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Abstract We propose a class of novel methods, namely the accelerated mirror-prox

(AMP) methods, for solving a class of deterministic and stochastic monotone varia-

tional inequalities (VI). The main idea of the proposed algorithms is to incorporate

a multi-step acceleration scheme into the mirror-prox method. For both deterministic

and stochastic VIs, the developed AMP methods compute the weak solutions with the

optimal iteration complexity. In particular, if the monotone operator in VI consists of

the gradient of a smooth function, the iteration complexities of the AMP methods can

be accelerated in terms of their dependence on the Lipschitz constant of the smooth

function. For VIs with bounded feasible sets, the bounds of the iteration complexities of

the AMP methods depend on the diameter of the feasible set. For unbounded VIs, we

adopt the modified gap function introduced by Monteiro and Svaiter for solving mono-

tone inclusion, and show that the iteration complexities of the AMP methods depend

on the distance from the initial point to the set of strong solutions. We also demon-

strate the advantages of the AMP methods over some existing algorithms through our

preliminary numerical experiments.

Keywords convex optimization · stochastic programming · variational inequalities ·
mirror-prox method · extragradient method

Yunmei Chen is partially supported by NSF grants DMS-1115568, IIP-1237814 and DMS-
1319050. Guanghui Lan is partially supported by NSF grant CMMI-1000347, ONR grant
N00014-13-1-0036, NSF DMS-1319050, and NSF CAREER Award CMMI-1254446. Part of the
research was done while Yuyuan Ouyang was a PhD student at the Department of Mathemat-
ics, University of Florida, and Yuyuan Ouyang is partially supported by AFRL Mathematical
Modeling Optimization Institute.

Yunmei Chen
Department of Mathematics, University of Florida
E-mail: yun@math.ufl.edu

Guanghui Lan
Department of Industrial and System Engineering, University of Florida
E-mail: glan@ise.ufl.edu

Yuyuan Ouyang
Department of Industrial and System Engineering, University of Florida
E-mail: ouyang@ufl.edu



2

Mathematics Subject Classification (2000) 90C25 · 90C15 · 62L20 · 68Q25

1 Introduction

Let E be a finite dimensional vector space with inner product 〈·, ·〉 and norm ‖ · ‖, and

Z be a non-empty closed convex set in E . Our problem of interest is to find u∗ ∈ Z
that solves the following variational inequality (VI) problem:

〈F (u), u∗ − u〉 ≤ 0, ∀u ∈ Z, (1) eqnProblem

where F is defined by

F (u) = ∇G(u) +H(u) + J ′(u), ∀u ∈ Z. (2) eqnF

In (2), G(·) is a general continuously differentiable function whose gradient is Lipschitz

continuous with constant L, i.e.,

0 ≤ G(w)−G(v)− 〈∇G(w), w − v〉 ≤ L

2
‖w − v‖2, ∀w, v ∈ Z, (3) eqnGAssumption

H : Z → E is a monotone operator with Lipschitz constant M , that is, for all w, v ∈ Z,

〈H(w)−H(v), w − v〉 ≥ 0, and ‖H(w)−H(v)‖∗ ≤M‖w − v‖, (4) eqnHAssumption

and J ′(u) ∈ ∂J(u), where J(·) is a relatively simple and convex function. We denote

problem (1) by V I(Z;G,H, J) or simply V I(Z;F ).

Observe that u∗ given by (1) is often called a weak solution of V I(Z;F ). A related

notion is a strong solution of VI. More specifically, we say that u∗ is a strong solution

of V I(Z;F ) if it satisfies

〈F (u∗), u∗ − u〉 ≤ 0, ∀u ∈ Z. (5) eqnSVI

For any monotone operator F , it is well-known that strong solutions of V I(Z,F ) are

also weak solutions, and the reverse is also true under mild assumptions (e.g., when F

is continuous). For example, for F in (2), if J = 0, then the weak and strong solutions

of V I(Z;G,H, 0) are equivalent.

The main goal of this paper is to develop efficient solution methods for solving two

types of VIs, i.e., deterministic VIs with exact information about the operator F , and

stochastic VIs where the operator F contains some stochastic components (e.g., ∇G
and H) that cannot be evaluated exactly. We start by reviewing some existing methods

for solving both these types of problems.

1.1 Deterministic VI

?〈secIntroVID〉?
VI provides a unified framework for optimization, equilibrium and complementarity

problems, and thus has been the focus of many algorithmic studies (see, e.g, [15,33,

8,32,36,38,23,30,20,14]). In particular, classical algorithms for VI include, but not

limited to, the gradient projection method (e.g., [34,5]), Korpelevich’s extragradient

method [15], and the proximal point algorithm (e.g., [19,33]), etc. (see [11] for an ex-

tensive review and bibliography). While these earlier studies on VI solution methods

focused on their asymptotic convergence behavior (see, e.g., [37,39,40]), much recent



3

research effort has been devoted to algorithms exhibiting strong performance guaran-

tees in a finite number of iterations (a.k.a., iteration complexity) [32,4,30,31,25,20,10].

More specifically, Nemirovski in a seminal work [23] presented a mirror-prox method by

properly modifying Korpelevich’s algorithm [16] and show that it can achieve an O(1/ε)

complexity bound for solving VI problems with Lipschitz continuous operators (i.e.,

smooth VI denoted by V I(Z; 0, H, 0)). Here ε > 0 denotes the target accuracy in terms

of a weak solution. This bound significantly improves the O(1/ε2) bound for solving VI

problems with bounded operators (i.e., nonsmooth VI) (e.g., [4]). Nemirovski’s algo-

rithm was further generalized by Auslender and Teboulle [1] through the incorporation

of a wider class of distance generating functions. Nesterov [30] has also developed a

dual extrapolation method for solving smooth VI which possesses the same complex-

ity bound as in [23]. More recently, Monteiro and Svaiter [20] showed that the hybrid

proximal extragradient (HPE) method [35], which covers Korpelevich’s algorithm as a

special case, can also achieve the aforementioned O(1/ε) complexity. Moreover, they

developed novel termination criterion for VI problems with possibly unbounded feasible

set Z, and derived the iteration complexity associated with HPE for solving unbounded

VI problems accordingly. Monteiro and Svaiter [21] have also generalized the aforemen-

tioned O(1/ε) complexity result for solving VI problems containing a simple nonsmooth

component (i.e., V I(Z; 0, H, J)).

It should be noted, however, that the aforementioned studies in the literature do not

explore the fact that the operator F consists of a gradient component∇G (see (2)). As a

result, the iteration complexity associated with any of these algorithms, when applied to

a smooth convex optimization problem (i.e., V I(Z;G, 0, 0)), is given by O(1/ε), which

is significantly worse than the well-known O(1/
√
ε) optimal complexity for smooth

optimization [28]. An important motivating question for our study is whether one can

utilize such structural properties of F in order to further improve the efficiency of VI

solution methods. More specifically, we can easily see that the total number of gradient

and operator evaluations for solving V I(Z;G,H, J) cannot be smaller than

O

(√
L

ε
+
M

ε

)
. (6) eqnOptRate

This is a lower complexity bound derived based on the following two observations:

1. IfH = 0, V I(Z;G, 0, 0) is equivalent to a smooth optimization problem minu∈Z G(u),

and the complexity for minimizing G(u) cannot be better than O(
√
L/ε) [26,28];

2. If G = 0, the complexity for solving V I(Z; 0, H, 0) cannot be better than O(M/ε)

[27] (see also the discussions in Section 5 of [23]).

However, the best-known so-far iteration complexity bound for solving V I(Z;G,H, J)

is given by [14,20], where one needs to run these algorithms

O
(
L+M

ε

)
, (7) eqnRateVI

iterations to compute a weak solution of V I(Z;G,H, J), and each iteration requires

the computation of both ∇G and H. It is worth noting that better iteration complexity

bound has been achieved for a special case of V I(Z;G,H, J) where the operator H is

linear. In this case, Nesterov [29] showed that, by using a novel smoothing technique,

the total number of first-order iterations (i.e., iterations requiring the computation

of ∇G, the linear operators H and its conjugate H∗) for solving V I(Z;G,H, J) can
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be bounded by (6). This bound has also been obtained by applying an accelerated

primal-dual method recently developed by Chen, Lan and Ouyang [9]. Observe that

the bound in (6) is significantly better than the one in (7) in terms of its dependence

on L. However, it is unclear whether similar iteration complexity bounds to those in

[29,9] can be achieved for the more general case when H is Lipschitz continuous.

1.2 Stochastic VI

While deterministic VIs had been intensively investigated in the literature, the study

of stochastic VIs is still quite limited. In the stochastic setting, we assume that there

exists stochastic oracles SOG and SOH that provide unbiased estimates to the oper-

ators ∇G(u) and H(u) for any test point u ∈ Z. More specifically, we assume that

at the i-th call of SOG and SOH with input z ∈ Z, the oracles SOG and SOH
output stochastic first-order information G(z, ξi) and H(z, ζi) respectively, such that

E[G(x, ξi)] = ∇G(x),E[H(x, ζi)] = H(x), and

〈itmVB〉
A1. E

[
‖G(x, ξi)−∇G(x)‖2∗

]
≤ σ2G, E

[
‖H(x, ζi)−H(x)‖2∗

]
≤ σ2H ,

where ξi ∈ Ξ, ζi ∈ Ξ are independently distributed random variables. Throughout this

paper, we may also denote

σ :=
√
σ2G + σ2H (8) eqnsigma

for the sake of notational convenience. It should be noted that deterministic VIs are

special cases of stochastic VIs with σG = σH = 0. To distinguish stochastic VIs from

their deterministic counterparts, we will use SV I(Z;G,H, J) or simply SV I(Z;F ) to

denote problem (1) under the aforementioned stochastic settings.

Following the discussion around (6) and the complexity theory for stochastic op-

timization [26,14], the total number of gradient and operator evaluations for solving

stochastic VI cannot be smaller than

O

(√
L

ε
+
M

ε
+
σ2

ε2

)
. (9) eqnOptRateS

The best known complexity bound for computing SV I(Z;G,H, 0) is given by the

stochastic mirror-prox method in [14]. This method requires

O
(
L+M

ε
+
σ2

ε2

)
(10) eqnBestRate

iterations to achieve the target accuracy ε > 0 in terms of a weak solution, and each

iteration requires the calls to SOG and SOH . Similar to the deterministic case, the

above complexity bound has been improved for some special cases, e.g., when H = 0

or H is linear. In particular, when H = 0, SV I(Z,F ) is equivalent to the stochastic

minimization problem of minu∈Z G(u) + J(u), Lan first presented in [17] (see more

general results in [12,13]) an accelerated stochastic approximation method and showed

that the iteration complexity of that algorithm is bounded by

O

(√
L

ε
+
σ2G
ε2

)
.
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More recently, Chen, Lan and Ouyang [9] presented an stochastic accelerated primal-

dual method with a better complexity bound than (10) for solving SV I(Z;G,H, J)

with a linear operator H.

1.3 Contribution of this paper

Our contribution in this paper mainly consists of the following several aspects. Firstly,

we present the accelerated mirror-prox (AMP) method for computing a solution of

V I(Z;G,H, J) by incorporating a multi-step acceleration scheme into the mirror-prox

method in [23]. By utilizing the smoothness of G(·), we can significantly improve the

iteration complexity from (7) to (6), while the iteration cost of AMP is comparable

to that of the mirror-prox method. Therefore, AMP can solve VI problems efficiently

with big Lipschitz constant L. To the best of our knowledge, this is the first time in

the literature that such an optimal iteration complexity bound has been obtained for

general Lipschitz continuous (rather than linear) operator H. We also present a simple

backtracking strategy to estimate the proper choices of L and M .

Secondly, we develop a stochastic counterpart of AMP, namely SAMP, for solving

SV I(Z;G,H, J), and demonstrate that its iteration complexity for computing a weak

solution is bounded by (9) and, similarly to the stochastic mirror-prox method, each

iteration requires the calls to SOG and SOH . Therefore, this algorithm improves the

best-known complexity bounds for stochastic VI in terms of their dependence on the

Lipschitz constant L. To the best of our knowledge, this is the first time that such an

optimal iteration complexity bound has been developed for SV I(Z;G,H, J) with gen-

eral Lipschitz continuous (rather than linear) operator H. In addition, we investigate

the stochastic VI method in more details, e.g., we develop the large-deviation results

associated with the convergence of SAMP.

Thirdly, we incorporate into AMP the termination criterion employed by Monteiro

and Svaiter [20,21] for solving variational and hemivariational inequalities posed as

monotone inclusion problem. As a result, for both the deterministic and stochastic VIs,

the AMP can deal with the case when Z is unbounded, as long as a strong solution to

problem (5) exists, and the iteration complexity of AMP will depend on the distance

from the initial point to the set of strong solutions.

Finally, we demonstrate the advantages of the developed AMP algorithms through

preliminary numerical experiments on a few test problems.

