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Abstract We propose a class of novel methods, namely the accelerated mirror-prox
(AMP) methods, for solving a class of deterministic and stochastic monotone varia-
tional inequalities (VI). The main idea of the proposed algorithms is to incorporate
a multi-step acceleration scheme into the mirror-prox method. For both deterministic
and stochastic VIs, the developed AMP methods compute the weak solutions with the
optimal iteration complexity. In particular, if the monotone operator in VI consists of
the gradient of a smooth function, the iteration complexities of the AMP methods can
be accelerated in terms of their dependence on the Lipschitz constant of the smooth
function. For VIs with bounded feasible sets, the bounds of the iteration complexities of
the AMP methods depend on the diameter of the feasible set. For unbounded VIs, we
adopt the modified gap function introduced by Monteiro and Svaiter for solving mono-
tone inclusion, and show that the iteration complexities of the AMP methods depend
on the distance from the initial point to the set of strong solutions. We also demon-
strate the advantages of the AMP methods over some existing algorithms through our
preliminary numerical experiments.
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1 Introduction

Let € be a finite dimensional vector space with inner product (-,-) and norm || - ||, and
7 be a non-empty closed convex set in £. Our problem of interest is to find u* € Z
that solves the following variational inequality (VI) problem:

(F(u),u” —u) <0,Yu€ Z, (1) [equProblen

where F' is defined by

F(u) = VG(u) + H(u) + J'(u), Yu € Z. (2)[eqnF|

In (2), G() is a general continuously differentiable function whose gradient is Lipschitz
continuous with constant L, i.e.,

0 < G(w) —G(v) — (VG(w),w —v) < §||w — |2, Vw,v € Z, (3) [eqnGAssumption]

H : Z — £ is a monotone operator with Lipschitz constant M, that is, for all w,v € Z,

(H(w) — H(v),w —v) > 0, and ||H(w) — H(v)[. < M]w - o], (4) [eqnithssunption]

and J'(u) € 8J(u), where J(-) is a relatively simple and convex function. We denote
problem (1) by VI(Z; G, H, J) or simply VI(Z; F).

Observe that u* given by (1) is often called a weak solution of VI(Z; F'). A related
notion is a strong solution of VI. More specifically, we say that u* is a strong solution
of VI(Z; F) if it satisfies

(F(u™),u" —u) <0,Vu € Z. (5) [eqnsVI]

For any monotone operator F, it is well-known that strong solutions of VI(Z, F) are
also weak solutions, and the reverse is also true under mild assumptions (e.g., when F’
is continuous). For example, for F' in (2), if J = 0, then the weak and strong solutions
of VI(Z;G, H,0) are equivalent.

The main goal of this paper is to develop efficient solution methods for solving two
types of VlIs, i.e., deterministic VIs with exact information about the operator F', and
stochastic VIs where the operator F' contains some stochastic components (e.g., VG
and H) that cannot be evaluated exactly. We start by reviewing some existing methods
for solving both these types of problems.

1.1 Deterministic VI
?(secIntroVID)? . . . RIS .
VI provides a unified framework for optimization, equilibrium and complementarity

problems, and thus has been the focus of many algorithmic studies (see, e.g, [15,33,
8,32,36,38,23,30,20,14]). In particular, classical algorithms for VI include, but not
limited to, the gradient projection method (e.g., [34,5]), Korpelevich’s extragradient
method [15], and the proximal point algorithm (e.g., [19,33]), etc. (see [11] for an ex-
tensive review and bibliography). While these earlier studies on VI solution methods
focused on their asymptotic convergence behavior (see, e.g., [37,39,40]), much recent



research effort has been devoted to algorithms exhibiting strong performance guaran-
tees in a finite number of iterations (a.k.a., iteration complexity) [32,4,30,31,25,20,10].
More specifically, Nemirovski in a seminal work [23] presented a mirror-prox method by
properly modifying Korpelevich’s algorithm [16] and show that it can achieve an O(1/¢)
complexity bound for solving VI problems with Lipschitz continuous operators (i.e.,
smooth VI denoted by VI(Z;0, H,0)). Here ¢ > 0 denotes the target accuracy in terms
of a weak solution. This bound significantly improves the 0(1/62) bound for solving VI
problems with bounded operators (i.e., nonsmooth VI) (e.g., [4]). Nemirovski’s algo-
rithm was further generalized by Auslender and Teboulle [1] through the incorporation
of a wider class of distance generating functions. Nesterov [30] has also developed a
dual extrapolation method for solving smooth VI which possesses the same complex-
ity bound as in [23]. More recently, Monteiro and Svaiter [20] showed that the hybrid
proximal extragradient (HPE) method [35], which covers Korpelevich’s algorithm as a
special case, can also achieve the aforementioned O(1/¢) complexity. Moreover, they
developed novel termination criterion for VI problems with possibly unbounded feasible
set Z, and derived the iteration complexity associated with HPE for solving unbounded
VI problems accordingly. Monteiro and Svaiter [21] have also generalized the aforemen-
tioned O(1/€) complexity result for solving VI problems containing a simple nonsmooth
component (i.e., VI(Z;0,H,J)).

It should be noted, however, that the aforementioned studies in the literature do not
explore the fact that the operator F consists of a gradient component VG (see (2)). As a
result, the iteration complexity associated with any of these algorithms, when applied to
a smooth convex optimization problem (i.e., VI(Z;G,0,0)), is given by O(1/e), which
is significantly worse than the well-known O(1//€) optimal complexity for smooth
optimization [28]. An important motivating question for our study is whether one can
utilize such structural properties of F' in order to further improve the efficiency of VI
solution methods. More specifically, we can easily see that the total number of gradient
and operator evaluations for solving VI(Z; G, H,J) cannot be smaller than

L M
-+ —]. OptR
@ ( c + . ) (6) [eqnOptRate

This is a lower complexity bound derived based on the following two observations:

1. fH =0,VI(Z;G,0,0) is equivalent to a smooth optimization problem min, ¢z G(u),
and the complexity for minimizing G(u) cannot be better than O(y/L/€) [26,28];

2. If G = 0, the complexity for solving VI(Z;0, H,0) cannot be better than O(M/e)
[27] (see also the discussions in Section 5 of [23]).

However, the best-known so-far iteration complexity bound for solving VI(Z;G, H, J)
is given by [14,20], where one needs to run these algorithms

L+M
o (£, (7)foamraser)

iterations to compute a weak solution of VI(Z;G, H,J), and each iteration requires
the computation of both VG and H. It is worth noting that better iteration complexity
bound has been achieved for a special case of VI(Z; G, H, J) where the operator H is
linear. In this case, Nesterov [29] showed that, by using a novel smoothing technique,
the total number of first-order iterations (i.e., iterations requiring the computation
of VG, the linear operators H and its conjugate H™) for solving VI(Z;G, H,J) can




be bounded by (6). This bound has also been obtained by applying an accelerated
primal-dual method recently developed by Chen, Lan and Ouyang [9]. Observe that
the bound in (6) is significantly better than the one in (7) in terms of its dependence
on L. However, it is unclear whether similar iteration complexity bounds to those in
[29,9] can be achieved for the more general case when H is Lipschitz continuous.

1.2 Stochastic VI

While deterministic VIs had been intensively investigated in the literature, the study
of stochastic VIs is still quite limited. In the stochastic setting, we assume that there
exists stochastic oracles SOg and SOg that provide unbiased estimates to the oper-
ators VG(u) and H(u) for any test point u € Z. More specifically, we assume that
at the i-th call of SOz and SOp with input z € Z, the oracles SOg and SOpg
output stochastic first-order information G(z,&;) and H(z,(;) respectively, such that
E[G(z,&)] = VG(z), E[H(x, ;)] = H(x), and

WAL B[, 6) - V@2 < ok, B[l ) - HW)?] < o,

where §; € =, (; € = are independently distributed random variables. Throughout this

paper, we may also denote

7= \Jo +oh (5) cansigne)

for the sake of notational convenience. It should be noted that deterministic VIs are
special cases of stochastic VIs with o = oy = 0. To distinguish stochastic VIs from
their deterministic counterparts, we will use SVI(Z;G, H, J) or simply SVI(Z; F) to
denote problem (1) under the aforementioned stochastic settings.

