. I don't know whether the stronger conclusion holds, and I also don't know of any way to use the weaker conclusion to show that there are no Aronszajn trees on κ_2 , as Uri Abraham does in [Abr83] starting with the assumption that κ_3 is supercompact. However the proof that δ is not collapsed by $(\mathbb{P}_2 \star \mathbb{P}_3) \cap M$ does seem to extend to show that it is not collapsed by $(\mathbb{P}_2 \star \mathbb{P}_3) \cap M$ rest. This is sufficient to get a model with no special ω_2 - or ω_3 -Aronszajn trees, and will probably be sufficient to prove that the forcing for the $I[\omega_2]$ and $I[\omega_3]$ property has the desired properties.

References

[Abr83] Uri Abraham. Aronszajn trees on \aleph_2 and \aleph_3 . Ann. Pure Appl. Logic, 24(3):213–230, 1983.

²For the more general forcing in which models in \mathcal{M}_2 are $M \prec H_{\kappa_2^+}$ this leads to a problem, which can be solved by having \mathcal{M}_2 have as models elementary substructures of both H_{κ_2} and $H_{\kappa_2^+}$. I've noticed that this is probably also needed with \mathcal{M}_3 for other reasons. In this case we would require $M \cap H_{\kappa_2}^{\cdot \cdot \cdot \cdot q}$ whenever $M \prec H_{\kappa_2^+} \in \dot{q}$. (Actually the same effect can probably be reached without the extra models.

- [Mit07a] William J. Mitchell. $I[\omega_2]$ can be the nonstationary ideal on $Cof(\omega_1)$. submitted to Transactions of the American Mathematical Society, arXiv:math.LO/0407225, 2007?
- [Mit07b] William J. Mitchell. On the hamkins approximation property. to appear in the Proceedings of the *Baumgartner Festival*, held 2003 at Dartmouth University, in the *Annals of Pure and Applied Logic*, 2007?