1.4 Organization of the paper

The paper is organized as follows. We propose the AMP algorithms and discuss the

main convergence results for solving deterministic VI and stochastic VI in Sections

2 and 3, respectively. To facilitate the readers, we present the proofs of the main

convergence results in Section 4. Some preliminary numerical experiments are provided

in Section 5 to demonstrate the efficiency of the AMP algorithms. Finally, we make

some concluding remarks in Section 6.
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2 Accelerated mirror-prox method for deterministic VI

〈secAMP〉We introduce in this section an accelerated mirror-prox (AMP) method that computes

a solution of V I(Z;G,H, J), and discuss its main convergence properties.

Throughout this paper, we assume that the following prox-mapping can be solved

efficiently:

PJz (η) := argmin
u∈Z

〈η, u− z〉+ V (z, u) + J(u). (11) eqnProxMapping

In (11), the function V (·, ·) is defined by

V (z, u) := ω(u)− ω(z)− 〈∇ω(z), u− z〉, ∀u, z ∈ Z, (12) eqnV

where ω(·) is a strongly convex function with convexity parameter µ > 0. The function

V (·, ·) is known as a prox-function, or Bregman divergence [6] (see, e.g., [23,4,29,2] for

the properties of prox-functions and prox-mappings and their applications in convex

optimization). Using the aforementioned definition of the prox-mapping, we describe

the AMP method in Algorithm 1.

Algorithm 1 The accelerated mirror-prox (AMP) method

〈algAMP〉 Choose r1 ∈ Z. Set w1 = r1, wag1 = r1.
For t = 1, 2, . . . , N − 1, calculate

wmdt = (1− αt)wagt + αtrt, (13) eqnwmd

wt+1 = P γtJrt

(
γtH(rt) + γt∇G(wmdt )

)
, (14) eqnProxwmd

rt+1 = P γtJrt

(
γtH(wt+1) + γt∇G(wmdt )

)
, (15) eqnProxrmd

wagt+1 = (1− αt)wagt + αtwt+1. (16) eqnwag

Output wagN+1.

Observe that the AMP method differs from the mirror-prox method in that we

introduced two new sequences, i.e., {wmdt } and {wagt } (here “md” stands for “mid-

dle”, and “ag” stands for “aggregated”). On the other hand, the mirror-prox method

only has to compute the ergodic mean of the sequence {wt} as the output of the al-

gorithm (similar to {wagt }). If αt ≡ 1, G = 0 and J = 0, then Algorithm 1 for solving

V I(Z; 0, H, 0) is equivalent to the prox-method in [23]. In addition, if the distance

generating function w(·) = ‖ · ‖2/2, then iterations (14) and (15) becomes

wt+1 = argmin
u∈Z

〈γtH(rt), u− rt〉+
1

2
‖u− rt‖2,

rt+1 = argmin
u∈Z

〈γtH(wt+1), u− rt〉+
1

2
‖u− rt‖2,

which are exactly the iterates of the extragradient method in [15]. On the other hand,

if H = 0, then (14) and (15) produce the same optimizer wt+1 = rt+1, and Algo-

rithm 1 is equivalent to a version of Nesterov’s accelerated gradient method for solving

minu∈Z G(u) + J(u) (see, for example, Algorithm 1 in [41]). Therefore, Algorithm 1
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can be viewed as a hybrid algorithm of the mirror-prox method and the accelerated

gradient method, which gives its name accelerated mirror-prox method.

In order to analyze the convergence of Algorithm 1, we introduce a notion to

characterize the weak solutions of V I(Z;G,H, J). For all ũ, u ∈ Z, we define

Q(ũ, u) := G(ũ)−G(u) + 〈H(u), ũ− u〉+ J(ũ)− J(u). (17) eqnQ

Clearly, for F defined in (2), we have 〈F (u), ũ−u〉 ≤ Q(ũ, u). Therefore, if Q(ũ, u) ≤ 0

for all u ∈ Z, then ũ is a weak solution of V I(Z;G,H, J). Hence when Z is bounded,

it is natural to use the gap function

g(ũ) := sup
u∈Z

Q(ũ, u) (18) eqng0

to evaluate the accuracy of a feasible solution ũ ∈ Z. However, if Z is unbounded, then

g(z̃) may not be well-defined, even when z̃ ∈ Z is a nearly optimal solution. Therefore,

we need to employ a slightly modified gap function in order to measure the accuracy

of candidate solutions when Z is unbounded. In the sequel, we will consider the cases

of bounded and unbounded Z separately.

Theorem 1 below describes the convergence property of Algorithm 1 when Z is

bounded. It should be noted that the following quantity will be used throughout the

convergence analysis of this paper:

Γt =

{
1, when t = 1

(1− αt)Γt−1, when t > 1,
(19) eqnGamma

〈thmAMPRateB〉Theorem 1 Suppose that

sup
z1,z2∈Z

V (z1, z2) ≤ Ω2
Z . (20) eqnVBounded

If the parameters {αt} and {γt} in Algorithm 1 are chosen such that α1 = 1, and

0 ≤ αt < 1, µ− Lαtγt −
M2γ2t
µ

≥ 0, and
αt
Γtγt

≤ αt+1

Γt+1γt+1
, ∀t ≥ 1, (21) eqnCondAlphaGammaBD

where {Γt} is defined by (19), and µ is the strong convexity parameter of ω(·) in (12).

Then,

g(wagt+1) ≤ αt
γt
Ω2
Z . (22) eqngBound

There are various options for choosing the parameters {αt} and {γt} that satisfy

(21). In the following corollary, we give one example of such parameter settings.

〈corAMPRateB〉Corollary 1 Suppose that (20) holds. If the parameters {αt} and {γt} in AMP are

set to

αt =
2

t+ 1
and γt =

µt

2(L+Mt)
, (23) eqnAlphaGammaBounded

then

g(wagt+1) ≤
(

4L

µt(t+ 1)
+

4M

µt

)
Ω2
Z , (24) eqnAMPRateB

where ΩZ is defined in (20).
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Proof Clearly, Γt =
2

t(t+ 1)
satisfies (19), and

αt
Γtγt

=
2

µ
(L+Mt) ≤ αt+1

Γt+1γt+1
.

Moreover,

µ− Lαtγt −
M2γ2t
µ

= µ− µL

L+Mt
· t

t+ 1
− µM2t2

4(L+Mt)2
≥ µ− µL

L+Mt
− µMt

L+Mt
= 0.

Thus (21) holds. Hence, by applying (22) in Theorem 1 with the parameter setting in

(23) and using (20), we obtain (24).

Clearly, in view of (24), when the parameters are chosen according to (23), the

number of iterations performed by the AMP method to find an ε-solution of (1), i.e.,

a point w̄ ∈ Z s.t. g(w̄) ≤ ε, can be bounded by

O

(√
L

ε
+
M

ε

)
.

This bound significantly improves the best-known so-far complexity for solving problem

(1) (see (6)) in terms of their dependence on the Lipschitz constant L. Moreover, it

should be noted that the parameter setting in (23) is independent of ΩZ , i.e., the

AMP method achieves the above optimal iteration-complexity without requiring any

information on the diameter of Z.

In Theorem 1, we assume that the Lipschitz constants L and M are known. In prac-

tice, the choices of these constants are critical, and wrong estimation for any of them

may lead to slow convergence of the AMP method. However, by incorporating a simple

backtracking strategy, we are able to search for the proper choices of L and M . The

AMP algorithm with backtracking, as well as the theorem describing its convergence

properties, are described in Algorithm 2 and Theorem 2.

〈thmAMPRateBB〉Theorem 2 Suppose that (20) holds. Then the iterates {wagt+1} in Algorithm 2 satisfies

g(wagt+1) ≤
(

4 max{2L,L0}
µt(t+ 1)

+
4 max{2M,M0}

µt

)
Ω2
Z ,

where ΩZ is defined in (20).

A few remarks are in place for Algorithm 2. Firstly, if L0 = L and M0 = M , then

by the assumptions (3), (4) and the backtracking conditions (26) and (27), we obtain

Lt ≡ L and Mt ≡ M . In particular, Algorithm 2 reduces to Algorithm 1 in which the

parameters are set to (23) in Corollary 1. Secondly, Algorithm 2 allows underestimation

the Lipschitz constants L and M , without affecting its rate of convergence. Indeed, in

view of the assumptions in (3), (4) and Steps 4 and 5, we can see that Lt ≤ 2L and

Mt ≤ 2M . Therefore, at any iteration t, the number of backtracking steps to search

for Lt and Mt are less than dlog2 2L/L0e and dlog2 2M/M0e, respectively.

Now, we consider the case when Z is unbounded. To study the convergence prop-

erties of AMP in this case, we use a perturbation-based termination criterion recently
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Algorithm 2 The accelerated mirror-prox (AMP) method with backtracking

〈algAMPB〉 1: Choose r1 ∈ Z,L0 > 0, and M0 > 0. Set w1 = r1, wag1 = r1, and t = 1.
〈stepMain〉 2: Set L̂t = Lt−1 and M̂t = Mt−1.

〈stepUpdate〉 3: Set the parameters to

αt =
2

t+ 1
and γ̂t =

µt

2(L̂t + M̂tt)
. (25) eqngammat

〈stepBTM〉 4: Compute wmdt and wt+1 by equations (13) and (14) with γt = γ̂t. If

‖H(wt+1)−H(rt)‖∗ > M̂t‖wt+1 − rt‖, (26) eqnBTM

then set M̂t ← 2M̂t, and go to Step 3.
〈stepBTL〉 5: Compute rt+1 and wagt+1 by equations (15) and (16) with γt = γ̂t. If

G(wagt+1)−G(wmdt )− 〈∇G(wmdt ), wagt+1 − w
md
t 〉 >

L̂t

2
‖wagt+1 − w

md
t ‖2, (27) eqnBTL

then set L̂t ← 2L̂t, and go to Step 3.
6: Set Lt = L̂t, Mt = M̂t, and γt = γ̂t.
7: If t = N , terminate and output wagN+1. Otherwise, set t← t+ 1, and go to Step 2.

employed by Monteiro and Svaiter [20,21], which is based on the enlargement of a

maximal monotone operator first introduced in [7]. More specifically, we say that the

pair (ṽ, ũ) ∈ E × Z is a (ρ, ε)-approximate solution of V I(Z;G,H, J) if ‖ṽ‖ ≤ ρ and

g̃(ũ, ṽ) ≤ ε, where the gap function g̃(·, ·) is defined by

g̃(ũ, ṽ) := sup
u∈Z

Q(ũ, u)− 〈ṽ, ũ− u〉. (28) eqngt

We call ṽ the perturbation vector associated with ũ. One advantage of employing

this termination criterion is that the convergence analysis does not depend on the

boundedness of Z.

Theorem 3 below describes the convergence properties of AMP for solving deter-

ministic VIs with unbounded feasible sets, under the assumption that a strong solution

of (1) exists. It should be noted that this assumption does not limit too much the ap-

plicability of the AMP method. For example, when J(·) = 0, any weak solution to

V I(Z;F ) is also a strong solution.

〈thmAMPRateUB〉Theorem 3 Suppose that V (r, z) := ‖z − r‖2/2 for any r, z ∈ Z. Also assume that

the parameters {αt} and {γt} in Algorithm 1 are chosen such that α1 = 1, and for all

t > 1,

0 ≤ αt < 1, Lαtγt +M2γ2t ≤ c2 for some c < 1, and
αt
Γtγt

=
αt+1

Γt+1γt+1
, (29) eqnCondAlphaGammaUB

where Γt is defined in (19). Then for all t ≥ 1 there exist vt+1 = αt(r1 − rt+1)/γt ∈ E
and εt+1 ≥ 0 such that g̃(wagt+1, vt+1) ≤ εt+1. Moreover, we have

‖vt+1‖ ≤
2αtD

γt
and εt+1 ≤

3αt(1 + θt)D
2

γt
. (30) eqnvepsThm
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where

D := ‖r1 − u∗‖, θt :=
Γt

2(1− c2)
max

i=1,...,t

αi
γi
. (31) eqndtheta

and u∗ is a strong solution of V I(Z;G,H, J).

Below we provide a specific setting of parameters {αt} and {γt} that satisfies

condition (29).

〈corAMPRateUB〉Corollary 2 Suppose that V (r, z) := ‖z − r‖2/2 for any r, z ∈ Z and M > 0. In

Algorithm 1, if N ≥ 2 is given and the parameters {αt} and {γt} are set to

αt =
2

t+ 1
and γt =

t

3(L+MN)
, (32) eqnAlphaGammaUB

then there exists vN ∈ E such that g̃(wagN , vN ) ≤ εN ,

‖vN‖ ≤
[

12L

N(N − 1)
+

12M

N − 1

]
D, and εN ≤

[
45L

N(N − 1)
+

45M

N − 1

]
D2, (33) eqnvepsCor

where u∗ is a strong solution of V I(Z;F ) and D is defined in (31).