Following the discussion around (6) and the complexity theory for stochastic op-
timization [26,14], the total number of gradient and operator evaluations for solving
stochastic VI cannot be smaller than

/L M  o?
— — — |- OptR S
10) ( ; + - + 62) (9) [eqnOptRate

The best known complexity bound for computing SVI(Z;G, H,0) is given by the
stochastic mirror-prox method in [14]. This method requires

L+M o2
@ — 10 BestR
(B2 +%) (10)[pestracs

iterations to achieve the target accuracy € > 0 in terms of a weak solution, and each
iteration requires the calls to SOg and SOp. Similar to the deterministic case, the
above complexity bound has been improved for some special cases, e.g., when H = 0
or H is linear. In particular, when H = 0, SVI(Z, F) is equivalent to the stochastic
minimization problem of min, ez G(u) + J(u), Lan first presented in [17] (see more
general results in [12,13]) an accelerated stochastic approximation method and showed
that the iteration complexity of that algorithm is bounded by

2
O( L+U§).
€ €




More recently, Chen, Lan and Ouyang [9] presented an stochastic accelerated primal-
dual method with a better complexity bound than (10) for solving SVI(Z; G, H, J)
with a linear operator H.

1.3 Contribution of this paper

Our contribution in this paper mainly consists of the following several aspects. Firstly,
we present the accelerated mirror-prox (AMP) method for computing a solution of
VI(Z;G, H,J) by incorporating a multi-step acceleration scheme into the mirror-prox
method in [23]. By utilizing the smoothness of G(+), we can significantly improve the
iteration complexity from (7) to (6), while the iteration cost of AMP is comparable
to that of the mirror-prox method. Therefore, AMP can solve VI problems efficiently
with big Lipschitz constant L. To the best of our knowledge, this is the first time in
the literature that such an optimal iteration complexity bound has been obtained for
general Lipschitz continuous (rather than linear) operator H. We also present a simple
backtracking strategy to estimate the proper choices of L and M.

Secondly, we develop a stochastic counterpart of AMP, namely SAMP, for solving
SVI(Z;G,H,J), and demonstrate that its iteration complexity for computing a weak
solution is bounded by (9) and, similarly to the stochastic mirror-prox method, each
iteration requires the calls to SOg and SO . Therefore, this algorithm improves the
best-known complexity bounds for stochastic VI in terms of their dependence on the
Lipschitz constant L. To the best of our knowledge, this is the first time that such an
optimal iteration complexity bound has been developed for SVI(Z;G, H, J) with gen-
eral Lipschitz continuous (rather than linear) operator H. In addition, we investigate
the stochastic VI method in more details, e.g., we develop the large-deviation results
associated with the convergence of SAMP.

Thirdly, we incorporate into AMP the termination criterion employed by Monteiro
and Svaiter [20,21] for solving variational and hemivariational inequalities posed as
monotone inclusion problem. As a result, for both the deterministic and stochastic VIs,
the AMP can deal with the case when Z is unbounded, as long as a strong solution to
problem (5) exists, and the iteration complexity of AMP will depend on the distance
from the initial point to the set of strong solutions.

Finally, we demonstrate the advantages of the developed AMP algorithms through
preliminary numerical experiments on a few test problems.

1.4 Organization of the paper

The paper is organized as follows. We propose the AMP algorithms and discuss the
main convergence results for solving deterministic VI and stochastic VI in Sections
2 and 3, respectively. To facilitate the readers, we present the proofs of the main
convergence results in Section 4. Some preliminary numerical experiments are provided
in Section 5 to demonstrate the efficiency of the AMP algorithms. Finally, we make
some concluding remarks in Section 6.



2 Accelerated mirror-prox method for deterministic VI
(secAMP) \We introduce in this section an accelerated mirror-prox (AMP) method that computes
a solution of VI(Z;G, H, J), and discuss its main convergence properties.

Throughout this paper, we assume that the following proz-mapping can be solved

efficiently:
P/ (n) := argmin(n,u — 2) + V(z,u) + J(u). (11) [eqnProxMapping|

uc”zZ
In (11), the function V(-,-) is defined by

V(z,u) == w(u) —w(z) — (Vw(z),u —z), Yu,z € Z, (12) [eqnV]|

where w(+) is a strongly convex function with convexity parameter 1 > 0. The function
V(-,+) is known as a proz-function, or Bregman divergence [6] (see, e.g., [23,4,29,2] for
the properties of prox-functions and prox-mappings and their applications in convex
optimization). Using the aforementioned definition of the prox-mapping, we describe
the AMP method in Algorithm 1.

Algorithm 1 The accelerated mirror-prox (AMP) method

(algAMP)  Choose 71 € Z. Set w1 = r1, w}? = r1.
Fort=1,2,..., N — 1, calculate

wl"d = (1 — ap)wy? + oure, (13)
weir = P (yeH () + VG (14) [equProxwmd]

ren = P (yeH(wien) + 7 VG @) | (15) [equProxrnd|
wiyy = (1 — ar)wi? + cqwirr (16)[eqnwag]

Output w?\f’+1 .

Observe that the AMP method differs from the mirror-prox method in that we
introduced two new sequences, i.e., {w"®} and {w?} (here “md” stands for “mid-
dle”, and “ag” stands for “aggregated”). On the other hand, the mirror-prox method
only has to compute the ergodic mean of the sequence {w;} as the output of the al-
gorithm (similar to {w;¥}). If ax =1, G =0 and J = 0, then Algorithm 1 for solving
VI(Z;0,H,0) is equivalent to the prox-method in [23]. In addition, if the distance
generating function w(-) = || - |?/2, then iterations (14) and (15) becomes

. 1
wiq1 = argmin{y. H(r¢),u — ) + §Hu — rtHQ,
uez

. 1 2
re+1 = argmin(yeH(wip1), u —re) + Sllu —7el%,
uezZ

which are exactly the iterates of the extragradient method in [15]. On the other hand,
if H = 0, then (14) and (15) produce the same optimizer w¢4; = ry41, and Algo-
rithm 1 is equivalent to a version of Nesterov’s accelerated gradient method for solving
min, ez G(u) + J(u) (see, for example, Algorithm 1 in [41]). Therefore, Algorithm 1



can be viewed as a hybrid algorithm of the mirror-prox method and the accelerated
gradient method, which gives its name accelerated mirror-prox method.

In order to analyze the convergence of Algorithm 1, we introduce a notion to
characterize the weak solutions of VI(Z; G, H, J). For all @,u € Z, we define

Q(ii, u) = G(it) — G(u) + (H(w), it — u) + J (@) — J(u). (17)[eqnd]

Clearly, for F defined in (2), we have (F(u), 4 —u) < Q(@,w). Therefore, if Q(u,u) <0
for all u € Z, then @ is a weak solution of VI(Z; G, H, J). Hence when Z is bounded,
it is natural to use the gap function

g(@) := sup Q(a,u) (18) [eqng0]|

uez

to evaluate the accuracy of a feasible solution @ € Z. However, if Z is unbounded, then
g(Z) may not be well-defined, even when Z € Z is a nearly optimal solution. Therefore,
we need to employ a slightly modified gap function in order to measure the accuracy
of candidate solutions when Z is unbounded. In the sequel, we will consider the cases
of bounded and unbounded Z separately.

Theorem 1 below describes the convergence property of Algorithm 1 when Z is
bounded. It should be noted that the following quantity will be used throughout the
convergence analysis of this paper:

r 1, when t =1 (19)
= eqnGamma
"l -a)nio, whents 1,

(thmAMPRateB) Theorem 1 Suppose that

sup V(e1,22) < 2. (20) [eanVBounded,

21,22€7Z

If the parameters {at} and {v} in Algorithm 1 are chosen such that oy =1, and

M2 2
0< ot <1, pu— Lagy — Y >0, and ot < &, vt > 1, (21)‘eanondAlphaGa.mmaBD
H iy = Dipive+a

where {I't} is defined by (19), and u is the strong convezity parameter of w(-) in (12).

Then,
glwity) < 5122 (22) [eangBousd]

There are various options for choosing the parameters {a:} and {v;} that satisfy
(21). In the following corollary, we give one example of such parameter settings.

(corAMPRateB) Corollary 1 Suppose that (20) holds. If the parameters {a:} and {y} in AMP are
set to

ut

o = and vt = (23)[equAlphaGamnaBounded

t+1

2(L + Mt)’
then

4L AMY o
ot < (e + ) % (24) [oqpAtPRase|

put
where 27 is defined in (20).



Proof Clearly, I'y = ; satisfies (19), and

2
(t+1)

ot 2 Q41
L= S M) <
Iyt /L( ) Iiv1ve+1
Moreover,
M?~2 wL ¢ uM?? uL wMt

0.

L _ = — . — > — — =
gt T TR T ML t+ 1 4L+ M2 =T LMt Ly Mt
Thus (21) holds. Hence, by applying (22) in Theorem 1 with the parameter setting in
(23) and using (20), we obtain (24).

