Multiple Choice Questions

1. Find \(\frac{dy}{dx} \) if \(y = \sin(\tan(3x)) \)

(a) \(\frac{dy}{dx} = 3 \cos(3x) \sec^2(3x) \)

(b) \(\frac{dy}{dx} = 3 \cos(\sec^3(3x)) + \tan(3x) \cos(3x) \)

(c) \(\frac{dy}{dx} = \cos(\tan(3x)) \sec(3x) \tan(3x) \)

(d) \(\frac{dy}{dx} = 3 \cos(\tan(3x)) \sec^2(3x) \)

(e) \(\frac{dy}{dx} = 3 \cos(\sec^2(3x)) \)

2. Find \(f'(1) \) if \(f(x) = \frac{2x^\pi}{\pi} - 4^{x^2+1} \).

(a) \(2 - 32 \ln 4 \)

(b) \(\frac{2}{\pi} - 2 \ln 4 \)

(c) \(-6 \)

(d) \(\frac{2}{\pi} - 16 \)

(e) \(2 - 16 \ln 4 \)

3. If an oscillating sprinkler makes an angle of \(\theta \) radians with the ground, the range is covered (horizontal distance in feet) is given by the formula \(R = \frac{1}{2} \sin \theta \cos \theta \). At what rate the range \(R \) is changing with respect to \(\theta \) when \(\theta = \frac{\pi}{6} \)

(a) The range is decreasing by 0.25 feet per radian.

(b) The range is decreasing by 1 foot per radian.

(c) The range is increasing by 0.25 feet per radian.

(d) The range is decreasing by \(\sqrt{3}/8 \) feet per radian.

(e) The range is increasing by \(\sqrt{3}/8 \) feet per radian.
4. Write the equation of the normal line to the graph of the function \(f(x) = \frac{x^{4/3} + 2e^x}{x} \) at \(x = 1 \).

 (a) \(y = 3x + (4 + 2e) \)
 (b) \(y = 3x - (4 + 2e) \)
 (c) \(y = -3x + (4 - 2e) \)
 (d) \(y = -3x - (4 - 2e) \)
 (e) \(y = -3x + (4 + 2e) \)

5. At which value(s) of \(x \) does the function \(g(x) = x\sqrt{4x + 3} \) have a horizontal tangent line?

 (a) \(x = -1 \) and \(x = -5/6 \)
 (b) \(x = -5/4 \) only
 (c) \(x = -1 \) only
 (d) \(x = -5/6 \) only
 (e) No horizontal tangent lines

6. Find the slope of the tangent line to \(x^3 + y^2 + xy + e^{x-1} = 8 \) at the point \((1, -3)\)

 (a) \(-7/5\)
 (b) 2
 (c) 4/5
 (d) 3/8
 (e) 1/5

7. Let \(h(x) = [xf(x) - 4]^2 \). Find \(h'(2) \) if \(f(2) = 1/2 \) and \(f'(2) = -1 \).

 (a) 9
 (b) -6
 (c) 6
 (d) -5
 (e) 15
8. Find the slope of the normal line to the graph of \(f(x) = \sec^2(x) \) at \(x = \frac{\pi}{4} \).

(a) \(-\frac{1}{4} \)
(b) \(\frac{1}{4} \)
(c) \(-4 \)
(d) \(4 \)
(e) \(-\frac{1}{8} \)

9. If \(g(x) = \tan^{-1}(e^x) \), find \(g''(x) \).

(a) \(g''(x) = \frac{e^x}{1 + e^{2x}} \)
(b) \(g''(x) = \frac{2e^{2x}}{(1 + e^{2x})^2} \)
(c) \(g''(x) = \frac{e^x - e^{-3x}}{(1 + e^{2x})^2} \)
(d) \(g''(x) = \frac{2e^{2x} + e^x}{(1 + e^x)^2} \)
(e) \(g''(x) = \frac{-e^{2x}}{(1 + e^{2x})^2} \)

10. A cylinder is being flattened so that its volume does not change. Find the rate of change of radius when \(r = 3 \) inches and \(h = 4 \) inches if the height is decreasing at 0.2 in/sec.

(a) \(\frac{3}{20} \) in/sec
(b) \(\frac{3}{40} \) in/sec
(c) \(\frac{2}{15} \) in/sec
(d) \(-\frac{3}{20} \) in/sec
(e) \(-\frac{2}{15} \) in/sec

11. The dollar cost of producing \(x \) bagels is \(C(x) = 300 + 6.25x - \frac{0.5}{1000^2} x^3 \). Determine the marginal cost in dollars per unit of producing 2000 bagels.

(a) \(3.25 \)
(b) \(-0.25 \)
(c) \(0.25 \)
(d) \(2.5 \)
(e) \(-3.25 \)
12. Use linearization for a suitable function at a suitable point to approximate \(\frac{1}{\sqrt{0.8}} \).

(a) 1.2
(b) 1.05
(c) 0.9
(d) 1.01
(e) 1.1

13. Find each \(x \)-value on \([0, 2\pi]\) at which the tangent line to \(f(x) = 3x - 2\cos x \) is parallel to the line \(4x - 2y = 6 \).

(a) \(x = \pi/2 \) and \(3\pi/2 \)
(b) \(x = 4\pi/3 \) and \(5\pi/3 \)
(c) \(x = \pi/6 \) and \(5\pi/6 \)
(d) \(x = \pi/3 \) and \(5\pi/3 \)
(e) \(x = 7\pi/6 \) and \(11\pi/6 \)

14. Use the definition of the derivative to evaluate the limit

\[
\lim_{x \to \ln 2} \frac{e^{2x} - 4}{x - \ln 2}
\]

(a) 2
(b) 4
(c) 8
(d) 0
(e) 1
Free Response Questions

1. A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.6 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 5 meters from the wall?

2. Use logarithmic differentiation to find the slope of the tangent line to \(f(x) \) at \(x = 1 \) for

\[
f(x) = \frac{e^{x^2 - x} \sqrt{6 + 3x^2}}{\tan^{-1}(x)(3x - 1)^{4/3}}
\]
3. A particle is moving along a number line so that its position s (in meters) after t minutes is given by the function $s(t) = 16t^3 + 12t^2 - 144t$ for $t \geq 0$.

(a) Write formulas for the velocity and the acceleration of the particle at every time t.

(b) On what open interval is the particle travelling in the negative direction?

(c) Find the total distance travelled by the particle in the time interval $[0, 2]$.

(d) On what interval is the particle is slowing down?
4. Find the value a if the tangent line to $f(x) = \frac{1}{\sqrt{x} + 1}$ at $x = a$ passes through the point $(1, 0)$.
Answer Key

Multiple Choice Questions:

Free Response Questions:
1. -4 m/sec
2. \(-\frac{8}{9} - \frac{2}{\pi}\) \(\frac{4}{\pi} \left(\frac{9}{16}\right)^{1/3}\)
3. (a) \(v(t) = 48t^2 + 24t - 144\) and \(a(t) = 96t + 24\)
 (b) on (0, 3/2)
 (c) 738 meters (I hope this is correct (sigh!))
 (d) on (0, 3/2)
4. \(a = -1/3\)