Proof Clearly, we have Γt = 2/[t(t+ 1)] and hence (19) is satisfied. It also follows from

(32) that

Lαtγt +M2γ2t =
2Lt

3(L+MN)(t+ 1)
+

M2t2

9(L+MN)2
≤ 2L

3(L+MN)
+

MN

3(L+MN)

=
2L+MN

3(L+MN)
≤ 2

3
=: c2.

We can see that c < 1, and 1/(1− c2) = 3 in (31). Moreover, when N ≥ 2,

θN−1 =
ΓN−1

2(1− c2)
max

1≤i≤N−1
{αi
Γi
} =

1

(1− c2)N(N − 1)
max

1≤i≤N−1
i =

3

N
≤ 3

2
.

We conclude (33) by substituting the values of αN−1, γN−1 and θN−1 to (30).

Several remarks are in place for the results obtained in Theorem 3 and Corollary

2. Firstly, although the existence of a strong solution u∗ is assumed, no information

on either u∗ or D is needed for choosing parameters αt and γt, as shown in (32) of

Corollary 2. Secondly, both residuals ‖vN‖ and εN in (33) converge to 0 at the same

rate (up to a constant 15D/4). Finally, it is only for simplicity that we assume that

V (r, z) = ‖z − r‖2/2; Similar results can be achieved under assumptions that ∇ω is

Lipschitz continuous.
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Algorithm 3 The stochastic accelerated mirror-prox (SAMP) method

〈algAMPS〉 Modify (14) and (15) in Algorithm 1 to

wt+1 = P γtJrt

(
γtH(rt, ζ2t−1) + γtG(wmdt , ξt)

)
, (34) eqnProxwmdS

rt+1 = P γtJrt

(
γtH(wt+1, ζ2t) + γtG(wmdt , ξt)

)
, (35) eqnProxrmdS

3 Accelerated mirror-prox method for stochastic VI

〈secAMPS〉 In this section, we focus on the SV I(Z;F ) and demonstrate that the stochastic coun-

terpart of Algorithm 1 can achieve the optimal rate of convergence in (9).

The stochastic accelerated mirror-prox (SAMP) method is obtained by replacing

the operators H(rt), H(wt+1) and∇G(xmdt ) in Algorithm 1 by their stochastic counter-

parts H(rt, ζ2t−1), H(wt+1, ζ2t) and G(wmdt , ξt) respectively, by calling the stochastic

oracles SOG and SOH . This algorithm is formally described in Algorithm 3.

It is interesting to note that for any t, there are two calls of SOH but just one

call of SOG. However, if we assume that J = 0 and use the stochastic mirror-prox

method in [14] to solve SV I(Z;G,H, 0), for any t there would be two calls of SOH
and two calls of SOG. Therefore, the cost per iteration of AMP is less than that of the

stochastic mirror-prox method.

Similarly to Section 2, we use the gap function g(·) for the case when Z is bounded,

and use the modified gap function g̃(·, ·) for the case when Z is unbounded. For both

cases we establish the rate of convergence of the gap functions in terms of their ex-

pectation, i.e., the “average” rate of convergence over many runs of the algorithm.

Furthermore, we demonstrate that if Z is bounded, then we can also establish the

rate of convergence of g(·) in the probability sense, under the following “light-tail”

assumption:

〈itmLT〉 A2. For any i-th call on oracles SOH and SOH with any input u ∈ Z,

E[exp{‖∇G(u)− G(u, ξi)‖2∗/σ2G}] ≤ exp{1},

and

E[exp{‖H(u)−H(u, ζi)‖2∗/σ2H}] ≤ exp{1}.

It should be noted that Assumption A2. implies Assumption A1. by Jensen’s inequal-

ity.

The following theorem shows some convergence properties of Algorithm 3 when Z

is bounded.

〈thmAMPRateBS〉
Theorem 4 Suppose that (20) holds. Also assume that the parameters {αt} and {γt}
in Algorithm 3 satisfy α1 = 1,

qµ− Lαtγt −
3M2γ2t
µ

≥ 0 for some q ∈ (0, 1), and
αt
Γtγt

≤ αt+1

Γt+1γt+1
, ∀t ≥ 1, (36) eqnCondAlphaGammaIncS

where Γt is defined in (19). Then,
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(a) Under Assumption A1., for all t ≥ 1,

E
[
g(wagt+1)

]
≤ Q0(t) :=

2αt
γt

Ω2
Z +

[
4σ2H +

(
1 +

1

2(1− q)

)
σ2G

]
Γt

t∑
i=1

αiγi
µΓi

. (37) eqnQBoundBS

(b) Under Assumption A2., for all λ > 0 and t ≥ 1,

Prob{g(wagt+1) > Q0(t) + λQ1(t)} ≤ 2 exp{−λ2/3}+ 3 exp{−λ}, (38) eqnProb

where

Q1(t) := Γt(σG + σH)ΩZ

√√√√ 2

µ

t∑
i=1

(
αi
Γi

)2

+

[
4σ2H +

(
1 +

1

2(1− q)

)
σ2G

]
Γt

t∑
i=1

αiγi
µΓi

.

(39) eqnQ1

We present below a specific parameter setting of {αt} and {γt} that satisfies (36).

〈corStepS〉Corollary 3 Suppose that (20) holds. If the stepsizes {αt} and {γt} in Algorithm 3

are set to:

αt =
2

t+ 1
and γt =

µt

4L+ 3Mt+ β(t+ 1)
√
µt
, (40) eqnAlphaGammaBDS

where β > 0 is a parameter. Then under Assumption A1.,

E
[
g(wagt+1)

]
≤ 16LΩ2

Z

µt(t+ 1)
+

12MΩ2
Z

µ(t+ 1)
+

σΩZ√
µ(t− 1)

(
4βΩZ
σ

+
16σ

3βΩZ

)
=: C0(t), (41) eqnC0

where σ and ΩZ are defined in (8) and (20), respectively. Furthermore, under Assump-

tion A2.,

Prob{g(wagt+1) > C0(t) + λC1(t)} ≤ 2 exp{−λ2/3}+ 3 exp{−λ}, ∀λ > 0,

where

C1(t) :=
σΩZ√
µ(t− 1)

(
4
√

3

3
+

16σ

3βΩZ

)
. (42) eqnC1

Proof It is easy to check that

Γt =
2

t(t+ 1)
and

αt
Γtγt

≤ αt+1

Γt+1γt+1
.

In addition, in view of (40), we have γt ≤ µt/(4L) and γ2t ≤ (µ2)/(9M2), which

implies

5µ

6
− Lαtγt −

3M2γ2t
µ

≥ 5µ

6
− µt

4
· 2

t+ 1
− µ

3
≥ 0.
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Therefore the first relation in (36) holds with constant q = 5/6. In view of Theorem 4,

it now suffices to show that Q0(t) ≤ C0(t) and Q1(t) ≤ C1(t). Observing that αt/Γt = t,

and γt ≤
√
µ/(β

√
t), we obtain

t∑
i=1

αiγi
Γi
≤
√
µ

β

t∑
i=1

√
i ≤
√
µ

β

∫ t+1

0

√
tdt = 2(t+ 1)3/2/3 =

2
√
µ(t+ 1)3/2

β
.

Using the above inequality, (20), (37), (39), (40), and the fact that
√
t+ 1/t ≤ 1/

√
t− 1

and
∑t
i=1 i

2 ≤ t(t+ 1)2/3, we have

Q0(t) =
4Ω2

Z

µt(t+ 1)

(
4L+ 3Mt+ β(t+ 1)

√
µt
)

+
8σ2

µt(t+ 1)

t∑
i=1

αiγi
Γi

≤ 16LΩ2
Z

µt(t+ 1)
+

12MΩ2
Z

µ(t+ 1)
+

4βΩ2
Z√

µt
+

16σ2
√
t+ 1

3
√
µβt

≤ C0(t),

and

Q1(t) =
2(σG + σH)

t(t+ 1)
ΩZ

√√√√ 2

µ

t∑
i=1

i2 +
8σ2

µt(t+ 1)

t∑
i=1

αiγi
Γi

≤ 2
√

2(σG + σH)ΩZ√
3µt

+
16σ2

√
t+ 1

3
√
µβt

≤ C1(t).

In view of (9), (41) and (42), we can clearly see that the SAMP method is robust

with respect to the estimates of σ and ΩZ . Indeed, the SAMP method achieves the

optimal iteration complexity for solving the SVI problem as long as β = O(σ/ΩZ). In

addition, we can also see that this algorithm allows L to be as large as O(t3/2) without

significantly affecting its convergence properties.

In the following theorem, we demonstrate some convergence properties of Algorithm

3 for solving the stochastic problem SV I(Z;G,H, J) when Z is unbounded. It seems

that this case has not been well-studied previously in the literature.

〈thmAMPRateUBS〉Theorem 5 Suppose that V (r, z) := ‖z − r‖2/2 for any r ∈ Z and z ∈ Z. If the

parameters {αt} and {γt} in Algorithm 1 are chosen such that α1 = 1, and for all

t > 1,

0 ≤ αt < 1, Lαtγt + 3M2γ2t ≤ c2 < q for some c, q ∈ (0, 1), and
αt
Γtγt

=
αt+1

Γt+1γt+1
,

(43) eqnCondAlphaGammaUBS

where Γt is defined in (19). Then for all t ≥ 1 there exists a perturbation vector vt+1

and a residual εt+1 ≥ 0 such that g̃(wagt+1, vt+1) ≤ εt+1. Moreover, for all t ≥ 1, we

have

E[‖vt+1‖] ≤
αt
γt

(
2D + 2

√
D2 + C2

t

)
, (44) eqnEv

E[εt+1] ≤ αt
γt

[
(3 + 6θ)D2 + (1 + 6θ)C2

t

]
+

18α2
tσ

2
H

γ2t

t∑
i=1

γ3i , (45) eqnEeps
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where u∗ is a strong solution of V I(Z;G,H, J), D is defined in (31),

θ = max

{
1,

c2

q − c2

}
and Ct =

√√√√[4σ2H +

(
1 +

1

2(1− q)

)
σ2G

] t∑
i=1

γ2i . (46) eqnCtheta

Below we give an example of parameters αt and γt that satisfies (43).

?〈corStepUBS〉?Corollary 4 Suppose that there exists a strong solution of (1). If the maximum num-

ber of iterations N is given, and the stepsizes {αt} and {γt} in Algorithm 3 are set

to

αt =
2

t+ 1
and γt =

t

5L+ 3MN + βN
√
N − 1

, (47) eqnStepUBS

where σ is defined in Corollary 3, then there exists vN ∈ E and εN > 0, such that

g̃(wagN , vN ) ≤ εN ,

E[‖vN‖] ≤
40LD

N(N − 1)
+

24MD

N − 1
+

σ√
N − 1

(
8βD

σ
+ 5

)
, (48) eqnEvUB

and

E[εN ] ≤ 90LD2

N(N − 1)
+

54MD2

N − 1
+

σD√
N − 1

(
18βD

σ
+

56σ

3βD
+

18σ

βDN

)
. (49) eqnEepsUB

Proof Clearly, we have Γt = 2/[t(t+ 1)], and hence (19) is satisfied. Moreover, in view

of (47), we have

Lαtγt + 3M2γ2t ≤
2L

5L+ 3MN
+

3M2N2

(5L+ 3MN)2

=
10L2 + 6LMN + 3M2N2

(5L+ 3MN)2
<

5

12
<

5

6
,

which implies that (43) is satisfied with c2 = 5/12 and q = 5/6. Observing from (47)

that γt = tγ1, setting t = N − 1 in (46) and (47), we obtain

αN−1
γN−1

=
2

γ1N(N − 1)
and C2

N−1 = 4σ2
N−1∑
i=1

γ21 i
2 ≤ 4σ2γ21N

2(N − 1)

3
, (50) eqnCN

where CN−1 is defined in (46). Applying (50) to (44) we have

E[‖vN‖] ≤
2

γ1N(N − 1)
(4D + 2CN−1) ≤ 8D

γ1N(N − 1)
+

8σ√
3(N − 1)

≤ 40LD

N(N − 1)
+

24MD

N − 1
+

σ√
N − 1

(
8βD

σ
+ 5

)
.

In addition, using (45), (50), and the facts that θ = 1 in (46) and

N−1∑
i=1

γ3i = N2(N − 1)2/4,
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we have

E[εN−1] ≤ 2

γ1N(N − 1)
(9D2 + 7C2

N−1) +
72σ2H

γ21N
2(N − 1)2

· γ
3
1N

2(N − 1)2

4

≤ 18D2

γ1N(N − 1)
+

56σ2γ1N

3
+ 18σ2Hγ1

=
90LD2

N(N − 1)
+

54MD2

N − 1
+

18βD2

√
N − 1

+
56σ2

3β
√
N − 1

+
18σ2H

βN
√
N − 1

≤ 90LD2

N(N − 1)
+

54MD2

N − 1
+

σD√
N − 1

(
18βD

σ
+

56σ

3βD
+

18σ

βDN

)
.