Clearly, in view of (24), when the parameters are chosen according to (23), the
number of iterations performed by the AMP method to find an e-solution of (1), i.e.,
a point @ € Z s.t. g(w) < €, can be bounded by

0( L+M).
€ €

This bound significantly improves the best-known so-far complexity for solving problem
(1) (see (6)) in terms of their dependence on the Lipschitz constant L. Moreover, it
should be noted that the parameter setting in (23) is independent of 2z, i.e., the
AMP method achieves the above optimal iteration-complexity without requiring any
information on the diameter of Z.

In Theorem 1, we assume that the Lipschitz constants L and M are known. In prac-
tice, the choices of these constants are critical, and wrong estimation for any of them
may lead to slow convergence of the AMP method. However, by incorporating a simple
backtracking strategy, we are able to search for the proper choices of L and M. The
AMP algorithm with backtracking, as well as the theorem describing its convergence
properties, are described in Algorithm 2 and Theorem 2.

(thmAMPRateBB) P oorem 2 Suppose that (20) holds. Then the iterates {w?ﬁl} in Algorithm 2 satisfies

4max{2L, Lo} 4max{2M, My} 2
ag < i
9(wigr) < ( i+ ut 0z,

where 27 is defined in (20).

A few remarks are in place for Algorithm 2. Firstly, if Lo = L and My = M, then
by the assumptions (3), (4) and the backtracking conditions (26) and (27), we obtain
L; = L and My = M. In particular, Algorithm 2 reduces to Algorithm 1 in which the
parameters are set to (23) in Corollary 1. Secondly, Algorithm 2 allows underestimation
the Lipschitz constants L and M, without affecting its rate of convergence. Indeed, in
view of the assumptions in (3), (4) and Steps 4 and 5, we can see that Ly < 2L and
My < 2M. Therefore, at any iteration ¢, the number of backtracking steps to search
for Ly and M; are less than [logy 2L/Lg]| and [logy 2M /My, respectively.

Now, we consider the case when Z is unbounded. To study the convergence prop-
erties of AMP in this case, we use a perturbation-based termination criterion recently



Algorithm 2 The accelerated mirror-prox (AMP) method with backtracking

(algAMPB) 1: Choose r1 € Z, Lo > 0, and Mg > 0. Set wi =71, wy? =71, and t = 1.
<stepMain) 2: Set [A/t = L¢_1 and Mt = M¢_.
(stepUpdate) 3: Set the parameters to

2 . t
o= and = oot (25) eqngannat)

- 2(i/t + Mtt) '

(stepBTM) 4. Compute w™ and wit1 by equations (13) and (14) with vy, = %¢. If

[ H (we1) = H(re) |« > Myllwer — rell, (26) |eqnBTM
then set Mt — 2]\%, and go to Step 3.
(stepBTL) 5: Compute 7441 and wy? | by equations (15) and (16) with v = ;. If

Ly
G(wy?)) — Gw™) — (VG (wi'), wy? ) — w?) > ?waﬂ —wi?||?, (27)[equBTL|

then set fit — Qﬁt, and go to Step 3.
6: Set Ly = L¢, My = My, and ¢ = A¢.
7. If t = N, terminate and output w}l\,nglA Otherwise, set t < ¢t + 1, and go to Step 2.

employed by Monteiro and Svaiter [20,21], which is based on the enlargement of a
maximal monotone operator first introduced in [7]. More specifically, we say that the
pair (9,4) € € x Z is a (p, e)-approximate solution of VI(Z;G, H,J) if ||9|| < p and
g(u,?) < e, where the gap function g(-,-) is defined by

g(t,v) := sup Q(@,u) — (U, — u). (28) [eangt|

uezZ

We call ¢ the perturbation vector associated with @. One advantage of employing
this termination criterion is that the convergence analysis does not depend on the
boundedness of Z.

Theorem 3 below describes the convergence properties of AMP for solving deter-
ministic VIs with unbounded feasible sets, under the assumption that a strong solution
of (1) exists. It should be noted that this assumption does not limit too much the ap-
plicability of the AMP method. For example, when J(-) = 0, any weak solution to
VI(Z;F) is also a strong solution.

(thmAMPRateUB) phoorem 3 Suppose that V(r,z) == ||z — r||?/2 for any r,z € Z. Also assume that
the parameters {at} and {yt} in Algorithm 1 are chosen such that oy =1, and for all
t>1,

@ @
0<ar <1, Lagye + ]\42%2 < & for some ¢ < 1, and =t = trl (29) [eqnCondAlphaGanmaUB

Loy Dip1vesr’

where I'y is defined in (19). Then for all t > 1 there exist vi41 = a(r1 —re41)/7t € E
and €441 > 0 such that §(w?ﬁ1, ve41) < €t4+1. Moreover, we have

204 D < 3o (1 +9t)D2

and eq4y < TR (30) [eqpvepsTaa]

Tt

lveprll <
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where

I

— * — @
D= HTl —u H7 0 == m Z:IIiaX’t ? (31)
and u* is a strong solution of VI(Z;G,H,J).
Below we provide a specific setting of parameters {a:} and {7} that satisfies

condition (29).

(corAlPRateUB) Corollary 2 Suppose that V(r,z) := ||z — r||?/2 for any r,z € Z and M > 0. In

Algorithm 1, if N > 2 is given and the parameters {ai} and {y:} are set to

2 t

%= s 32) (oA phaGamnat]
1 ana 7yt 3(L+MN) ( )eqn phaGammal

ot =

then there exists vy € € such that g(w7\[g7vN) <epn,

12L 12M 45L 45M 2

<
N(N71)+N71}D’ andEN*[N(N—1)+N71 D7, (33)[eqmvepsCor]

lonll <

where u* is a strong solution of VI(Z; F) and D is defined in (31).

Proof Clearly, we have I't = 2/[t(t + 1)] and hence (19) is satisfied. It also follows from

(32) that
2Lt M?t2 2L MN
L M3 = <
et M= ST TN+ 1) T 9L+ MN)2 = 3(L 1 MN) | 3(L + MN)
OL+MN _ 2 o
= — < - =:c".
3(L + MN) = 3

We can see that ¢ < 1, and 1/(1 — ¢?) = 3 in (31). Moreover, when N > 2,

Oy g = —N=1 e Qo L 23
N1 790 =) 1<isn-1'T;’ ~ (1= )N(N —1) 1<i<N-1 N

<

N w

We conclude (33) by substituting the values of any_1, yN_1 and On_1 to (30).

Several remarks are in place for the results obtained in Theorem 3 and Corollary
2. Firstly, although the existence of a strong solution u* is assumed, no information
on either u* or D is needed for choosing parameters a; and 74, as shown in (32) of
Corollary 2. Secondly, both residuals ||vy]|| and en in (33) converge to 0 at the same
rate (up to a constant 15D/4). Finally, it is only for simplicity that we assume that
V(r,z) = ||z — r||?/2; Similar results can be achieved under assumptions that Vw is
Lipschitz continuous.
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Algorithm 3 The stochastic accelerated mirror-prox (SAMP) method
(algAMPS) Modify (14) and (15) in Algorithm 1 to

werr = P (e o) + G (wi, €0)) (34)  eqnProxmds]
revn = P (3 Hwerns Ga) + 19w, €0)) (35) [equProxrnds]

3 Accelerated mirror-prox method for stochastic VI
(secAMPS) 1) this section, we focus on the SVI(Z; F) and demonstrate that the stochastic coun-
terpart of Algorithm 1 can achieve the optimal rate of convergence in (9).

The stochastic accelerated mirror-prox (SAMP) method is obtained by replacing
the operators H(r¢), H(ws1 1) and VG(z}"?) in Algorithm 1 by their stochastic counter-
parts H(rs, Cor—1), H(wit1, o) and g(w;”d, &) respectively, by calling the stochastic
oracles SO¢g and SOp. This algorithm is formally described in Algorithm 3.

It is interesting to note that for any ¢, there are two calls of SOy but just one
call of SO¢g. However, if we assume that J = 0 and use the stochastic mirror-prox
method in [14] to solve SVI(Z; G, H,0), for any ¢ there would be two calls of SOg
and two calls of SO¢. Therefore, the cost per iteration of AMP is less than that of the
stochastic mirror-prox method.

