1. Express the following limit of a Riemann sum as a definite integral:

\[\lim_{n \to \infty} \sum_{i=1}^{n} \left(1 + \frac{3i}{n} \right)^{\frac{3}{n}} \Delta x \]

Interval corresponding to each integral

(a) \(\int_{0}^{3} x^5 \, dx \)
(b) \(\int_{0}^{4} (1 + x)^5 \, dx \)
(c) \(\int_{1}^{4} (1 + x)^5 \, dx \)
(d) \(\int_{1}^{4} x^5 \, dx \)
(e) \(\int_{0}^{3} (1 + 3x)^5 \, dx \)

\[\Delta x = \frac{3}{n} = \frac{b-a}{n} \]

Choose: \(\left[0, \frac{3}{n} \right] \) : Now \(x_i = a + i \Delta x = \frac{3i}{n} \).

\[f(x_i) = (1 + \frac{3i}{n})^5 \]

So, \(f(x_i) = \left(1 + \frac{3i}{n} \right)^5 \)

\(f(x) = (1 + x)^5 \)

Therefore:

\(\int_{0}^{3} (1 + x)^5 \, dx \)

2. Mr. Jones was driving along a rural highway at a speed of 60mph (88ft/sec) when he saw a deer on the roadway ahead. He applied the brakes with a constant deceleration of 22ft/sec². If \(t = 0 \) represents the time at which the brakes are first applied, find the distance traveled before the car comes to a stop.

Break applied

\(t = 0 \)
\(v(0) = 88 \)
\(s(0) = 0 \)

\(a(t) = -22 \)
\(v(t) = -22t + C_1 \)
\(v(0) = 88 \)

\(88 = -22(0) + C_1 \)

\(C_1 = 88 \)

\(v(t) = -22t + 88 \)
\(s(t) = -11t^2 + 88t + C_2 \)
\(s(0) = 0 \)
\(0 = -11(0)^2 + 88(0) + C_2 \)

\(C_2 = 0 \)

\(s(t) = -11t^2 + 88t \)

When car stops: \(v(t) = 0 \)
\(-22t + 88 = 0 \)
\(t = 4 \)

Car stops after 4 seconds. So the distance traveled is

\(s(4) = -11(4)^2 + 88(4) = 176 \)
3. (a) Find a Riemann sum which approximates the area under the graph of \(f(x) = 3x + 2 \) on \([0, 3]\) using \(n \) sub-intervals of equal width letting \(x_i^* \) be the right end point of the sub-interval \([x_{i-1}, x_i]\).

i. \(\Delta x = \frac{b-a}{n} \)

ii. \(x_i = a + \frac{3i}{n} \)

iii. \(R_n = \sum_{i=1}^{n} \left[3 \left(\frac{3i}{n} \right) + 2 \right] \frac{3}{n} = \frac{3}{n} \sum_{i=1}^{n} \left(\frac{9}{n} \right) i + \frac{6}{n} \)

(b) Find the exact area under the graph of \(f(x) = 3x + 2 \) on \([0, 3]\) by taking the limit of the Riemann sum as \(n \to \infty \).

Note: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \), \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \), \(\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2 \)

\[
\text{Area} = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{9}{n} \right) i + \sum_{i=1}^{n} \left(\frac{6}{n} \right)
\]

\[
= \lim_{n \to \infty} \frac{27}{n^2} \sum_{i=1}^{n} i + \frac{6}{n} \sum_{i=1}^{n} 1
\]

\[
= \lim_{n \to \infty} \frac{27}{n^2} \cdot \frac{n(n+1)}{2} + \frac{6}{n} \cdot n
\]

\[
= \frac{27}{2} + 6
\]

\[
= \frac{39}{2}
\]

Sorry, there is a typo in part (b). I wanted the interval to be \([0, 3]\). But what I had was \([0, 1]\).

If you do this on \([0, 2]\), Area = 10.