Observe that we need to choose a parameter β for the stochastic unbounded case,

which is not required for the deterministic case (see Corollary 2). One may want to

choose β in a way such that the right hand side of (48) or (49) is minimized, e.g.,

β = O(σ/D). However, since the value of D will be very difficult to estimate for the

unbounded case and hence one often has to resort to a suboptimal selection for β. For

example, if β = σ, then the RHS of (48) and (49) will become O(LD/N2 +MD/N +

σD/
√
N) and O(LD2/N2 +MD2/N + σD2/

√
N), respectively.

4 Convergence analysis

〈secProof〉 In this section, we focus on proving the main convergence results in Sections 2 and 3,

namely, Theorems 1, 3, 4 and 5.

4.1 Convergence analysis for deterministic AMP

?〈secProofD〉? In this section, we prove Theorems 1 and 3 in Section 2, which state the main conver-

gence properties of Algorithm 1 for solving the deterministic problem V I(Z;G,H, J).

To prove the convergence of the deterministic AMP algorithm, we first present some

technical results. Lemmas 1 and 2 describe some important properties of the prox-

mapping PJr (η) used in (14) and (15) of Algorithm 1. Lemma 3 provides a recursion

related to the function Q(·, ·) defined in (17). With the help of Lemmas 1, 2 and 3, we

estimate a bound on Q(·, ·) in Proposition 1.

〈lemProxMap〉Lemma 1 For all r, ζ ∈ E, if w = PJr (ζ), then for all u ∈ Z, we have

〈ζ, w − u〉+ J(w)− J(u) ≤ V (r, u)− V (r, w)− V (w, u).

Proof See Lemma 2 in [12] for the proof.

The following proposition is a slight extension of Lemma 6.3 in [14]. In particular,

when J(·) = 0, we can obtain (54) and (55) directly by applying (53) to (6.8) in [14],

and the results when J(·) 6≡ 0 can be easily constructed from the proof of Lemma 6.3

in [14]. We provide the proof here only for the sake of completeness.
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〈lemPRecursion〉Lemma 2 Given r, w, y ∈ Z and η, ϑ ∈ E that satisfy

w = PJr (η), (51) eqnProx1

y = PJr (ϑ), (52) eqnProx2

and

‖ϑ− η‖2∗ ≤ L2‖w − r‖2 +M2. (53) eqnLM

Then, for all u ∈ Z,

〈ϑ,w − u〉+ J(w)− J(u) ≤ V (r, u)− V (y, u)−
(
µ

2
− L2

2µ

)
‖r − w‖2 +

M2

2µ
,

(54) eqnPRecursion

and

V (y, w) ≤ L2

µ2
V (r, w) +

M2

2µ
. (55) eqnVvr

Proof Applying Proposition 1 to (51) and (52), for all u ∈ Z we have

〈η, w − u〉+ J(w)− J(u) ≤ V (r, u)− V (r, w)− V (w, u), (56) eqnMP2u

〈ϑ, y − u〉+ J(y)− J(u) ≤ V (r, u)− V (r, y)− V (y, u), (57) eqnMP1

In particular, letting u = y in (56) we have

〈η, w − y〉+ J(w)− J(y) ≤ V (r, y)− V (r, w)− V (w, y). (58) eqnMP2

Adding inequalities (57) and (58), then

〈ϑ, y − u〉+ 〈η, w − y〉+ J(w)− J(u) ≤ V (r, u)− V (y, u)− V (r, w)− V (w, y),

which is equivalent to

〈ϑ,w − u〉+ J(w)− J(u) ≤ 〈ϑ− η, w − y〉+ V (r, u)− V (y, u)− V (r, w)− V (w, y).

Applying Schwartz inequality and Young’s inequality to the above inequality, and using

the fact that

µ

2
‖z − u‖2 ≤ V (u, z), ∀u, z ∈ Z, (59) eqnVvsNorm

due to the strong convexity of ω(·) in (12), we obtain

〈ϑ,w − u〉+ J(w)− J(u)

≤ ‖ϑ− η‖∗‖w − y‖+ V (r, u)− V (y, u)− V (r, w)− µ

2
‖w − y‖2

≤ 1

2µ
‖ϑ− η‖2∗ +

µ

2
‖w − y‖2 + V (r, u)− V (y, u)− V (r, w)− µ

2
‖w − y‖2

=
1

2µ
‖ϑ− η‖2∗ + V (r, u)− V (y, u)− V (r, w).

(60) tmp1

The result in (54) then follows immediately from above relation, (53) and (59).
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Moreover, observe that by setting u = w and u = y in (57) and (60), respectively,

we have

〈ϑ, y − w〉+ J(y)− J(w) ≤ V (r, w)− V (r, y)− V (y, w),

〈ϑ,w − y〉+ J(w)− J(y) ≤ 1

2µ
‖ϑ− η‖2∗ + V (r, y)− V (r, w).

Adding the above two inequalities, and using (53) and (59), we have

0 ≤ 1

2µ
‖ϑ−η‖2∗−V (y, w) ≤ L2

2µ
‖r−w‖2+

M2

2µ
−V (y, w) ≤ L2

µ2
V (r, w)+

M2

2µ
−V (y, w),

and thus (55) holds.

〈propSimplifiedQ〉Lemma 3 For any sequences {rt}t≥1 and {wt}t≥1 ⊂ Z, if the sequences {wagt } and

{wmdt } are generated by (13) and (16), then for all u ∈ Z,

Q(wagt+1, u)− (1− αt)Q(wagt , u)

≤ αt〈∇G(wmdt ) +H(wt+1), wt+1 − u〉+
Lα2

t

2
‖wt+1 − rt‖2 − αtJ(u).

(61) eqnSimplifiedQ

Proof Observe from (13) and (16) that wagt+1−w
md
t = αt(wt+1− rt). This observation

together with the convexity of G(·) imply that for all u ∈ Z,

G(wagt+1) ≤ G(wmdt ) + 〈∇G(wmdt ), wagt+1 − w
md
t 〉+

L

2
‖wagt+1 − w

md
t ‖2

= (1− αt)
[
G(wmdt ) + 〈∇G(wmdt ), wagt − w

md
t 〉

]
+ αt

[
G(wmdt ) + 〈∇G(wmdt ), u− wmdt 〉

]
+ αt〈∇G(wmdt ), wt+1 − u〉+

Lα2
t

2
‖wt+1 − rt‖2

≤ (1− αt)G(wagt ) + αtG(u) + αt〈∇G(wmdt ), wt+1 − u〉+
Lα2

t

2
‖wt+1 − rt‖2.

Using the above inequality, (16), (17) and the monotonicity of H(·), we have

Q(wagt+1, u)− (1− αt)Q(wagt , u)

= G(wagt+1)− (1− αt)G(wagt )− αtG(u)

+ 〈H(u), wagt+1 − u〉 − (1− αt)〈H(u), wagt − u〉

+ J(wagt+1)− (1− αt)J(wagt )− αtJ(u)

≤ G(wagt+1)− (1− αt)G(wagt )− αtG(u) + αt〈H(u), wt+1 − u〉

+ αtJ(wt+1)− αtJ(u)

≤ αt〈∇G(wmdt ), wt+1 − u〉+
Lα2

t

2
‖wt+1 − rt‖2 + αt〈H(wt+1), wt+1 − u〉

+ αtJ(wt+1)− αtJ(u).
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In Lemma 3, we assume that the Lipschitz constant L satisfies (3). It can be easily

seen that for any Lt > 0, as long as

G(wagt+1) ≤ G(wmdt ) + 〈∇G(wmdt ), wagt+1 − w
md
t 〉+

Lt
2
‖wagt+1 − w

md
t ‖2, (62) eqnGLt

then the above lemma still holds with L in (61) replaced by Lt:

Q(wagt+1, u)− (1− αt)Q(wagt , u)

≤ αt〈∇G(wmdt ) +H(wt+1), wt+1 − u〉+
Ltα

2
t

2
‖wt+1 − rt‖2 − αtJ(u).

(63) ?eqnSimplifiedQBT?

The following proposition estimates a bound on Q(wagt+1, u), and will be used in

the proof of both Theorems 1 and 3.

〈proQBoundGeneral〉Proposition 1 Suppose that the parameters {αt} in Algorithm 1 satisfy α1 = 1 and

0 ≤ αt < 1 for all t > 1. Then the iterates {rt}, {wt} and {wagt } of Algorithm 1 satisfy

1

Γt
Q(wagt+1, u)

≤ Bt(u, r[t])−
t∑
i=1

αi
2Γiγi

(
µ− Lαiγi −

M2γ2i
µ

)
‖ri − wi+1‖2, ∀u ∈ Z,

(64) eqnQBoundGeneral

where Γt is defined in (19), and

Bt(u, r[t]) :=

t∑
i=1

αi
Γiγi

(V (ri, u)− V (ri+1, u)). (65) eqnB

Proof First, it follows from Lemma 2 applied to iterations (14) and (15) (with r =

rt, w = wt+1, y = rt+1, ϑ = γtH(rt) +γt∇G(wmdt ), η = γtH(wt+1) +γt∇G(wmdt ), J =

γtJ , L = Mγt and ν = 0) that for any u ∈ Z,

γt〈∇G(wmdt ) +H(wt+1), wt+1 − u〉+ γtJ(wt+1)− γtJ(u)

≤ V (rt, u)− V (rt+1, u)−
(
µ

2
− M2γ2t

2µ

)
‖rt − wt+1‖2.

Now applying the above inequality to (61), we have

Q(wagt+1, u)− (1− αt)Q(wagt , u)

≤ αt
γt

[V (rt, u)− V (rt+1, u)]− αt
2γt

(
µ− Lαtγt −

M2γ2t
µ

)
‖rt − wt+1‖2.

Dividing both sides of the above inequality by Γt, we have

1

Γt
Q(wagt+1, u)− 1− αt

Γt
Q(wagt , u)

≤ αt
Γtγt

[V (rt, u)− V (rt+1, u)]− αt
2Γtγt

(
µ− Lαtγt −

M2γ2t
µ

)
‖rt − wt+1‖2.

Using the facts that α1 = 1, and that
1− αt
Γt

=
1

Γt−1
, t > 1, due to (19), we can apply

the above inequality recursively to obtain (64).
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It is not difficult to see from the proof of the above lemma that it can be slightly

modified for variable Lipschitz constants Lt and Mt. Indeed, for any series {Lt} and

{Mt} that satisfy (62) and

‖H(wt+1)−H(rt)‖∗ ≤Mt‖wt+1 − rt‖, (66) eqnHMt

respectively, we have

1

Γt
Q(wagt+1, u)

≤ Bt(u, r[t])−
t∑
i=1

αi
2Γiγi

(
µ− Liαiγi −

M2
i γ

2
i

µ

)
‖ri − wi+1‖2, ∀u ∈ Z.

(67) eqnQBoundGeneralBT

We will use equation (67) in the proof of Theorem 2 for the convergence of the AMP

algorithm with backtracking.

We are now ready to prove Theorem 1, which provides an estimate of the gap

function of the deterministic AMP algorithm when Z is bounded. This result follows

immediately from Lemma 1.

Proof of Theorem 1. In view of (21) and (64), to prove (22) it suffices to show that

Bt(u, r[t]) ≤ αtΩ
2
Z/(Γtγt) for all u ∈ Z. Indeed, since the sequence {ri}t+1

i=1 is in the

bounded set Z, applying (20) and (21) to (65) we have

Bt(u, r[t])

=
α1

Γ1γ1
V (r1, u)−

t−1∑
i=1

[
αi
Γiγi

− αi+1

Γi+1γi+1

]
V (ri+1, u)− αt

Γtγt
V (rt+1, u)

≤ α1

Γ1γ1
Ω2
Z −

t−1∑
i=1

[
αi
Γiγi

− αi+1

Γi+1γi+1

]
Ω2
Z =

αt
Γtγt

Ω2
Z , ∀u ∈ Z,

(68) eqnBBD

and thus (22) holds.

Similar as the proof of the above theorem, with the help of Lemma 1, (62) and

(66), we are able to prove Theorem 2.

Proof of Theorem 2. We have Γt = 2/[t(t+ 1)] and hence (19) is satisfied. Also,

in view of the remarks after Algorithm 2, we have Lt ≤ min{2L,L0} and Mt ≤
min{2M,M0}. Moreover, from Steps 2, 4 and 5 of Algorithm 2 we can see that the

sequences {Lt}t≥0 and {Mt}t≥0 are non-decreasing. Following these observations to-

gether with (25), we have

αt
Γtγt

=
2

µ
(Lt +Mtt) ≤

αt+1

Γt+1γt+1
,

and

µ− Ltαtγt −
M2
t γ

2
t

µ
= µ− µLt

Lt +Mtt
· t

t+ 1
− µM2

t t
2

4(Lt +Mtt)2

≥ µ− µLt
Lt +Mtt

− µMtt

Lt +Mtt
= 0.
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Applying the above two inequalities, (25), and (68) to (64), we conclude that

Q(wagt+1, u) ≤ ΓtBt(u, r[t]) ≤
αt
γt
Ω2
Z =

(
4Lt

µt(t+ 1)
+

4Mt

µ(t+ 1)

)
Ω2
Z , ∀u ∈ Z.