Similarly to Section 2, we use the gap function g(-) for the case when Z is bounded,
and use the modified gap function g(-,-) for the case when Z is unbounded. For both
cases we establish the rate of convergence of the gap functions in terms of their ex-
pectation, i.e., the “average” rate of convergence over many runs of the algorithm.
Furthermore, we demonstrate that if Z is bounded, then we can also establish the
rate of convergence of g(-) in the probability sense, under the following “light-tail”
assumption:

(1tnlT) A2 For any i-th call on oracles SOy and SOy with any input v € Z,

Elexp{||VG(u) — G(u, &)||2/o&}] < exp{1},

and
Elexp{ || H (u) — H(u, ¢ /ot }] < exp{1}.

It should be noted that Assumption A2. implies Assumption A1l. by Jensen’s inequal-
ity.

The following theorem shows some convergence properties of Algorithm 3 when Z
is bounded.

hmAMPRateBS
fe ave >Theorem 4 Suppose that (20) holds. Also assume that the parameters {o:} and {7y}

in Algorithm 3 satisfy a1 =1,

@ a
t < 41 vVt > 1, (36)‘eanondAlphaGammaIncS

3M?43
qu — Lagyy — ——— > 0 for some q € (0,1), and — < —————,
® i 0. 1), Fyye = Tip1ve+1

where I is defined in (19). Then,
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(a) Under Assumption Al., for allt > 1,

20t

1 LA
E [g(wi?))] < Qolt) = 0% + {401%1 + (1 + m) Ué} iy (;Z;Z (37)[eqanQBoundBs|
N K3

" i=1

(b) Under Assumption A2., for all A\ >0 and ¢t > 1,

Prob{g(uwi?,) > Qo(t) + AQ1 (1)} < 2exp{~A2/3} +3exp{—A},  (38)[equProb]

where

Ql(t) = Ft(UG + UH)'QZ

(39)[oantt

We present below a specific parameter setting of {«;} and {+;} that satisfies (36).

(corsteps) Corollary 3 Suppose that (20) holds. If the stepsizes {a+} and {yt} in Algorithm 3
are set to:

_ ut
AL+ 3Mt+ B(t+ 1)y /ut’

2
at = —— and V¢

P (40) [equAlphaGamnaBDS

where B > 0 is a parameter. Then under Assumption Al.,

16L02%  12M 2% o2y (45(22 160

92 4 i) = G0, (an)fomen

E [g(wif))] < W+ 1) () u(t—1)

where o and 27 are defined in (8) and (20), respectively. Furthermore, under Assump-
tion A2.,

Prob{g(w?il) > Co(t) + XC1(t)} < Qexp{—)\2/3} + 3exp{—A}, VA >0,

where

Ci(t) :=

o2y (4\/3 160).

==+
pu(t—1)

(42)oanct

3 3582,
Proof It is easy to check that

I, = 2 at < _ %4l
t(t+1) Lyyve = Ty1ve41

In addition, in view of (40), we have y¢ < pt/(4L) and ~# < (u?)/(9M?), which
implies
B gy = BMOOE s Bt 2
6 et o -6 4 tr1

W=

> 0.
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Therefore the first relation in (36) holds with constant ¢ = 5/6. In view of Theorem 4,
it now suffices to show that Qq(t) < Cop(t) and Q1(t) < C1(t). Observing that oy /Iy = t,
and ¢ < /i) (BVE), we obtain

t ] t t+1 3/2
Za}%g%z}fig%/ \/idtzz(t+1)3/2/3:2‘/ﬁ(t7+1).
i=1 " i=1 0

B

Using the above mequality, (20), (37), (39), (40), and the fact that /t + 1/t < 1//t —1
andz _ % <t(t+1)%/3, we have

4‘9% ( 80’2 Q574
)= —Z (4L 4 3Mt + B(t + 1)/ t)+7
16L92% N 12M 22 N 460% N 1602/t + 1
Topt(t+1)  op+1) o Vut 3Vt
< Co(t),
and
2(cq +oH) A i
G H i1
t)y =22 T2H) i2
Q)= —arn ¥ Z: RFTCEE) Mt z; T
1= 1=

< Qﬁ(Ug—I-O'H).QZ i 1602 t+1
- V3t 3/upt
Ci(t).

IN

In view of (9), (41) and (42), we can clearly see that the SAMP method is robust
with respect to the estimates of o and (2. Indeed, the SAMP method achieves the
optimal iteration complexity for solving the SVI problem as long as 8 = O(c/2yz). In
addition, we can also see that this algorithm allows L to be as large as (’)(t3/ 2) without
significantly affecting its convergence properties.

In the following theorem, we demonstrate some convergence properties of Algorithm
3 for solving the stochastic problem SVI(Z;G, H,J) when Z is unbounded. It seems
that this case has not been well-studied previously in the literature.

(thmAMPRateUBS) pheorem 5 Suppose that V(r,z) = ||z — r|?/2 for any v € Z and z € Z. If the
parameters {a} and {v} in Algorithm 1 are chosen such that oy = 1, and for all
t>1,

oy Q]

0< ar <1, Lagye +3M2%2 < 2 < q for some ¢,q € (0,1), and — = ————,
Live i1y

(43) ‘ eqnCondAlphaGammaUBS

where Iy is defined in (19). Then for all t > 1 there exists a perturbation vector vey1
and a residual 441 > 0 such that §(wfﬁl,vt+1) < €t41. Moreover, for all t > 1, we
have

Bllusl] < 2 (2042024 ). (44)[oaiE]

Tt

« 180202 i
Eler1] < 2t [(3 +60)D? + (1+ 69)(]?] e S (45) [eqnEeps]
t i=1

Tt
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where u* is a strong solution of VI(Z;G,H,J), D is defined in (31),

2 t
0 = max {1, 672} and Cy = {40%{ + (1 + ﬁ) aé} E V2. (46)[eqnCtheta
q—c —4q .
=1

Below we give an example of parameters a; and ~; that satisfies (43).

?(corStepUBS)? Corollary 4 Suppose that there exists a strong solution of (1). If the mazimum num-

ber of iterations N is given, and the stepsizes {at} and {v¢} in Algorithm 3 are set
to

t

2
ap = and vt = , 47 StepUBS
T M T SL3MN 1 ANYN — 1 (47) [eanStepuBs]

where o is defined in Corollary 3, then there exists vy € € and e > 0, such that
gwy,vn) <en,

40LD 24M D o 83D
<
Elloxl] < iy + g + 7 (2 +5) (18) et
and
90LD? 54M D? oD 188D 560 180
< .
Elen] < N(N—I)Jr N1 N*l( p 35D+ﬂDN (49) [eqnEepsUB

Proof Clearly, we have I'y = 2/[t(t + 1)], and hence (19) is satisfied. Moreover, in view
of (47), we have

2L 3M2N?
L 3M3~2 <
oY+ M S STTSNN T (L 4 3MN)2

_ 10L? + 6LMN +3M?N? _ 5
N (5L + 3MN)?2 12

)

| ot

<

which implies that (43) is satisfied with > = 5/12 and q = 5/6. Observing from (47)
that ¢ = ty1, settingt = N — 1 in (46) and (47), we obtain

N-1 2,272
aN_1 2 2 2 2.2 _ 40"y {N"(N —1)
= and C3%_{ = 4o § A S G S 50) [eqnCX|
IN-1 MmN -1) vt e o 3 50

where Cn_1 1is defined in (46). Applying (50) to (44) we have

9 8D 8o
Elllv < —— (4D +2CNn_1) < +
llonll < —F— ¢ NSNS T AN )
40LD _  24MD o 86D o
SNN-1) N-1 yN-1I\ o '

In addition, using (45), (50), and the facts that @ =1 in (46) and

N-1
3 2 2
i=1
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we have
7207 YEN?Z(N —1)2
Eley_1] < ——————(9D? +7C%_1) + " -
len 1]—71N(N—1)( N-1) NN —1)? 1
18D? 560271 N 9
18
_fle(N—l)+ 3 + 18
90LD?*  54MD?*  183D? 560> 1802

SNN DT N-1 T UN-T  35/N-1 @ BNYN-1

90LD? +54MD2 oD 188D 560 180
N(N-1)  N-1 N1 o 38D ' BDN )’

Observe that we need to choose a parameter § for the stochastic unbounded case,
which is not required for the deterministic case (see Corollary 2). One may want to
choose 8 in a way such that the right hand side of (48) or (49) is minimized, e.g.,
B = O(o/D). However, since the value of D will be very difficult to estimate for the
unbounded case and hence one often has to resort to a suboptimal selection for 3. For
example, if 5 = o, then the RHS of (48) and (49) will become O(LD/N? + MD/N +
oD/V/N) and O(LD?/N? + MD?/N + 0 D?/\/N), respectively.

