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Let κ be inaccessible. Define the forcing P as follows:

• A condition is a finite set p of countable models M ≺ Hκ with

the compatibility condition: if M, N ∈ p then either

– M ∩ N ∈ M , [And M ∩ N ∈ p].

– M ∩ N = Hθ for some θ ∈ M of uncountable cofinality,

– or M ⊆ N .

• p ≤ q if p ⊇ q.
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Lemma. P collapses all cardinals between ω1 and κ.
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Definition. If Q is a forcing notion, and M is a model, then a

strongly M, Q-generic condition is a condition q ∈ Q such that

q  Ġ ∩ M is V -generic.

Equivalently, q is strongly M -generic if there is a function

q′ 7→ q′|M for all q′ ≤ q such that every condition r ≤ q′|M in

M ∩ Q is compatible with q′.
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Lemma. In the forcing P,

• If M ≺ Hκ is countable then {M} is strongly M -generic.

• If θ < κ and cf(θ) > κ then ∅ is strongly Hθ-generic.

For either X = M or X = Hθ, the witnessing function p 7→ p|X is

p|X = {N ∩ X : N ∈ p & N ∩ X ∈ X}
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By the same argument as for proper forcing, this implies that P is

ω1-presaturated and κ-presaturated. Hence these cardinals (and all

larger cardinals) are preserved.

Thus κ = ω
V [G]
2 .
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No ω2-Aronszajn Trees

• Assume to the contrary Ṫ is a name for a κ = ω2-Aronszajn

tree T .

• By weak compactness, pick Hθ ≺Π1

1

(Hκ, Ṫ ) with θ inaccessible.

• Then G ∩ Hθ is a generic subset of P ∩ Hθ, T � θ ∈ V [G ∩ Hθ],

and there are no branches of T � θ in V [G ∩ Hθ].

• There is a branch b in V [G]; let ḃ be a name for this branch.

Ever initial segment (and hence every countable restriction) of

b is in V [G ∩ Hθ].

• We will show that b ∈ V [G ∩ Hθ] — Contradiction!
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We need to show that ḃ is really a P ∩ Hθ-term.

Suppose the contrary: then there is a dense set of conditions r such

that for some r1, r2 ≤ r and ξ < θ and x we have

• r2|Hθ ≤ r1|Hθ

• r1  ḃ(ξ) = x̌ and r2  ḃ(ξ) 6= x̌
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• Pick a countable M ≺ Hκ such that everything relevant is a

member of M , and let q be strongly M -generic.

• Since M is countable, b � M ∈ V [Hθ ∩ G].

Let q  ḃ � M = σ̇ for some P ∩ Hθ-term σ̇.

• Working in M and using the last observation, find r1, r2 ≤ q|M

in P ∩ M forcing conflicting information about ḃ.

• Since q  ḃ � M = σ̇, the conditions r1 ∧ q and r2 ∧ q force the

same conflicting information about σ̇.

• Since σ̇ is a P ∩ Hθ-term, the conditions (r1 ∧ q)|Hθ and

(r2 ∧ q)|Hθ force the same conflicting information about σ̇.

• But (r2 ∧ q)|Hθ = r2|Hθ ∧ q|Hθ = r1|Hθ ∧ q|Hθ = (r1 ∧ q)|Hθ.

Contradiction!

9



More cardinals?

There are two possible approaches to a model with no ω2 or ω3

trees.

• Do it all at once with finite conditions.

• Do it in two steps.
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Suppose that we have κ < λ and want them to become ω2 and ω3.

• The first alternative would use as conditions finite sets

containing models M ≺ Hλ such that M is either countable or

of size less than κ, with M ∩ κ transitive.

• The compatibility conditions would be complicted.

• The proof would involve a long and somewhat doubtful case

analysis.

• It would almost certainly not work for three cardinals.

• Nevertheless I will mention on Thursday an application where

this construction might possibly be useful.
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Doing it in two steps

First, note that if κ is regular and λ > κ is inaccessible then

(assuming GCH) we can use the same construction to get a model

with no κ++-Aronszajn trees.

The conditions are sets of size less than κ containing models

M ≺ Hλ of size κ with M ∩ κ transitive.

The condition for compatibility of these models is the same as

before.
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Theorem (Abraham, 1980). Assume that κ is λ-supercompact and

λ is weakly compact. Then there is a generic extension in which

there are no Aronszajn trees on ω2 or ω3.

Like Uri Abraham’s 1980 proof, we try an iteration of the forcings,

but need to modify it.
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We will write the forcing for our new proof as P ? Q̃.

A member of the forcing is a pair (p, q) with p ∈ P and q ∈ Q̃.

• P is the same forcing as before, giving no ω2-Aronszajn trees.

• Q̃ is essentially a subset of the terms for members of the same

forcing for no ω3-Aronszajn trees, as defined in V P.

14



More precisely, q ∈ Q̃ is a P-term ȧ such that

1.  ȧ is a countable collection of sets X ∈ V such that X ≺ Hλ,

|X | < κ, and θX = X ∩ κ is an inaccessible cardinal smaller

than κ.

2. If p  X, Y ∈ ȧ then

(a) If θY ≥ θX then X ∩ Y = X ∩ Hτ for some inaccessible τ in

X∪{λ}.

(b) If θY < θX then X ∩ Y ∈ X and p|θX  Y ∈ ȧ.

3. ȧ has countable support: there is a countable set m ∈ V so that

X ∈ ȧG if and only if there is p ∈ m ∩ G such that p  X ∈ ȧ.

The ordering is defined by (p′, ȧ′) ≤ (p, ȧ) if and only if p′ ≤ p and

p′  ȧ′ ⊂ ȧ.
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