Lecture 23: Mean Value Theorem (Section 4.2)

Rolle’s Theorem

Let f be a function satisfying the following:

1) f is continuous on $[a, b]$.
2) f is differentiable on (a, b).
3) $f(a) = f(b)$.

Then there is a number c in (a, b) such that $f'(c) = 0$.

The conditions of Rolle’s Theorem are necessary:
ex. Find the value of c implied by Rolle’s Theorem for $f(x) = (x^2 - 4x)^{2/3}$ on $[0, 4]$.

1. f is continuous on $[0, 4]$.
2. $f'(x) = \frac{2}{3} (x^2 - 4x)^{-\frac{1}{3}}(2x - 4) = \frac{2(2x - 4)}{3 (x^2 - 4x)^{\frac{1}{3}}}$.

 f' exist for all x except $(x^2 - 4x)^{\frac{1}{3}} = 0$.

 $x^2 - 4x = 0$.

 $x(x - 4) = 0$.

 $x = 0, 4$.

 so, f is differentiable on $(0, 4)$.

3. $f(0) = 0$.

 $f(4) = (4^2 - 4 \cdot 4)^{\frac{2}{3}} = 0$.

By the Rolle’s Theorem, there exists c in $(0, 4)$ such that $f'(c) = 0$.

To find c:

$$\frac{2(2c - 4)}{3(c^2 - 4c)^{\frac{1}{3}}} = 0.$$

$$2c - 4 = 0.$$

$$c = 2.$$
Rolle's Theorem is a special case of ...

Mean Value Theorem:

Let f be a function that satisfies the following conditions:

1) f is continuous on $[a, b]$.

2) f is differentiable on (a, b).

Then there is a number c in the interval (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Slope of the tangent at c.

Slope of the secant line through two end points.
ex. Find the value of c implied by the Mean Value Theorem for $f(x) = x^3 - x^2 - 2x$ on $[-1, 1]$.

① f is c^t on $[-1, 1]$.

② $f'(c) = 3x^2 - 2x - 2$.

f' exist for all x in $(-1, 1)$, so, f is differentiable on $(-1, 1)$.

By the MVT, there is a c in $(-1, 1)$ such that

$$f'(c) = \frac{f(1) - f(-1)}{1 - (-1)}$$

To find c:

$$3c^2 - 2c - 2 = \frac{(1-1-2) - (1-1+2)}{2}$$

$$3c^2 - 2c - 2 = -1$$

$3c^2 - 2c - 1 = 0$.

$3c + 1)(c-1) = 0$ $
ightarrow$ $c = -\frac{1}{3}$ or $c = 1$.

What happens if we try the function $f(x) = x + \frac{2}{x}$ on $[-1, 1]$?

f is not c^t at $x=0$.

so, we can't apply the MVT.
ex. The position of an object dropped from 800 ft is $s(t) = 800 - 16t^2$, where t is in seconds. Find the **average velocity** on the time interval $[0, 5]$.

\[
\text{AV on } [0, 5] : = \frac{s(5) - s(0)}{5 - 0} = \frac{800 - 16(5^2) - 800}{5} \\
= \frac{-16 \cdot 5 \cdot 8}{5} \\
= -80 \text{ ft/sec.}
\]

Use the Mean Value Theorem to verify that at some time in the first five seconds, average velocity equals instantaneous velocity.

1. $s(t) = 800 - 16t^2$ \(\text{cts on } [0, 5]\).

2. $s'(t) = -32t$:
 $s(t)$ is differentiable on \((0, 5)\).

By the **MVT**, there exists c in \((0, 5)\) such that

\[
s'(c) = \frac{s(5) - s(0)}{5 - 0} \\
\uparrow \\
\text{Instantaneous velocity at } c.
\]

To find c?

\[
-32c = -80 \\
c = \frac{-80}{-32} = \frac{20}{8} = \left(\frac{5}{2}\right)
\]
ex. Suppose that $f(3) = -2$ and $f'(x) \leq 1$ for all values of x. Find the largest possible value of $f(6)$.

→ Use MVT on $[3, 6]$

2. $f'(x) \leq 1 \Rightarrow f'(x)$ exist for all values of x.
 $\Rightarrow f$ is differentiable for all values of x.
 $\Rightarrow f$ is differentiable on $(3, 6)$

1. Since f is differentiable, it is definitely continuous on $[3, 6]$.

By the MVT, there exists c in $(3, 6)$ such that

$$f'(c) = \frac{f(6) - f(3)}{6 - 3}$$

$$= \frac{f(6) - (-2)}{3},$$

$$f'(c) = \frac{f(6) + 2}{3}.$$

$f'(x) \leq 1 \Rightarrow f'(c) \leq 1$

$$\frac{f(6) + 2}{3} \leq 1$$

$$f(6) + 2 \leq 3$$

$$f(6) \leq 1$$

i.e. i is the largest possible value of $f(6)$.
The following consequence of Mean Value Theorem will be a fundamental result as we begin our study of integration.

Theorem: If \(f'(x) = 0 \) for all \(x \) in an interval \((a, b)\), then \(f(x) \) is constant on \([a, b]\).

Pick \(x_1 < x_2 \) in \([a, b]\) i.e. \(a < x_1 < x_2 < b \).

Use MVT on \([x_1, x_2]\),

\[f'(c) = 0 \Rightarrow f \text{ is constant on } [x_1, x_2], \text{ and differentiable on } (x_1, x_2). \]

By the MVT, there is \(c \in (x_1, x_2) \) such that

\[f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0, \]

\[f(x_2) - f(x_1) = 0. \]

Corollary: If \(f'(x) = g'(x) \) for all \(x \) in an interval \((a, b)\), then \(f - g \) is a constant on \([a, b]\).

That is, \(f(x) = g(x) + C \).

\[f(x) = x^2 \Rightarrow f'(x) = 2x \]

\[g(x) = x^2 + 5 \Rightarrow g'(x) = 2x \]
ex. Use the theorem to verify the identity
\[\sin^2 x + \cos^2 x = 1. \]

Let \(f(x) = \sin^2 x + \cos^2 x. \)

\[
f'(x) = 2 \cdot \sin x \cdot \cos x + 2 \cdot \cos x \cdot (-\sin x).
\]

\[f'(x) = 0 \quad \text{for all } x. \]

By the previous Theorem,
\[f(x) = \sin^2 x + \cos^2 x = C \quad (a \text{ const}). \]

To find \(C \):

Plug \(x = 0 \);
\[f(0) = 0 + 1 = 1 = C. \]

So,
\[f(x) = \sin^2 x + \cos^2 x = 1 \quad \text{for all } x. \]