4 Convergence analysis
(secProof) y, this section, we focus on proving the main convergence results in Sections 2 and 3,
namely, Theorems 1, 3, 4 and 5.

4.1 Convergence analysis for deterministic AMP
?(secProofD)? In this section, we prove Theorems 1 and 3 in Section 2, which state the main conver-
gence properties of Algorithm 1 for solving the deterministic problem VI(Z;G, H, J).
To prove the convergence of the deterministic AMP algorithm, we first present some
technical results. Lemmas 1 and 2 describe some important properties of the prox-
mapping P/ (n) used in (14) and (15) of Algorithm 1. Lemma 3 provides a recursion
related to the function Q(:,-) defined in (17). With the help of Lemmas 1, 2 and 3, we
estimate a bound on Q(-,-) in Proposition 1.

(LemProxMap) y eyma 1 For all r¢(eE, ifw= P;](C), then for all w € Z, we have
(CGw—u) + J(w) = J(u) <V(r,u) = V(r,w) = V(w,u).

Proof See Lemma 2 in [12] for the proof.

The following proposition is a slight extension of Lemma 6.3 in [14]. In particular,
when J(-) = 0, we can obtain (54) and (55) directly by applying (53) to (6.8) in [14],
and the results when J(-) # 0 can be easily constructed from the proof of Lemma 6.3
in [14]. We provide the proof here only for the sake of completeness.
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(LemPRecursion) [,emma 2 Given r,w,y € Z and n,9 € £ that satisfy
w =P (n), (51) [squProxi]
y =P (9), (52)[equProx2]
and
19 =0l < Ll — r|* + M. (53) [equLH]

Then, for all u € Z,

2 2
(W, w —u) + J(w) — J(w) < V(r,u) — V(y,u) — (H L )Hr7w||2+%,

2 2u 20
(54)[erasusion
and
L? M?
Proof Applying Proposition 1 to (51) and (52), for all u € Z we have
myw—u) + J(w) = J(u) < V(r,u) = V(r,w) = V(w,u), (56) [eqnMP2u]
<197 Y- ’LL> + J(y) - J(u) < V(T: ’LL) - V(T7 y) - V(yvu), (57)

In particular, letting u =y in (56) we have
mw—y) +J(w) = J(y) <V(ry) = V(nhw) - V(w,y). (58) [eqniP2]
Adding inequalities (57) and (58), then
@,y —u) + mw—y) +J(w) = J(u) <V(ru) = V(y,u) = V(rw) - V(wy),
which is equivalent to
(0,0 — ) + J(w) = () < (0 —n,w—y) + V(r,u) = Viy,u) — V(r,w) - V(w,y).

Applying Schwartz inequality and Young’s inequality to the above inequality, and using
the fact that

Sllz—ull® < V(uz),vu,z € 2, (59) [eqnVvsNorn]

due to the strong convexity of w(-) in (12), we obtain

(0w —u) + J(w) — J(u)

<119 =l — ]+ V) — V() — V) — 2 )
1 60)|tmp1
< g0 =l Bl =yl + Vi) = Vi) = Vi) = o —y)? OO0

1
= 3.7 nlE +Viru) = Vigu) = V(rw).

The result in (54) then follows immediately from above relation, (53) and (59).
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Moreover, observe that by setting u = w and u =y in (57) and (60), respectively,
we have

@,y —w) + J(y) = J(w) < V(r,w) = V(r,y) = V(y,w),

(0, w—y)+J(w) = J(y) < Zilll‘} N2 +V(ry) = Vrw).

Adding the above two inequalities, and using (53) and (59), we have

M
< /1/2 V(r,w)Jr—fV(y,w),

1 9 L2 9 M2 L2 2
< —|W-nlZ-V(y,w) < =
0< 5 nlZ-V(.w) < 3 0

r—w||"+—-—-V(y,w
-l -V ()

and thus (55) holds.

(propSimplified) Lomma 3 For any sequences {ri}1>1 and {wi}i>1 C Z, if the sequences {wy?} and
{w Y are generated by (13) and (16), then for allu € Z,

Q(wzﬁ]a u) - (1 - at)Q(w?ga U)

d Lo 2 (o1 [emsiaprisieay
< at(VG(wi") + H(wiy1), w1 — u) + Tt||wt+1 —rel|” = arJ(u).

Proof Observe from (13) and (16) that le w™ = (w1 —re). This observation
together with the convexity of G(-) imply that for allu € Z,

G(wid)) < Gwi?) + (VG (wi?h), wi?, — i) 7912

+ *”ng{l — Wt
= (1) [G(w;"d) + (VG (W), w9 — w?d>]

+ at {G(wgnd) + (VG(wanLu - w{nd>]

2

Lo
+ (VG (wi'™), wepr — u) + TtH’th — e

2

La
< (1- an)G(wi?) + arG(u) + ar(VG(w™), wiy1 —u) + 7|IIUt+1 — 7).

Using the above inequality, (16), (17) and the monotonicity of H(-), we have

Qwify,u) — (1 — ar)Q(wy?, )
= G(w?f_l) -(1- at)G(w?g) — atG(u)

+ (H(u), w?_‘zl —u) — (1 — ay)(H(u), wy? — u)
+ J(le) (1- ozt)J(w?g) —atJ(u)
Gwily) = (1= ar)G(w?) — aeG(u) + o (H
+ ot (wig1) — o (u)

IN

(u), w1 — u)

Lo?
< 0 (VG(wi™) wpr — ) + =5t wen = rel® + o (H(wi 1), wesn — u)

+ o J(weg1) — g (u).
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In Lemma 3, we assume that the Lipschitz constant L satisfies (3). It can be easily
seen that for any L; > 0, as long as

d d2
G(wt+1) < G(wi" ) <VG(w77fn ), wt+1 —wi") + ” t+1 w7, (62)
then the above lemma still holds with L in (61) replaced by Ly:
Q(w?j{p u) - (1 - at)Q(w?gvu)

4 (63) ?eqnSimplifiedQBT?
< ar(VG(wi™®) + H(wit1), w1 — u)

2 _apd(u).

The following proposition estimates a bound on Q(w?_,’g_l,u), and will be used in
the proof of both Theorems 1 and 3.

proQBoundGeneral) Proposition 1 Suppose that the parameters {ca;} in Algorithm 1 satisfy a1 = 1 and

0 <ot <1 forallt>1. Then the iterates {ri}, {w} and {wy?} of Algorithm 1 satisfy

1
T Q(wtila )

(64) ‘ eqnQBoundGeneral

- M>7 2
< Bi(u, Z <M — Lavyi — s ) Iri = wit1ll”, Vu € Z,
- Iy H

where Iy is defined in (19), and

a;
Bi(u,ry) == G

t [t]) Livi
=1
Proof First, it follows from Lemma 2 applied to iterations (14) and (15) (with r =
oW = Wi 1,y = 41,9 = Ve H () + 7 VG (W), n = v H (wig1) + 1 VG(w™), J =
vtd, L = M~¢ and v = 0) that for any u € Z,

(V(ri,u) = V(rig1,u)). (65) [equ]

(VG (") + H(wrg1), wesn =) + 50 (wes1) =7 (u)
M2~2
< Vreu) = Vren,u) - (g - T”) Ire = wea |
Now applying the above inequality to (61), we have

Q(wf_ﬁlau) - (1 - at)Q(wgg7 u)

2 2
o at M= 2
< —[V(re,u) — V(rger,u)] — — — Lagye — rE— W .
< & W) - Vo) - 5 (- Lo = 20 = vl
Dividing both sides of the above inequality by I't, we have
1 1-— Ot
F Q(wgip U) - Ft Q(wfgvu)
ar at ¢ 2
< T [V(re,u) = V(regr,u)] — T G Lagye — lIre — wiga]”
1
Using the facts that a1 = 1, and that FOét =5 t > 1, due to (19), we can apply
t t—1

the above inequality recursively to obtain (64).



19

It is not difficult to see from the proof of the above lemma that it can be slightly
modified for variable Lipschitz constants L; and M;. Indeed, for any series {L:} and
{M;} that satisfy (62) and

[ H (wes1) — H(re)l|x < Millwegr — e, (66) [eqnHMt |
respectively, we have

1
EQ(wfﬁp U)

t (67) ‘ eqnQBoundGeneralBT

a;
f 2@,

< Bi(u,rpy) —

1=

M2~2 9
<M — Lioy; — ZT%> lr; — witall”, Yu € Z.

We will use equation (67) in the proof of Theorem 2 for the convergence of the AMP
algorithm with backtracking.