In the remaining part of this subsection, we will focus on proving Theorem 3, which

summarizes some convergence properties of the deterministic AMP algorithm when Z

is unbounded.

Proof of Theorem 3. Using the assumption that V (r, z) := ‖z−r‖2/2 for all r, z ∈ Z,

and applying the last relation of (29) to (65), we obtain

Bt(u, r[t]) =
αt

2Γtγt
‖r1 − u‖2 −

αt
2Γtγt

‖rt+1 − u‖2.

Applying the above identity and the second relation of (29) to (64) and noting that

µ = 1, we have

Q(wagt+1, u) ≤ αt
2γt
‖r1 − u‖2 −

αt
2γt
‖rt+1 − u‖2 −

αt
2γt

t∑
i=1

(
1− c2

)
‖ri − wi+1‖2.

(69) eqnQEucl

Observing that

1

2
‖r1 − u‖2 −

1

2
‖rt+1 − u‖2 =

1

2
‖r1‖2 −

1

2
‖rt+1‖2 − 〈r1 − rt+1, u〉

=
1

2
‖r1 − wagt+1‖

2 − 1

2
‖rt+1 − wagt+1‖

2 + 〈r1 − rt+1, w
ag
t+1 − u〉,

(70) eqnr2wag

and combining (69) and (70), we obtain

Q(wagt+1, u)− αt
γt
〈r1 − rt+1, w

ag
t+1 − u〉

≤ αt
2γt
‖r1 − wagt+1‖

2 − αt
2γt
‖rt+1 − wagt+1‖

2 − αt
2γt

(1− c2)

t∑
i=1

‖ri − wi+1‖2 =: εt+1.

(71) eqneps

Therefore, if we set vt+1 := αt(r1−rt+1)/γt, then Q(wagt+1, u)−〈vt+1, w
ag
t+1−u〉 ≤ εt+1

for all u ∈ Z. Note that εt+1 ≥ 0 holds trivially by letting u = wagt+1 in (71). Hence we

have g̃(wagt+1, vt+1) ≤ εt+1 and it suffices to estimate the bounds on ‖vt+1‖ and εt+1.

Observe that by (2), (5), (17) and the convexity of G and J , we have

Q(wagt+1, u
∗) ≥ 〈∇F (u∗), wagt+1 − u

∗〉 ≥ 0, (72) eqnQpositive

where the last inequality follows from the assumption that u∗ is a strong solution of

V I(Z;G,H, J). This observation together with (69) imply that

‖r1 − u∗‖2 − ‖rt+1 − u∗‖2 −
t∑
i=1

(
1− c2

)
‖ri − wi+1‖2 ≥ 0.
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By the above inequality and the definition of D in (31), we have

‖rt+1 − u∗‖ ≤D, (73) eqnrtnBound

t∑
i=1

‖ri − wi+1‖2 ≤
D2

1− c2
. (74) eqnrtwtnBound

It then follows from (73) and the definition of vt+1 that

‖vt+1‖ ≤
αt
γt

(
‖r1 − u∗‖+ ‖rt+1 − u∗‖

)
≤ 2αt

γt
D,

and hence the first relation in (30) holds.

To finish the proof, it now suffices to estimate a bound for εt. Firstly we explore

the definition of the aggregate point wagt+1. By (16) and (19), we have

1

Γt
wagt+1 =

1

Γt−1
wagt +

αt
Γt
wt+1, ∀t ≥ 1.

Using the assumption that wag1 = w1, we obtain

wagt+1 = Γt

t∑
i=1

αi
Γi
wi+1, (75) eqnwagReform

where by (19) we have

Γt

t∑
i=1

αi
Γi

= 1. (76) eqnGammaSpan

Therefore, wagt+1 is a convex combination of iterates w2, . . . , wt+1. Using (31), (71),

(73) and (74), we conclude that

εt+1 ≤
αt
2γt
‖r1 − wagt+1‖

2 ≤ αtΓt
2γt

t∑
i=1

αi
γi
‖r1 − wi+1‖2

≤ 3αtΓt
2γt

t∑
i=1

αi
γi

(‖r1 − u∗‖2 + ‖ri − u∗‖2 + ‖ri − wi+1‖2)

≤ 3αt
2γt

(
2D2 + Γt max

i=1,...,t

αi
γi

t∑
i=1

‖ri − wi+1‖2
)

≤ 3αt(1 + θt)D
2

γt
.

4.2 Convergence analysis for stochastic AMP

?〈secProofS〉? In this section, we prove the convergence results of the SAMP method presented in

Section 3, namely, Theorems 4 and 5.

Throughout this section, we will use the following notations to describe the inex-

actness of the first order information from SOH and SOG. At the t-th iteration, letting
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H(rt, ζ2t−1), H(wt+1, ζ2t) and G(wmdt , ξt) be the output of the stochastic oracles, we

denote

∆2t−1
H := H(rt, ζ2t−1)−H(rt),

∆2t
H := H(wt+1, ζ2t)−H(wt+1), and

∆tG := G(wmdt , ξt)−∇G(wmdt ).

(77) eqnDelta

To start with, we present a technical result to obtain a bound on Q(wagt+1, u) for

all u ∈ Z. The following lemma is analogous to Lemma 1 for deterministic AMP, and

will be applied in the proof of Theorems 4 and 5.

〈proQBoundGeneralS〉
Lemma 4 Suppose that the parameters {αt} in Algorithm 1 satisfies α1 = 1 and

0 ≤ αt < 1 for all t > 1. Then the iterates {rt}, {wt} and {wagt } generated by Algorithm

3 satisfy

1

Γt
Q(wagt+1, u)

≤ Bt(u, r[t])−
t∑
i=1

αi
2Γiγi

(
qµ− Lαiγi −

3M2γ2i
µ

)
‖ri − wi+1‖2 +

t∑
i=1

Λi(u), ∀u ∈ Z,

(78) eqnQBoundGeneralS

where Γt is defined in (19), Bt(u, r[t]) is defined in (65), and

Λi(u) :=
3αiγi
2µΓi

(
‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗
)
− (1− q)µαi

2Γiγi
‖ri − wi+1‖2

− αi
Γi
〈∆2i

H +∆iG, wi+1 − u〉.
(79) eqnLambda

Proof Observe from (77) that

‖H(wt+1, ζ2t)−H(rt, ζ2t−1)‖2∗

≤
(
‖H(wt+1)−H(rt)‖∗ + ‖∆2t

H‖∗ + ‖∆2t−1
H ‖∗

)2
≤ 3

(
‖H(wt+1)−H(rt)‖2∗ + ‖∆2t

H‖
2
∗ + ‖∆2t−1

H ‖2∗
)

≤ 3
(
M2‖wt+1 − rt‖2 + ‖∆2t

H‖
2
∗ + ‖∆2t−1

H ‖2∗
)
.

(80) eqnLMStoc

Applying Proposition 2 to (34) and (35) (with r = rt, w = wt+1, y = rt+1, ϑ =

γtH(rt, ζ2t−1) + γtG(wmdt , ξt), η = γtH(wt+1, ζ2t) + γtG(wmdt , ξt), J = γtJ , L2 =

3M2γ2t and M2 = 3γ2t (‖∆2t
H‖

2
∗ + ‖∆2t−1

H ‖2∗)), and using (80), we have for any u ∈ Z,

γt〈H(wt+1, ζ2t) + G(wmdt , ξt), wt+1 − u〉+ γtJ(w)− γtJ(u)

≤ V (rt, u)− V (rt+1, u)−
(
µ

2
− 3M2γ2t

2µ

)
‖rt − wt+1‖2 +

3γ2t
2µ

(‖∆2t
H‖

2
∗ + ‖∆2t−1

H ‖2∗).
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Applying (77) and the above inequality to (61), we have

Q(wagt+1, u)− (1− αt)Q(wagt , u)

≤ αt〈H(wt+1, ζ2t) + G(wmdt , ξt), wt+1 − u〉+ αtJ(wt+1)− αtJ(u)

+
Lα2

t

2
‖wt+1 − rt‖2 − αt〈∆2t

H +∆tG, wt+1 − u〉

≤ αt
γt

(V (rt, u)− V (rt+1, u))− αt
2γt

(
µ− Lαtγt −

3M2γ2t
µ

)
‖rt − wt+1‖2

+
3αtγt

2µ

(
‖∆2t

H‖
2
∗ + ‖∆2t−1

H ‖2∗
)
− αt〈∆2t

H +∆tG, wt+1 − u〉.

Dividing the above inequality by Γt and using the definition of Λt(u) in (79), we obtain

1

Γt
Q(wagt+1, u)− 1− αt

Γt
Q(wagt , u)

≤ αt
Γtγt

(V (rt, u)− V (rt+1, u))

− αt
2Γtγt

(
qµ− Lαtγt −

3M2γ2t
µ

)
‖rt − wt+1‖2 + Λt(u).

Noting the fact that α1 = 1 and (1− αt)/Γt = 1/Γt−1, t > 1, due to (19), applying

the above inequality recursively and using the definition of Bt(·, ·) in (65), we conclude

(78).

We still need the following technical result to prove Theorem 4.

〈lemTech〉Lemma 5 Let θt, γt > 0, t = 1, 2, . . . , be given. For any w1 ∈ Z and any sequence

{∆t} ⊂ E, if we define wv1 = w1 and

wvi+1 = argmin
u∈Z

−γi〈∆i, u〉+ V (wvi , u), ∀i > 1, (81) eqnProxv

then

t∑
i=1

θi〈−∆i, wvi −u〉 ≤
t∑
i=1

θi
γi

(V (wvi , u)−V (wvi+1, u))+

t∑
i=1

θiγi
2µ
‖∆i‖2∗, ∀u ∈ Z. (82) eqnTech

Proof Applying Lemma 1 to (81) (with r = wvi , w = wvi+1, ζ = −γi∆i and J = 0), we

have

−γi〈∆i, wvi+1 − u〉 ≤ V (wvi , u)− V (wvi , w
v
i+1)− V (wvi+1, u), ∀u ∈ Z.

Moreover, by Schwartz inequality, Young’s inequality and (59) we have

− γi〈∆i, wvi − w
v
i+1〉

≤ γi‖∆i‖∗‖‖wvi − w
v
i+1‖ ≤

γ2i
2µ
‖∆i‖2∗ +

µ

2
‖wvi − w

v
i+1‖

2 ≤ γ2i
2µ
‖∆i‖2∗ + V (wvi , w

v
i+1).

Adding the above two inequalities and multiplying the resulting inequality by θi/γi, we

obtain

−θi〈∆i, wvi − u〉 ≤
θiγi
2µ
‖∆i‖2∗ +

θi
γi

(V (wvi , u)− V (wvi+1, u)).

Summing the above inequalities from i = 1 to t, we conclude (82).
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We are now ready to prove Theorem 4.

Proof of Theorem 4. Firstly, applying (36) and (68) to (78) in Lemma 4, we have

1

Γt
Q(wagt+1, u) ≤ αt

Γtγt
Ω2
Z +

t∑
i=1

Λi(u), ∀u ∈ Z. (83) eqnQLambda

Letting wv1 = w1, defining wvi+1 as in (81) with ∆i = ∆2i
H + ∆iG for all i > 1, we

conclude from (65) and Lemma 5 (with θi = αi/Γi) that

−
t∑
i=1

αi
Γi
〈∆2i

H +∆iG, w
v
i − u〉 ≤ Bt(u,w

v
[t]) +

t∑
i=1

αiγi
2µΓi

‖∆2i
H +∆iG‖

2
∗, ∀u ∈ Z. (84) ?tmp3?

The above inequality together with (79) and the Young’s inequality yield

t∑
i=1

Λi(u) = −
t∑
i=1

αi
Γi
〈∆2i

H +∆iG, w
v
i − u〉+

t∑
i=1

3αiγi
2µΓi

(
‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗
)

+

t∑
i=1

αi
Γi

[
− (1− q)µ

2γi
‖ri − wi+1‖2 − 〈∆iG, wi+1 − ri〉

]

−
t∑
i=1

αi
Γi
〈∆iG, ri − w

v
i 〉 −

t∑
i=1

αi
Γi
〈∆2i

H , wi+1 − wvi 〉

≤ Bt(u,wv[t]) + Ut,

(85) eqnLambdaSimplifed

where

Ut :=

t∑
i=1

αiγi
2µΓi

‖∆2i
H +∆iG‖

2
∗ +

t∑
i=1

αiγi
2(1− q)µΓi

‖∆iG‖
2
∗

+

t∑
i=1

3αiγi
2µΓi

(
‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗
)

−
t∑
i=1

αi
Γi
〈∆iG, ri − w

v
i 〉 −

t∑
i=1

αi
Γi
〈∆2i

H , wi+1 − wvi 〉.