We are now ready to prove Theorem 1, which provides an estimate of the gap
function of the deterministic AMP algorithm when Z is bounded. This result follows
immediately from Lemma 1.

Proof of Theorem 1. In view of (21) and (64), to prove (22) it su]fﬁces to show that
Be(u, ) < 2%/ (Iyye) for all uw € Z. Indeed, since the sequence {rl} 1 is in the
bounded set Z, applying (20) and (21) to (65) we have

B (u, rg)
t—1
aq Q41 Qt

= Viru) =3 { — e | V(ris,w) = V(e )

Inm =1 Livi o Tigavigt vt (68) [eqnBBD

— Qit1 2 at 52

< —_ sziﬁz, VUEZ,

Fl'Yl Zl |: z'Yz z+1'Yz+1:| iyt

and thus (22) holds.

Similar as the proof of the above theorem, with the help of Lemma 1, (62) and
(66), we are able to prove Theorem 2.

Proof of Theorem 2. We have Iy = 2/[t(t + 1)] and hence (19) is satisfied. Also,
in view of the remarks after Algorithm 2, we have Ly < min{2L,Lo} and M; <
min{2M, My}. Moreover, from Steps 2, 4 and 5 of Algorithm 2 we can see that the
sequences {Li}y>0 and {Mi}i>o are non-decreasing. Following these observations to-
gether with (25), we have

ot Q41
= = (L + Myt _
Loy ( )< Tip1ve+1’
and
w— Lyourys — Mt R 1 Mt
L+ Mt t+1 4(Lt + Mtt)2
,Uth /,LMtt

SR T L Mt Lt Mt
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Applying the above two inequalities, (25), and (68) to (64), we conclude that

4L 4M,
9 u) < By (u, i) < 0% = t__ 4 t ) 0%, YueZ
QwyY ,u) < IiBi(u,rpy) < v 2T ) T vy ) e

In the remaining part of this subsection, we will focus on proving Theorem 3, which
summarizes some convergence properties of the deterministic AMP algorithm when Z
is unbounded.

Proof of Theorem 3. Using the assumption that V (r, z) := ||z—r||?/2 for allr,z € Z,
and applying the last relation of (29) to (65), we obtain

Bi(u,rpy) = I” -

Iy =l = e = ull,

2F7

Applying the above identity and the second relation of (29) to (64) and noting that
w =1, we have

t

2 2 g 2 2
— glires —ul = 2037 (1= i = wia
vt
(69) oanlEic1

o
Q(wif,u) < ?Hﬁ — ul

Observing that

1 2 1 2_ 1 2 1 2
llre —ull” = *|\Tt+1 —ull® = Slrll” = Gllrea ] = (r1 = 7o, )
=T

1 2
= §|\7“1 wt+1|| H7“t+1 - wagr1|| +(r1 — 7”t+1vw?i1 —u),
and combining (69) and (70), we obtain

at
Q(wtfl,u) - %<r1 - rt+1,w?£1 —u)

o
Ly — w1 - oy o1 — wid, |1 — W 1-é Z I — wig1l® =t ee41.
(71) [sqmepe]
Therefore, if we set vi41 := ar(r1—"re41) /7, then Q(wi |, u) = (vip1, wif | —u) < epa
for allu € Z. Note that et41 > 0 holds trivially by letting u = w?j]_l in (71). Hence we

have g(wffl,vt_,_l) < ett1 and it suffices to estimate the bounds on ||vix1| and e¢41.
Observe that by (2), (5), (17) and the convexity of G and J, we have

Qwefy,u’) 2 (VF(W), wify —u’) 20, (72) [eqnlpositive]

where the last inequality follows from the assumption that u* is a strong solution of
VI(Z;G,H,J). This observation together with (69) imply that

27

t

I = w2 = frees = w1 = 3 (1= ) i = wiga | > 0.

i=1
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By the above inequality and the definition of D in (31), we have

i1 = 'l <D, (73) [squr taBound]
t 2
D
Sl = win | <52 (74) sanrtwtabouna
i=1

It then follows from (73) and the definition of vey1 that

a 2
oesall < 58 (s =]+l —u'l) < 0D,

and hence the first relation in (30) holds.
To finish the proof, it now suffices to estimate a bound for €. Firstly we explore
the definition of the aggregate point w?}ll. By (16) and (19), we have

1 aq 1 ag at
F t+1 Hu}t + Ft'l,Ut+17 Vi 2 1.

Using the assumption that w‘fg = w1, we obtain

oty =13 T vt (75) [eqminghetorn|

=1

where by (19) we have

(76) [eqnGamnaspan]

H\Q

L

Therefore, wy?, is a convex combination of iterates ws, ..., wey1. Using (31), (71),
(73) and (74), we conclude that

atFt ; 2
i1 < THH wid |12 < —r1 = wigall
‘ Vi
i=1
3ap Iy ; 2 2 2
< = (1 = a7+ i = w7+ s = wiga ||7)
27t i1 Vi

3o 2
2D I; —
e ( s 25 i )

3at(1 + 0t)D2
Tt

4.2 Convergence analysis for stochastic AMP
?(secProofS)? ) this section, we prove the convergence results of the SAMP method presented in
Section 3, namely, Theorems 4 and 5

Throughout this section, we will use the following notations to describe the inex-
actness of the first order information from SO and SOg. At the ¢-th iteration, letting
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H(re, Cat—1), H(wir1,C2t) and G(wi® ,ft) be the output of the stochastic oracles, we
denote

A%}il H(Ttaéét 1) H(Tt)7

A%} = H(wiy1,Cor) — H(wpy1), and (77) [eqnDelta]
AG =G, &) — VG (w™).

To start with, we present a technical result to obtain a bound on Q(wy}’ fl, u) for
all u € Z. The following lemma is analogous to Lemma 1 for deterministic AMP, and

will be applied in the proof of Theorems 4 and 5.
roQBoundGenerals) Lemma 4 Suppose that the parameters {a:} in Algorithm 1 satisfies a1 = 1 and
0 <ot <1 forallt > 1. Then the iterates {r}, {wt} and {w;9} generated by Algorithm

3 satisfy
1
T Q(wti1 s u)

t

3M?~;
< Bi(u T[t] Z <QN Lagy; — ) [lrs — wz+1” + ZA , Yu € Z,
i=1 i=1

(78) ‘ eqn@BoundGeneralS

where Iy is defined in (19), Bi(u, () is defined in (65), and

3oy 1 1o’
AiGw) = 50T (A ) - O

e 2 (79) [eqnLasbas|

— %(A%} + A’LC;, Wi — 'LL>.
K3
Proof Observe from (77) that

[ H (w1, Cor) — H(re, Cor—1)||2

2
= (”H(th) H(re) ||« + |AF |« + 1A%« )
(80) [eqnLMStoc]
< 3 (I (i) = HO)I2 + 14512 + 14357)2)
<3 (M ||wt+1—1“tH +||A H*J"HAQt 1H )

Applying Proposition 2 to (34) and (35) (with r = ry,w = wt+17y = rt+1,19 =
’YtH(”’t7C2t 1) +’Ytg( 7&) n = yHwi1, ) + G, &), J = vJ, L* =
3M?~? and M? = 3+7 (HA 412+ ||A2t Y12)), and using (80), we have for any u € Z,

Y (H (w1, Cor) + Gwi™, &), w1 — u) + ve T (w) — v¢J (w)

po 3M34} 2,3
svmwwwmﬂbw—<§——ﬂﬁ 7t = wia]|* + ”mAanm”HH
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Applying (77) and the above inequality to (61), we have
Q(w?.ilv u) - (1 - at)Q(wg'qu)

< g (H(wig1, Cor) + Glwi™, &), wepr — u) + ard (wig1) — an (u)
L 2
+ 7||7-Ut+1 - TtH - at(A + AL w1 — )
- M2
< 2 (Vo = Vi) = g (- Lo - ) T

Tt

3a
+ 25l (AT + 1451 — 0a (A3 + A, wigr —u).
Dividing the above inequality by Iy and using the definition of A¢(u) in (79), we obtain
1
FtQ(w?f-lvu) - Q(w?g,u)

< F— (V(rt,uw) — V(rege1,u))

lfat

o 3M2~?
~ g (= e = 0 iy w4 )

Noting the fact that a1 = 1 and (1 — o)/t = 1/T1—1, t > 1, due to (19), applying
the above inequality recursively and using the definition of Bt(-,-) in (65), we conclude
(78).

We still need the following technical result to prove Theorem 4.