(86) eqnU

Applying (68) and (85) to (83), we have

1

Γt
Q(wagt+1, u) ≤ 2αt

γtΓt
Ω2
Z + Ut, ∀u ∈ Z,

or equivalently,

g(wagt ) ≤ 2αt
γt

Ω2
Z + ΓtUt. (87) eqngU

Now it suffices to bound Ut, in both expectation and probability.

We prove part (a) first. By our assumptions on SOG and SOH and in view

of (34), (35) and (81), during the i-th iteration of Algorithm 3, the random noise

∆2i
H is independent of wi+1 and wvi , and ∆iG is independent of ri and wvi , hence

E[〈∆iG, ri−w
v
i 〉] = E[〈∆2i

H , wi+1−wvi 〉] = 0. In addition, Assumption A1. implies that
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E[‖∆iG‖
2
∗] ≤ σ2G, E[‖∆2i−1

H ‖2∗] ≤ σ2H and E[‖∆2i
H‖

2
∗] ≤ σ2H , where ∆iG, ∆2i−1

H and ∆2i
H

are independent. Therefore, taking expectation on (86) we have

E[Ut] ≤ E

[
t∑
i=1

αiγi
µΓi

(
‖∆2i

H‖
2 + ‖∆iG‖

2
∗

)
+

t∑
i=1

αiγi
2(1− q)µΓi

‖∆iG‖
2
∗

+

t∑
i=1

3αiγi
2µΓi

(
‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗
)]

=

t∑
i=1

αiγi
µΓi

[
4σ2H +

(
1 +

1

2(1− q)

)
σ2G

]
.

(88) eqnEUt

Taking expectation on both sides of (87), and using (88), we obtain (37).

Next we prove part (b). Observe that the sequence {〈∆iG, ri−w
v
i 〉}i≥1 is a martingale

difference and hence satisfies the large-deviation theorem (see, e.g., Lemma 2 of [18]).

Therefore using Assumption A2. and the fact that

E

[
exp

{
µ(αiΓ

−1
i 〈∆

i
G, ri − w

v
i 〉)

2

2(σGαiΓ
−1
i ΩZ)2

}]

≤ E
[
exp

{
µ‖∆iG‖

2
∗‖ri − wvi ‖

2

2σ2GΩ
2
Z

}]
≤ E

[
exp

{
‖∆iG‖

2
∗/σ

2
G

}]
≤ exp{1},

we conclude from the large-deviation theorem that

Prob


t∑
i=1

αi
Γi
〈∆iG, ri − w

v
i 〉 > λσGΩZ

√√√√ 2

µ

t∑
i=1

(
αi
Γi

)2
 ≤ exp{−λ2/3}. (89) ?tmpp1?

By using a similar argument we have

Prob


t∑
i=1

αi
Γi
〈∆2i

H , wi+1 − wvi 〉 > λσHΩZ

√√√√ 2

µ

t∑
i=1

(
αi
Γi

)2
 ≤ exp{−λ2/3}. (90) ?tmpp2?

In addition, letting Si = αiγi/(µΓi) and S =
∑t
i=1 Si, by Assumption A2. and

the convexity of exponential functions, we have

E

[
exp

{
1

S

t∑
i=1

Si‖∆iG‖
2
∗/σ

2
G

}]
≤ E

[
1

S

t∑
i=1

Si exp
{
‖∆iG‖

2
∗/σ

2
G

}]
≤ exp{1}.

Therefore, by Markov’s inequality we have

Prob

{(
1 +

1

2(1− q)

) t∑
i=1

αiγi
µΓi
‖∆iG‖

2
∗ > (1 + λ)σ2G

(
1 +

1

2(1− q)

) t∑
i=1

αiγi
µΓi

}
≤ exp{−λ}.

(91) ?tmpp3?
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Using similar arguments, we also have

Prob

{
t∑
i=1

3αiγi
2µΓi

‖∆2i−1
H ‖2∗ > (1 + λ)

3σ2H
2

t∑
i=1

αiγi
µΓi

}
≤ exp{−λ}, (92) ?tmpp4?

Prob

{
t∑
i=1

5αiγi
2µΓi

‖∆2i
H‖

2
∗ > (1 + λ)

5σ2H
2

t∑
i=1

αiγi
µΓi

}
≤ exp{−λ}. (93) tmpp5

Using the fact that ‖∆2i
H +∆2i−1

G ‖2∗ ≤ 2‖∆2i
H‖

2
∗ + 2‖∆2i−1

G ‖2∗, we conclude from (87)–

(93) that (38) holds.

In the remaining part of this subsection, we will focus on proving Theorem 5, which

describes the rate of convergence of Algorithm 3 for solving SV I(Z;G,H, J) when Z

is unbounded.

Proof the Theorem 5. Let Ut be defined in (86). Firstly, applying (43) and (85) to

(78) in Lemma 4, we have

1

Γt
Q(wagt+1, u) (94) eqnQEuclS

≤ Bt(u, r[t])−
αt

2Γtγt

t∑
i=1

(
q − c2

)
‖ri − wi+1‖2 + Bt(u,wv[t]) + Ut, ∀u ∈ Z. (95) {?}

In addition, applying (43) to the definition of Bt(·, ·) in (65), we obtain

Bt(u, r[t]) =
αt

2Γtγt
(‖r1 − u‖2 − ‖rt+1 − u‖2) (96) eqnBr

=
αt

2Γtγt
(‖r1 − wagt+1‖

2 − ‖rt+1 − wagt+1‖
2 + 2〈r1 − rt+1, w

ag
t+1 − u〉). (97) eqnBrw

By using a similar argument and the fact that wv1 = w1 = r1, we have

Bt(u,wv[t]) =
αt

2Γtγt
(‖r1 − u‖2 − ‖wvt+1 − u‖2) (98) eqnBv

=
αt

2Γtγt
(‖r1 − wagt+1‖

2 − ‖wvt+1 − w
ag
t+1‖

2 + 2〈r1 − wvt+1, w
ag
t+1 − u〉).

(99) eqnBvw

We then conclude from (94), (97), and (99) that

Q(wagt+1, u)− 〈vt+1, w
ag
t+1 − u〉 ≤ εt+1, ∀u ∈ Z, (100) tmp

where

vt+1 :=
αt
γt

(2r1 − rt+1 − wvt+1) (101) eqnvS

and

εt+1 :=
αt
2γt

(
2‖r1 − wagt+1‖

2 − ‖rt+1 − wagt+1‖
2 − ‖wvt+1 − w

ag
t+1‖

2

−
t∑
i=1

(
q − c2

)
‖ri − wi+1‖2

)
+ ΓtUt.

(102) eqnepsS



27

It is easy to see that the residual εt+1 is positive by setting u = wagt+1 in (100).

Hence g̃(wagt+1, vt+1) ≤ εt+1. To finish the proof, it suffices to estimate the bounds

for E[‖vt+1‖] and E[εt+1].

Letting u = u∗ in (94), we conclude from (96) and (98) that

2‖r1 − u∗‖2 − ‖rt+1 − u∗‖2 − ‖wvt+1 − u∗‖2 −
t∑
i=1

(
q − c2

)
‖ri − wi+1‖2 +

2Γtγt
αt

Ut

≥ 1

Γt
Q(wagt+1, u

∗) ≥ 0,

where the last inequality follows from (72). Using the above inequality and the definition

of D in (31), we have

‖rt+1 − u∗‖2 + ‖wvt+1 − u∗‖2 +

t∑
i=1

(
q − c2

)
‖ri − wi+1‖2 ≤ 2D2 +

2Γtγt
αt

Ut. (103) eqnrwvBound

In addition, applying (43) and the definition of Ct in (46) to (88), we have

E[Ut] ≤
t∑
i=1

αtγ
2
i

Γtγt

[
4σ2H +

(
1 +

1

2(1− q)

)
σ2G

]
=

αt
Γtγt

C2
t . (104) eqnEUC

Combining (103) and (104), we have

E[‖rt+1 − u∗‖2] + E[‖wvt+1 − u∗‖2] +

t∑
i=1

(
q − c2

)
E[‖ri − wi+1‖2] ≤ 2D2 + 2C2

t .

(105) eqnDC

We are now ready to prove (44). Observe from the definition of vt+1 in (101) and the

definition of D in (31) that ‖vt+1‖ ≤ αt(2D + ‖wvt+1 − u∗‖+ ‖rt+1 − u∗‖)/γt, using

the previous inequality, Jensen’s inequality, and (105), we obtain

E[‖vt+1‖] ≤
αt
γt

(2D +
√
E[(‖rt+1 − u∗‖+ ‖wvt+1 − u∗‖)2])

≤ αt
γt

(2D +
√

2E[‖rt+1 − u∗‖2 + ‖wvt+1 − u∗‖2]) ≤ αt
γt

(2D + 2

√
D2 + C2

t ).

Our remaining goal is to prove (45). By applying Proposition 2 to (34) and (35)

(with r = rt, w = wt+1, y = rt+1, ϑ = γtH(rt, ζ2t−1)+γtG(wmdt , ξt), η = γtH(wt+1, ζ2t)+

γtG(wmdt , ξt), J = γtJ , L = 3M2γ2t and M2 = 3γ2t (‖∆2t
H‖

2
∗ + ‖∆2t−1

H ‖2∗)), and using

(55) and (80), we have

1

2
‖rt+1 − wt+1‖2 ≤

3M2γ2t
2
‖rt − wt+1‖2 +

3γ2t
2

(‖∆2t
H‖

2
∗ + ‖∆2t−1

H ‖2∗)

≤ c2

2
‖rt − wt+1‖2 +

3γ2t
2

(‖∆2t
H‖

2
∗ + ‖∆2t−1

H ‖2∗),
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where the last inequality follows from (43). Now using (75), (76), (102), the above

inequality, and applying Jensen’s inequality, we have

εt+1 − ΓtUt ≤
αt
γt
‖r1 − wagt+1‖

2

=
αt
γt

∥∥∥∥∥r1 − u∗ +

t∑
i=1

αi
Γi

(u∗ − ri+1) +

t∑
i=1

αi
Γi

(ri+1 − wi+1)

∥∥∥∥∥
≤ 3αt

γt

[
D2 + Γt

t∑
i=1

αi
Γi

(
‖ri+1 − u∗‖2 + ‖wi+1 − ri+1‖2

)]

≤ 3αt
γt

[
D2 + Γt

t∑
i=1

αi
Γi

(
‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2

+ 3γ2i (‖∆2i
H‖

2
∗ + ‖∆2i−1

H ‖2∗)‖
)]
.

(106) tmp2

Noting that by (46) and (103),

Γt

t∑
i=1

αi
Γi

(‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2)

≤ Γt

t∑
i=1

αiθ

Γi
(‖ri+1 − u∗‖2 + (q − c2)‖wi+1 − ri‖2)

≤ Γt

t∑
i=1

αiθ

Γi
(2D2 +

2Γiγi
αi

Ui) = 2θD2 + 2θΓt

t∑
i=1

γiUi,

and that by (43),

Γt

t∑
i=1

3αiγ
2
i

Γi
(‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗)

= Γt

t∑
i=1

3αtγ
3
i

Γtγt
(‖∆2i

H‖
2
∗ + ‖∆2i−1

H ‖2∗) =
3αt
γt

t∑
i=1

γ3i (‖∆2i
H‖

2
∗ + ‖∆2i−1

H ‖2∗),

we conclude from (104), (106) and Assumption A1. that

E[εt+1] ≤ ΓtE[Ut] +
3αt
γt

[
D2 + 2θD2 + 2θΓt

t∑
i=1

γiE[Ui] +
6αtσ

2
H

γt

t∑
i=1

γ3i

]

≤ αt
γt
C2
t +

3αt
γt

[
(1 + 2θ)D2 + 2θΓt

t∑
i=1

αi
Γi
C2
i +

6αtσ
2
H

γt

t∑
i=1

γ3i

]
.

Finally, observing from (46) and (76) that

Γt

t∑
i=1

αi
Γi
C2
i ≤ C

2
t Γt

t∑
i=1

αi
Γi

= C2
t ,

we conclude (45) from the above inequality.
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5 Numerical experiments

〈secNumerical〉 In this section, we present some preliminary experimental results on solving deter-

ministic and stochastic variational inequality problems using the AMP algorithm. The

comparisons with the extragradient method [15], the mirror-prox method in [23] and

the stochastic mirror-prox method in [14] are provided for better examination of the

performance of the AMP algorithm.