(lemTech) [ omma 5 Let Ot,ve > 0,t =1,2,..., be given. For any w1 € Z and any sequence
{A"} C €, if we define w} = w1 and
wly = argmin (AL u) +V(wf,u), Vi> 1, (81) [camproxv]
ue”z
then

t t t
30— AL Wl —u) < Z% (W)~ V(why, )+ 3 %H&Hi Vu € 7. (82)[oquTech]
i=1 i=1 " i=1

Proof Applying Lemma 1 to (81) (withr = w], w=w; 1, (= —7 A and J = 0), we
have
7%-(Ai,wf+1 —u) < V(w,u) — V(wf,wf_i_l) — V(wf_,_l,u), Yu € Z.
Moreover, by Schwartz inequality, Young’s inequality and (59) we have
— il A% w = wlyy)

2
] 7 M 2 Yi 2
< vl A flwi' = wia |l < 5% IIA I3 + 5w —wia||” < —LllAill* + V(wyi, wit1)-

Adding the above two inequalities and multiplying the resulting inequality by 6;/~;, we
obtain

—0,(AT W — ) < ”’ A I3+ ;(Wwf,u) — V(wlyy,u).
1

Summing the above inequalities from 1 =1 to t, we conclude (82).
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We are now ready to prove Theorem 4.
Proof of Theorem 4. Firstly, applying (36) and (68) to (78) in Lemma 4, we have

Loty uy < 2 +ZA  Vuez (83) [sapiLanbas|
t

Letting wi = w1, defining w1 as in (81) with AL = A% 4 AL for alli > 1, we
conclude from (65) and Lemma 5 (with 0; = «;/I5) that

t

=57 SA + AL wf — u) < Bu(u,wiy +22”1 IAZ + AL|2, Yu e Z. (84) 7tmp3?

<.

i=1

The above inequality together with (79) and the Young’s inequality yield

t
S Aiw) = = HAH + AG,wf — +Z S (I3 + 1457 2)
: P

=1
(67 2 :
+Z ) {_7””7“1 —wi1]]” — (Ag, it —Tiﬁ
(85) [egnLambdaSimplifed
t t
(67 : « 2
*Zfz( G i — W Zf (AF, wit1 — wi)
=1 1=1
< Bi(u,wpy) + Ut,
where
t
[ i «
U= 3 ol A ’GH*+22 ’% AL
i1 2

t
3
+ 30 S (IR0 + 4% 1||) (86) [equ0]
=1

t
(07 i z :az 21 v
- E ﬁ<Acv,’f‘i - e AH7’LU7;+1 —w¢>.
i=1 " i=1

<.

Applying (68) and (85) to (83), we have

1 2
7 Qi u) < %92 + Ui, Vue Z,

or equivalently,

2at

glwy?) < TEQG + LU (87) [equeV]

Now it suffices to bound Uy, in both expectation and probability.

We prove part (a) first. By our assumptions on SOq and SOy and in view
of (34), (35) and (81), during the i-th dteration of Algorithm 3, the random noise
A is independent of wl+1 and wy, and AiG is independent of r; and w;, hence
E[(Aic,ri —w!)] = B(A%, wiy1 —w?)] = 0. In addition, Assumption A1. implies that
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E[|AL (2] < o, E[|AT 3] < o and E[|A%|13] < oF, where Al, AL~ and A%}
are independent. Therefore, taking ezpectation on (86) we have

t
(% «
E[Z I (1B +12512) + 22 A6

=1

E[Uy]

IN

t
3aivi 2i—1
+ZT}Z(”A 12+ 14572 )} (88) [oquEvt]

i {40,{ + (1 + ﬁ) aé} .

i=1
Taking ezpectation on both sides of (87), and using (88), we obtain (37).
Next we prove part (b). Observe that the sequence {(Ag, mi—w;) }i>1 is a martingale
difference and hence satisfies the large-deviation theorem (see, e.g., Lemma 2 of [18]).
Therefore using Assumption A2. and the fact that

exp .Uf(az <AG:T1 — Wy >)2
2oqoi [ 1 02y)?

< & [oup { 1AL AT < o {1012/ ] < expy

2
20GQ

E

we conclude from the large-deviation theorem that

t
Prob Z %(Aé;,ri —w)) > Aogfz
i=1""

By using a similar argument we have
t

2
Prob¢ > %(A”,wi+1 —w!) > Aopfy f) < exp{—A?/3}.  (90) ?tmpp2?
i=1" "

In addition, letting S; = a;v;/(ul;) and S = ZZZI S;, by Assumption A2. and

the converzity of exponential functions, we have

t
exp{ Zs A2 /UGH <E {;Zsiexp{n%ni/aé}} < exp{1}.

i=1

Therefore, by Markov’s inequality we have

t
Prob { <1 + ﬁ) Z Zz% “Al ||* (1+ )\)O’é (1 + ﬁ) Z CZ}’Y; }

i=1 i=1

< exp{-A}.
(91) ?tmpp3?
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Using similar arguments, we also have

t
3 2
Prob{ 3am||4\2’ 2>+ "2H 0‘”1} < exp{-A}, (92) 7tmppd?
i=1
5 2
pmb{ T AKIE > (14 "HZ“”Z}QXP{—A}- (93) [emprs|
=1

Using the fact that | A%¢ + AQZ N2 <214%)2 + 2||AZZ Y12, we conclude from (87)—
(93) that (38) holds.

In the remaining part of this subsection, we will focus on proving Theorem 5, which
describes the rate of convergence of Algorithm 3 for solving SVI(Z;G, H,J) when Z
is unbounded.

Proof the Theorem 5. Let Uy be defined in (86). Firstly, applying (43) and (85) to
(78) in Lemma 4, we have

1
Qi (94)[oantBucts)

t
at
< By(u,ryy) — 2th% 3 (q - 02) lrs = wial|? + Be(u,why) + U, Yu € 2. (95){7}
i=1

In addition, applying (43) to the definition of Bi(-,-) in (65), we obtain

it 2 2
B (u, ) = 5T (Ir1 = ull® = llre41 — ulI) (96) [eqnBr |
ot 2
= 3, (1 = w11 = rega — w117 + 2(r1 — reqa, wify — ). (97)[eqnBry]

By using a similar argument and the fact that wy = wy = 1, we have

B (u, wiyy) = 2F7 (I = wl® = [l = ul®) (98) [eqnBv|

_Olt _ag2_v_a922_v ag
2Ft’}’t(||r1 wt+1H ||wt+1 wt+1|| +2(r W41, Weiq uy).

(99) o]

We then conclude from (94), (97), and (99) that

Q(wf_,’g_l,u) - (vt+1,wf_€1 —u) <éepq1, Yu € Z, (100)
where
vk =220 = rg = ) (101) [eqavs|
and

g 2 2 2
crr 1= o (2l = = e — iy — s —wfs

t

102 S
2 2 (102 [ezepss]
—Z(q—c Iri = wigal|” | + T:Ut.

i=1
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It is easy to see that the residual €141 is positive by setting u = wf_ﬁl in (100).
Hence g(w?_il,vprl) < et41- To finish the proof, it suffices to estimate the bounds
Jor Elllvis1]] and Elers1].

Letting uw = u™ in (94), we conclude from (96) and (98) that

t
2 2 2 2 2 2y
2lirs =P = rees = I = wfen = = Y (0= ) Irs = wial® + 220
=1

ZjQ(th€1aU*) 20,

where the last inequality follows from (72). Using the above inequality and the definition
of D in (31), we have

t
2T
Iress = 1P + ot — w2+ (a= ) lIri — wiga? < 20% + =403 (103) equravBound]
t

i=1

In addition, applying (43) and the definition of Ct in (46) to (88), we have

t 2
. 1
sl 90 e (1 gy ) o8] = h onfeme
i=1

T Ly

Combining (103) and (104), we have

t
Elllrer1 — o' ?) + Ellwfin - wIP)+ Y (0= ) Elllr - wiga]’) < 2D + 267,

=1
(105) eqabe]

We are now ready to prove (44). Observe from the definition of vey1 in (101) and the
definition of D in (31) that ||[ve+1]] < (2D + |lwiy, — u™|| + |[re41 — w*[)) /e, using
the previous inequality, Jensen’s inequality, and (105), we obtain

«
Efflvea]l] < 7;(213 + \/E[(Ilnﬂ — | + lwiyy —u*l)?])

o «
< 2D + 2Bl — 2+ oy, — ) < SH@D+2y/D? + CP).