5.1 Variational inequality on the Lorentz cone

〈secAVI〉 In this section, we compare the performance of AMP with the extragradient/mirror-

prox method [15,23], whose iteration complexity has been studied in [23,20]. In par-

ticular, we consider an affine variational inequality problem with unbounded feasible

set on solving u∗ ∈ Z such that

〈Au+ b, u∗ − u〉 ≤ 0, ∀u ∈ Z, (107) eqnAVI

where A ∈ R(n+1)×(n+1) is a linear monotone operator, and Z is the Lorentz cone:

Z := {(x, t) ∈ R(n+1) | ‖x‖ ≤ t}.

To solve (107), we can decompose the linear monotone operator A to the sum of

a symmetric positive semidefinite matrix (A + AT )/2 and a skew-symmetric matrix

(A−AT )/2, hence the VI problem (107) can be viewed as an instance of (1) with

F (u) = Au+ b, G(u) =
1

4
〈(A+AT )u, u〉+ 〈b, u〉, H(u) =

1

2
(A−AT )u, (108) eqnAVISetting

and J(u) = 0.

A few remarks are in place for the above decomposition. Firstly, for any con-

tinuous linear monotone operators on Banach spaces, the decomposition to the sum

of a symmetric monotone operator (and hence the subdifferential of a convex func-

tion) and a skew operator exists and is unique (see, e.g., Proposition 2.14 in [3]).

Therefore, it is natural to use the decomposition (108) to solve (107). Secondly, as

discussed after Algorithm 1, the AMP algorithm can be viewed as a hybrid algorithm

of the mirror-prox method and the accelerated gradient method. Indeed, the AMP

algorithm is equivalent to the mirror-prox method and a version of Nesterov’s accel-

erated method when A is skew-symmetric and symmetric, respectively. Finally, since

the Lipschitz constants of F (·), ∇G(·) and H(·) are ‖A‖, ‖A+AT ‖/2 and ‖A−AT ‖/2
respectively, the iteration complexity of the mirror-prox method for computing an ap-

proximate solution of (107) is O(‖A‖/ε), and the iteration complexity of the AMP

method is O(‖A+AT ‖/
√
ε+‖A−AT ‖/ε). Specially, if A is “almost symmetric”, i.e.,

‖A‖ is much greater than the norm of its skew-symmetric part ‖A − AT ‖/2 (e.g.,

‖A‖ ≥ ‖A−AT ‖/
√
ε), then the iteration complexity of the AMP method for comput-

ing an approximate solution of (107) is better than that of the mirror-prox method

(e.g., in the order of O(1/
√
ε)).

In this experiment, we generate the linear monotone operator A randomly by

A = BTB + (C − CT ), where B ∈ Rd(n+1)/2e×(n+1) (so that A is monotone by

not strictly monotone), C ∈ R(n+1)×(n+1), and the entries of B and C are generated

independently from the uniform [0, 1] distribution. The entries of the vector b are also
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randomly distributed between 0 and 1. By setting V (z, u) = ‖z − u‖2/2, the prox-

mapping PJz (u) in (11) becomes the projection of z − η to the Lorentz cone Z, which

can be calculated efficiently. For the AMP algorithm, we use the parameter settings in

Corollary 1 with L = ‖A + AT ‖/2 and M = ‖A − AT ‖/2, and for the extragradient

method we choose the stepsizes according to (3.2) of [23] in which L = ‖A‖. Noting

the fact that AMP computes relatively more matrix-vector multiplications due to the

aforementioned decomposition, we set the total number of iterations of the extragra-

dient method to be twice of that of the AMP method. The performance of the AMP

and extragradient algorithms are compared in terms of the gap function (28), which

is computed using MOSEK [22]. In particular, for any approximate solution w and

perturbation vector v, we compute the value of g̃(w, v) in (28) and the norm of the

perturbation vector ‖v‖.1 It should be noted that in this experiment both the AMP

and extragradient methods are implemented without using backtracking procedures in

order to have a fair comparison. The comparison between the AMP algorithm and the

extragradient algorithm is described in Table 1.

Table 1 The comparison of the AMP algorithm and the extragradient (denoted by EG)
〈tabAVI〉 algorithm in solving the affine variational inequality problem (107). In the table w and v

denote the approximate solution and perturbation vector respectively, and g̃(·, ·) is the gap
function defined in (28).

Problem N
AMP, N iterations EG, 2N iterations

g̃(w, v) ‖v‖ CPU g̃(w, v) ‖v‖ CPU
n = 999, 1000 7.91e-3 1.03e-1 1.3 2.69e-2 1.12e0 1.2

L = 2872.3,M = 25.9 2000 3.63e-3 4.87e-2 2.5 2.09e-2 6.05e-1 2.3
4999 1000 1.84e-1 7.10e-1 34.2 8.26e-2 6.30e0 46.0

L = 14472.8,M = 57.6 2000 7.91e-2 3.20e-1 69.5 1.39e-1 4.89e0 91.7
9999 1000 1.86e-1 8.88e-1 142.1 7.16e-2 8.46e0 192.9

L = 29056.0,M = 81.4 2000 7.60e-2 3.85e-1 286.0 1.13e-1 6.69e0 379.3

Two remarks on the performance of the AMP and extragradient methods are in

order. Firstly, it is interesting to observe that the practical convergence of the per-

turbation vector ‖v‖ is slower than that of the gap function value g̃(w, v), although

they have the same rate of convergence (see Corollary 2). Secondly, the AMP algo-

rithm outperforms the extragradient method for solving (107). This is consistent with

our theoretical observation that the AMP algorithm has a better iteration complexity

bound than that of the extragradient method for solving problem (107). Especially, it

can be easily seen the performance of the AMP method on the perturbation vector ‖v‖
is significantly better than that of the extragradient method.

5.2 Multi-player nonlinear game

〈secnGame〉The goal of this section is to compare the AMP algorithm with backtracking and the

mirror-prox algorithm with adaptive stepsizes in [23]. More specifically, we calculate

the Nash equilibrium of a game among k players, in which the goal of each player

is to minimize his/her quadratic loss function. To model the game, the strategies of

1 See the proof of Theorem 3 for the definition of the perturbation term in the AMP algo-
rithm, and Theorem 5.2 in [20] for the definition of the perturbation term in the extragradient
algorithm.
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the players are denoted by x1, . . . , xk, which represent the portfolio investment of the

players and are described as a point on the standard simplex, i.e.,

xi ∈ ∆n :=

{
x ∈ Rn+ :

n∑
i=1

x(i) = 1

}
, ∀i = 1, . . . , k.

Then, the loss function of the i-th player is modeled by

φi(x1, . . . , xk) =
1

2
〈Ai,ixi, xi〉+

∑
j 6=i
〈xi, Ai,jxj〉.

There are two types of losses in the above function, i.e., the first term describes the

impact of strategy xi on the i-player him/herself, and the second term describes the

outcome of the i-th player’s strategy xi when interacting with the strategies of other

players. We assume that Ai,j = −ATj,i so that the pairwise interactions between any

two players i and j results in a zero-sum outcome, and that Ai,i is positive semidefinite

for all i so that our multi-player game is convex (For the detailed introduction of solving

the multi-player game using variational inequalities, see, e.g., [24,14]).

By [24], the Nash equilibrium of the above game is exactly the weak solution of

the VI problem (1), where Z = ∆n × . . . × ∆n is the k-product space of all possible

collections of strategies, and for all z = (xT1 , . . . , x
T
k )T ,

F (z) = Az with A :=

A1,1 · · · A1,k
...

. . .
...

Ak,1 · · · Ak,k

 . (109) eqnFBlock

Similarly to Section 5.1, we consider a decomposition of F = ∇G+H + J with

G(z) :=
1

4
〈(A+AT )z, z〉, H(z) :=

1

2
(A−AT )z, and J(z) ≡ 0.

To compute a solution of (1), we consider the following entropy setting for the prox-

function used in the AMP algorithm: for all z = (xT1 , . . . , x
T
k )T ∈ Z, u = (yT1 , . . . , y

T
k )T ∈

Z and ξ = (ηT1 , . . . , η
T
k )T ∈ E , we define

‖z‖ :=

√√√√ k∑
i=1

‖xi‖21, ‖ξ‖∗ :=

√√√√ k∑
i=1

‖ηi‖2∞, and

V (z, u) :=

k∑
i=1

n∑
j=1

(y
(j)
i + ν/n) ln

y
(j)
i + ν/n

x
(j)
i + ν/n

.

(110) eqnnGameSetting

Here, y
(j)
i denotes the j-th entry of the strategy yi, and ν is arbitrarily small (e.g.,

ν = 10−16). With the above setting, the optimization problem in the prox-mapping (11)

can be efficiently solved within machine accuracy, and the strong convexity parameter

of the prox-function V (z, u) is µ = 1 + ν (See [4] for details on the entropy prox-

functions). Moreover, it should be noted that under the above definition of G(z) and

H(z), for any approximate solution u = (yT1 , . . . , y
T
k )T , the gap function g(u) in (18)

becomes

g(u) =

k∑
i=1

[
φi(u)− min

xi∈∆n
φi(y1, . . . , yi−1, xi, yi+1, . . . , yk)

]
,
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Table 2 The comparison of the AMP algorithm and the mirror-prox (denoted by MP)
〈tabnGame〉 algorithm in computing the equilibirum of multi-player games. k is the number of players in

the game, and n is the number of portfolio investments that describes the strategy of each
player.

Problem dimension
AMP after 500 iterations MP after 1000 iterations
g(u) CPU g(u) CPU

1000 (k = 5, n = 200) 3.54e-4 1.0 3.02e-3 1.6
4000 (k = 20, n = 200) 1.63e-3 15.2 2.17e-2 21.5
10000 (k = 50, n = 200) 1.09e-2 96.2 9.61e-2 117.3

which is exactly the natural error estimate of Nash equilibria.

The matrix A in (109) is generated randomly by the following means: Firstly,

for all i < j, the entries of Ai,j are independently generated from the uniform [0, 1]

distribution, and then Aj,i is set to −ATi,j . Secondly, for all i, Ai,i = BTi Bi where

Bi ∈ Rdn/2e×n and each entry of Bi,i are independently generated from the uniform

[0, 1] distribution. Finally, for simplicity of this experiment, we rescale the matrices,

so that for any i 6= j the entry of Ai,j with the maximum absolute value is 1, and

for any i the entry of Ai,i with the maximum absolute value is 10.2 We compare the

performance between the AMP algorithm with backtracking in Algorithm 2 and the

mirror-prox algorithm with adaptive stepsizes in [23]. For any approximate solution u,

we evaluate its accuracy by estimating the gap function g(u), which is computed using

MOSEK [22].

The comparison between the computational performance of AMP and MP is dis-

played in Table 2. We can see that AMP outperforms MP for solving the aforementioned

multi-player game. This is consistent with our theoretical observations on the iteration

complexities of AMP and MP.

5.3 Randomized algorithm for solving two-player game

The goal of this subsection is to demonstrate the efficiency of the SAMP algorithm in

computing the equilibrium of a two-player game. In particular, we consider the saddle

point problem

min
x∈∆n

max
y∈∆n

1

2
〈Px, x〉+ 〈Kx, y〉 − 1

2
〈Qy, y〉, (111) eqn2Game

where P and Q are positive semidefinite matrices, and ∆n is a standard simplex.

Problem (111) is a special case of the problem in Section 5.2 with only two players.

For simplicity, we only consider the case when maxi,j |P (i,j)| = maxi,j |Q(i,j)| (see the

footnote 2). Letting Z := ∆n×∆n, the above problem is equivalent to the VI problem

(1) with

F (u) =

(
P KT

−K Q

)
u, G(u) =

1

2
〈Px, x〉+

1

2
〈Qy, y〉, H(u) =

(
KT y

−Kx

)
,

2 When the maximum absolute values of Ai,i’s are different, it is recommended to introduce
〈noteScaling〉

weights ωi’s and set ‖z‖ :=
√∑k

i=1 ωi‖xi‖21 and ‖ξ‖ :=
√∑k

i=1 ω
−1
i ‖ηi‖21, in which ωi’s

depend on the blocks Ai,j ’s. See “mixed setups” in Section 5 of [23] for the detailed derivations.
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where u := (x, y) ∈ Z. If P,Q and K are dense and n is large, the matrix-vector multi-

plication of Px, Qy, KT y and Kx may be very expensive. In order to reduce the arith-

metic cost of computing these matrix-vector multiplications, Nemirovski et al. [25] de-

veloped randomized algorithms for solving this type of VI problems by replacing the cal-

culations of matrix-vector multiplications with calls to a stochastic oracle. Using similar

ideas to [25], we assume that for each input (xi, yi) ∈ Z, the SO outputs the stochastic

gradients (Ĝx(xi), Ĝy(yi), K̂x(xi), K̂y(yi)) ≡ (Gx(xi, ξi),Gy(yi, ξi),Kx(xi, ξi),Ky(yi, ξi))

such that for all j, k, l,m = 1, . . . n.

Prob(Ĝx(xi) = Pj) = x
(j)
i , Prob(Ĝy(yi) = Qk) = y

(k)
i ,

Prob(K̂x(xi) = Kl) = x
(l)
i , and Prob(−K̂y(yi) = −Km) = y

(m)
i ,

Here, we denote by Kl and (Km)T the l-th column and m-th row of K, respectively.

In other words, each call to the SO outputs the random samples of the columns of P

and Q and columns and rows of K whose distributions depend on the input (xi, yi).

It can be checked that E[Ĝx(xi)] = Pxi, E[Ĝy(yi)] = Qyi, E[−K̂x(xi)] = −Kxi and

E[K̂y(yi)] = KT yi. Since problem (111) is a special case of the multi-player game in

Section 5.2, we still apply the entropy prox-function setting in (110). It is easy to check

that

L ≤ max{max
k,j
|P (k,j)|,max

k,j
|Q(k,j)|}, M ≤ max

k,j
|K(k,j)|, Ω2

Z = 2(1 +
ν

n
) ln(

n

ν
+ 1),

E

[∥∥∥∥( Ĝx(xi)− Px
Ĝy(yi)−Qy

)∥∥∥∥2
∗

]
≤ 4

(
max
k,j
|P (k,j)|2 + max

k,j
|Q(k,j)|2

)
, and

E

[∥∥∥∥(−K̂x(xi) +Kx

K̂y(yi)−KT y

)∥∥∥∥2
∗

]
≤ 8 max

k,j
|K(k,j)|2.

Therefore, we set

σG = 2

√(
max
k,j
|P (k,j)|2 + max

k,j
|Q(k,j)|2

)
, σH = 2

√
2 max
k,j
|K(k,j)|,

and σ by (8).

In this experiment, we generate random matrices B,C ∈ R100×n, and K ∈ Rn×n
first, where each entry of these matrices are independently and uniformly distributed

over [0, 1]. The matrices P and Q are then generated by P = BTB and Q = CTC,

and also rescaled so that P and Q are both positive semidefinite and maxk,j |P (k,j)| =
maxk,j |Q(k,j)|. For the SAMP algorithm, we use the scheme in Algorithm 3 with the

parameters described in (110) and Corollary 3. As a comparison, we also implement the

stochastic mirror-prox (SMP) method described in (3.6) and (3.7) in [14]. Noticing that

both the SAMP and SMP algorithms are robust with respect to the above estimates of σ

and ΩZ (see the discussion after Corollary 3, and also the proof of Corollary 4.2 in [14]),

we run both algorithms twice with and without fine-tuning for each problem instances.

In the first run without fine-tuning, we set β = σ/ΩZ in the SAMP algorithm and use

the aforementioned stepsize constants for the SMP algorithm. In the second run, we

fine-tune the value of β in the implementation of the SAMP algorithm. Specifically,

for each % = 2−9, 2−8, . . . , 28, 29, we run 50 iterations of the SAMP algorithm with

β = %σ/ΩZ , and choose the best value β for the SAMP algorithm implementation by
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Table 3 The comparison of the SAMP and SMP algorithms in computing the equilibirum
〈tab2Game〉 of two-player games, in terms of the expectation and standard deviation of the gap function

value g(u) for any approximate solution u. The CPU time in the table is the average time of
100 runs.

Problem Paramters SAMP SMP
dimension n β N E[g(u)] std. CPU E[g(u)] std. CPU

1000
(L = 184.7,
M = 1.0,
σ = 89.4,

g(u0) = 1.37e1)

β =
σ

ΩZ

1000 3.01e-1 8.23e-2 0.4 1.31e1 6.25e-4 0.4
2000 2.15e-1 4.96e-2 0.7 1.29e1 6.16e-4 0.8
5000 1.38e-1 3.37e-2 1.7 1.24e1 6.84e-4 2.1

tuned
1000 7.32e-1 1.49e-1 0.4 5.89e0 1.67e-2 0.4
2000 5.72e-1 1.04e-2 0.8 4.31e0 1.29e-2 0.8
5000 3.99e-1 7.21e-2 2.4 2.73e0 8.00e-3 2.1

2000
(L = 366.4,
M = 1.0,
σ = 54.2,

g(u0) = 2.07e1)

β =
σ

ΩZ

1000 6.98e-1 1.84e-1 0.5 2.01e1 4.87e-4 0.6
2000 4.89e-1 1.14e-1 0.9 1.99e1 4.24e-4 1.1
5000 3.09e-1 8.18e-2 2.3 1.93e1 5.00e-4 2.7

tuned
1000 1.03e0 2.12e-1 0.5 5.40e0 3.83e-2 0.6
2000 7.46e-1 1.76e-1 0.9 2.65e0 1.92e-2 1.1
5000 4.92e-1 9.32e-2 2.3 1.02e0 5.83e-3 2.7

5000
(L = 893.5,
M = 1.0,
σ = 84.6,

g(u0) = 3.56e1)

β =
σ

ΩZ

1000 1.70e0 3.06e-3 0.9 3.51e1 3.19e-4 1.1
2000 1.22e0 2.25e-1 1.8 3.48e1 3.14e-4 2.1
5000 7.80e-1 1.27e-1 4.4 3.43e1 3.34e-4 5.2

tuned
1000 3.89e0 5.98e-1 1.0 1.49e1 4.24e-2 1.1
2000 2.83e0 3.93e-1 1.9 7.63e0 2.92e-2 2.1
5000 2.96e0 2.99e-1 4.6 4.00e0 1.47e-2 5.2

comparing the gap function values (18). The same fine-tuning strategy is also applied

to the SMP algorithm as it is robust with respect to the value of M/
√
Θ in (4.3) in

[14]. The performance of the SAMP and SMP algorithms are compared in terms of the

mean and standard deviation of the gap function values (18) (computed by MOSEK

[22]) in 100 runs.

The comparison between the SAMP and SMP algorithms in terms of the perfor-

mance on computing approximate solutions of (111) is described in Table 3. We can

see that the SAMP algorithm outperforms the SMP algorithm, which is consistent

with our theoretical observation on the iteration complexities of the SAMP and SMP

algorithms.

6 Conclusion

〈secConclusion〉
We present in this paper a novel accelerated mirror-prox (AMP) method for solving

a class of deterministic and stochastic variational inequality (VI) problems. The basic

idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-

prox method in [23,14]. For both the deterministic and stochastic VI, the AMP achieves

the optimal iteration complexity, not only in terms of its dependence on the number

of the iterations, but also on a variety of problem parameters. Moreover, the iteration

cost of the AMP is comparable to, or even less than that of the mirror-prox method in

that it saves one compuation of ∇G(·). To the best of our knowledge, this is the first

algorithm with the optimal iteration complexity bounds for solving the deterministic

and stochastic VIs of type (2). Furthermore, we show that the developed AMP scheme

can deal with the situation when the feasible region is unbounded, as long as a strong

solution of the VI exists. In the unbounded case, we adopt the modified termination
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criterion employed by Monteiro and Svaiter in solving monotone inclusion problem,

and demonstrate that the rate of convergence of AMP depends on the distance from

the initial point to the set of strong solutions. Specially, in the unbounded case of the

deterministic VI, the AMP scheme achieves the iteration complexity without requiring

any knowledge on the distance from the initial point to the set of strong solutions. Our

preliminary numerical results show that the proposed AMP algorithm is promising to

solve large-scale variational inequality problems.

References

auslender2005interior 1. A. Auslender and M. Teboulle, Interior projection-like methods for monotone varia-
tional inequalities, Mathematical programming, 104 (2005), pp. 39–68.

auslender2006interior 2. , Interior gradient and proximal methods for convex and conic optimization, SIAM
Journal on Optimization, 16 (2006), pp. 697–725.

bauschke1995continuous 3. H. H. Bauschke and J. M. Borwein, Continuous linear monotone operators on banach
spaces, (1995).

ben-tal2005non 4. A. Ben-Tal and A. Nemirovski, Non-Euclidean restricted memory level method for large-
scale convex optimization, Mathematical Programming, 102 (2005), pp. 407–456.

bertsekas1999nonlinear 5. D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1999.
bregman1967relaxation 6. L. M. Bregman, The relaxation method of finding the common point of convex sets and

its application to the solution of problems in convex programming, USSR computational
mathematics and mathematical physics, 7 (1967), pp. 200–217.

burachik1997enlargement 7. R. S. Burachik, A. N. Iusem, and B. F. Svaiter, Enlargement of monotone operators
with applications to variational inequalities, Set-Valued Analysis, 5 (1997), pp. 159–180.

chen1999homotopy 8. X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational
inequalities, SIAM Journal on Control and Optimization, 37 (1999), pp. 589–616.

chen2013optimal 9. Y. Chen, G. Lan, and Y. Ouyang, Optimal primal-dual methods for a class of sad-
dle point problems, http://www.optimization-online.org/DB_HTML/2013/04/3850.html,
(2013).

dang2012convergence 10. C. D. Dang and G. Lan, On the convergence properties of non-euclidean extragradient
methods for variational inequalities with generalized monotone operators, arXiv preprint
arXiv:1311.2776, (2013).

facchinei2003finite 11. F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and comple-
mentarity problems, Springer, 2003.

ghadimi2012optimal 12. S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization I: A generic algorithmic framework, SIAM Journal on
Optimization, 22 (2012), pp. 1469–1492.

ghadimi2013optimal 13. , Optimal stochastic approximation algorithms for strongly convex stochastic com-
posite optimization, II: Shrinking procedures and optimal algorithms, SIAM Journal on
Optimization, 23 (2013), pp. 2061–2089.

juditsky2011solving 14. A. Juditsky, A. Nemirovski, and C. Tauvel, Solving variational inequalities with
stochastic mirror-prox algorithm, Stochastic Systems, 1 (2011), pp. 17–58.

korpelevich1976extragradient 15. G. Korpelevich, The extragradient method for finding saddle points and other problems,
Matecon, 12 (1976), pp. 747–756.

korpelevich1983extrapolation 16. , Extrapolation gradient methods and relation to modified Lagrangians, Ekonomika
i Matematicheskie Metody, 19 (1983), pp. 694–703. in Russian; English translation in
Matekon.

lan2012optimal 17. G. Lan, An optimal method for stochastic composite optimization, Mathematical Pro-
gramming, 133 (1) (2012), pp. 365–397.

lan2012validation 18. G. Lan, A. Nemirovski, and A. Shapiro, Validation analysis of mirror descent stochastic
approximation method, Mathematical programming, (2012).

martinet1970regularisation 19. B. Martinet, Regularisation d’inéquations variationelles par approximations successives,
Revue Française d’Automatique, Informatique et Recherche Opérationnelle, 4 (1970),
pp. 154–159.

monteiro2010complexity 20. R. D. Monteiro and B. F. Svaiter, On the complexity of the hybrid proximal extragra-
dient method for the iterates and the ergodic mean, SIAM Journal on Optimization, 20
(2010), pp. 2755–2787.

http://www.optimization-online.org/DB_HTML/2013/04/3850.html


36

monteiro2011complexity 21. , Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s meth-
ods for hemivariational inequalities with applications to saddle-point and convex optimiza-
tion problems, SIAM Journal on Optimization, 21 (2011), pp. 1688–1720.

mosek2012mosek 22. A. MOSEK, The mosek optimization toolbox for matlab manual, version 6.0 (revision
135), MOSEK ApS, Denmark, (2012).

nemirovski2005prox 23. A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities
with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems, SIAM Journal on Optimization, 15 (2004), pp. 229–251.

nemirovski2010accuracy 24. A. Nemirovski, Accuracy certificates for computational problems with convex structure,
. . . of Operations Research, 35 (2010), pp. 52–78.

nemirovski2009robust 25. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation
approach to stochastic programming, SIAM Journal on Optimization, 19 (2009), pp. 1574–
1609.

nemirovski1983problem 26. A. Nemirovski and D. Yudin, Problem complexity and method efficiency in optimization,
Wiley-Interscience Series in Discrete Mathematics, John Wiley, XV, 1983.

nemirovski1992information 27. A. S. Nemirovski, Information-based complexity of linear operator equations, Journal of
Complexity, 8 (1992), pp. 153–175.

nesterov1983method 28. Y. Nesterov, A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2), Doklady AN SSSR, 269 (1983), pp. 543–547. translated as Soviet
Math. Docl.

nesterov2005smooth 29. , Smooth minimization of non-smooth functions, Mathematical Programming,
(2005), pp. 1–26.

nesterov2007dual 30. , Dual extrapolation and its applications to solving variational inequalities and re-
lated problems, Mathematical Programming, 109 (2007), pp. 319–344.

nesterov2009primal 31. , Primal-dual subgradient methods for convex problems, Mathematical program-
ming, 120 (2009), pp. 221–259.

nesterov1999homogeneous 32. Y. Nesterov and J. P. Vial, Homogeneous analytic center cutting plane methods for
convex problems and variational inequalities, SIAM Journal on Optimization, 9 (1999),
pp. 707–728.

rockafellar1976monotone 33. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal
on Control and Optimization, 14 (1976), pp. 877–898.
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