Our remaining goal is to prove (45). By applying Proposition 2 to (34) and (35)
(withr = r¢,w = wig1,y = reg1, 9 = wH(re, Cor—1)+nG (Wi, &), n = yH(wis1, Coo)+
WG, &), J = yiJ, L = 3M?37 and M? = 347 (| AH|Z + |47 "112)), and using
(55) and (80), we have

3M2’y752 e —
2 t

1 2 2 397 2t 12 2t—1)2
Sllrees —wed]” < w1 || +7t(||AH||*+||AH %)

IA

? o | 377 2t 2 2012
5||7”t*wt+1\| +7(||AH||*+HAH 1),
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where the last inequality follows from (43). Now wusing (75), (76), (102), the above
inequality, and applying Jensen’s inequality, we have

Qg
et+1 — 13U < %Hh w1

t
i, ;
ro—ut 4y 7 (W —rig) + > 7 (rig1 —wiy1)
. 7 . K3

t
3ot 2 (7] ( )2 2)
<D 40y (i - 1 — T
i + ti:1 T; ”Tl-‘rl u ” +sz—i-l rl+1|| (106)
t
3a¢ | -2 a; 2, 2 2
< PP j(umlw*n + A lwigs — il
1=

+ 3 (1AHI2 + A% >|)}

Noting that by (46) and (103),

FtZF (i1 — w1 + flwigr = ril*)
i=1

2 2
<n2 (Irig1 — uw*)1? + (g — ) fwipr — 7))

t
<tho‘l (2D? + QF”ZU)_29D2+29QZ% U;,
=1 i=1

and that by (43),

t
3a
Z B0 (1 A% 2 4 a3 )

3at'y 2i—1 3at 2i—1
Z L(AFZ + 1A% Z (IAZIZ + 1A% 1)
=1

we conclude from (104), (106) and Assumption A1. that

t

t

6 2

2 D? 420D + 2013 Y 7 E[Uf] ‘“;Z’HZW?}
1=1 1=

Elet1] < LE[Ud] +

7Ct + &
Tt Tt

I /\

t 9 t
o 6
(1+20)D? +2013 Y~ SEC? + a;jH > w?}
¢ i=1

i=1

Finally, observing from (46) and (76) that

t t
g 2Ft;%:0t27

we conclude (45) from the above inequality.

H\Q
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5 Numerical experiments
(secNumerical) [y, thjq section, we present some preliminary experimental results on solving deter-
ministic and stochastic variational inequality problems using the AMP algorithm. The
comparisons with the extragradient method [15], the mirror-prox method in [23] and
the stochastic mirror-prox method in [14] are provided for better examination of the
performance of the AMP algorithm.

5.1 Variational inequality on the Lorentz cone
(sechVI) 1y this section, we compare the performance of AMP with the extragradient/mirror-
prox method [15,23], whose iteration complexity has been studied in [23,20]. In par-
ticular, we consider an affine variational inequality problem with unbounded feasible
set on solving u* € Z such that

(Au+b,u* —u) <0, Yu € Z, (107)[eqnAvT]|

where A € RO X(+1) 45 4 linear monotone operator, and Z is the Lorentz cone:
Z = {(z,t) € R"D | |1z < ¢}.

To solve (107), we can decompose the linear monotone operator A to the sum of
a symmetric positive semidefinite matrix (A + AT)/2 and a skew-symmetric matrix
(A — AT)/2, hence the VI problem (107) can be viewed as an instance of (1) with

F(u) = Au+b, G(u) = i((A + ATy, u) + (b,u), H(u) = %(A —AT)u,  (108)[eqnAVISetting]

and J(u) = 0.

A few remarks are in place for the above decomposition. Firstly, for any con-
tinuous linear monotone operators on Banach spaces, the decomposition to the sum
of a symmetric monotone operator (and hence the subdifferential of a convex func-
tion) and a skew operator exists and is unique (see, e.g., Proposition 2.14 in [3]).
Therefore, it is natural to use the decomposition (108) to solve (107). Secondly, as
discussed after Algorithm 1, the AMP algorithm can be viewed as a hybrid algorithm
of the mirror-prox method and the accelerated gradient method. Indeed, the AMP
algorithm is equivalent to the mirror-prox method and a version of Nesterov’s accel-
erated method when A is skew-symmetric and symmetric, respectively. Finally, since
the Lipschitz constants of F(-), VG(-) and H(-) are || A|, |A+ AT||/2 and ||A— AT||/2
respectively, the iteration complexity of the mirror-prox method for computing an ap-
proximate solution of (107) is O(]|A||/¢), and the iteration complexity of the AMP
method is O(||A + AT||/\/e+||A — AT ||/e). Specially, if A is “almost symmetric”, i.e.,
| A|| is much greater than the norm of its skew-symmetric part |A — AT||/2 (e.g.,
| Al > ||A — AT||/+/Z), then the iteration complexity of the AMP method for comput-
ing an approximate solution of (107) is better than that of the mirror-prox method
(e.g., in the order of O(1/4/¢)).

In this experiment, we generate the linear monotone operator A randomly by
A = BTB + (C - C"), where B € RI("HD/21x(n+1) (5 that A is monotone by
not strictly monotone), C' € R(”+1)X("+1), and the entries of B and C are generated
independently from the uniform [0, 1] distribution. The entries of the vector b are also



30

randomly distributed between 0 and 1. By setting V(z,u) = ||z — u/|?/2, the prox-
mapping r/ (u) in (11) becomes the projection of z — i to the Lorentz cone Z, which
can be calculated efficiently. For the AMP algorithm, we use the parameter settings in
Corollary 1 with L = ||A + AT||/2 and M = ||A — AT||/2, and for the extragradient
method we choose the stepsizes according to (3.2) of [23] in which L = ||A]|. Noting
the fact that AMP computes relatively more matrix-vector multiplications due to the
aforementioned decomposition, we set the total number of iterations of the extragra-
dient method to be twice of that of the AMP method. The performance of the AMP
and extragradient algorithms are compared in terms of the gap function (28), which
is computed using MOSEK [22]. In particular, for any approximate solution w and
perturbation vector v, we compute the value of g(w,v) in (28) and the norm of the
perturbation vector [|v]|.! It should be noted that in this experiment both the AMP
and extragradient methods are implemented without using backtracking procedures in
order to have a fair comparison. The comparison between the AMP algorithm and the
extragradient algorithm is described in Table 1.

Table 1 The comparison of the AMP algorithm and the extragradient (denoted by EG)

(tabAVI) algorithm in solving the affine variational inequality problem (107). In the table w and v
denote the approximate solution and perturbation vector respectively, and g(-,-) is the gap
function defined in (28).

Problem N _ AMP, N iterations _ EG, 2N iterations

Fwo) ol CPU [ gw,e) ol CPU

n = 999, 1000 | 7.91e-3  1.03e-1 1.3 2.69e-2 1.12e0 1.2

L =2872.3,M =259 | 2000 | 3.63e-3 4.87e-2 2.5 2.09e-2  6.05e-1 2.3
4999 1000 | 1.84e-1  7.10e-1  34.2 | 8.26e-2  6.30e0 46.0

L =14472.8, M = 57.6 | 2000 | 7.91e-2  3.20e-1 69.5 1.39%e-1 4.89¢e0 91.7
9999 1000 | 1.86e-1 8.88e-1  142.1 | 7.16e-2 8.46e0 192.9
L =29056.0, M = 81.4 | 2000 | 7.60e-2 3.85e-1 286.0 | 1.13e-1  6.69¢0  379.3

Two remarks on the performance of the AMP and extragradient methods are in
order. Firstly, it is interesting to observe that the practical convergence of the per-
turbation vector ||v|| is slower than that of the gap function value g(w,v), although
they have the same rate of convergence (see Corollary 2). Secondly, the AMP algo-
rithm outperforms the extragradient method for solving (107). This is consistent with
our theoretical observation that the AMP algorithm has a better iteration complexity
bound than that of the extragradient method for solving problem (107). Especially, it
can be easily seen the performance of the AMP method on the perturbation vector ||v||
is significantly better than that of the extragradient method.

5.2 Multi-player nonlinear game
(secnGame) vy, goal of this section is to compare the AMP algorithm with backtracking and the
mirror-prox algorithm with adaptive stepsizes in [23]. More specifically, we calculate
the Nash equilibrium of a game among k players, in which the goal of each player
is to minimize his/her quadratic loss function. To model the game, the strategies of

1 See the proof of Theorem 3 for the definition of the perturbation term in the AMP algo-
rithm, and Theorem 5.2 in [20] for the definition of the perturbation term in the extragradient
algorithm.
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the players are denoted by z1, ..., z, which represent the portfolio investment of the
players and are described as a point on the standard simplex, i.e.,

n
;€ A" = {weRi:Zw(i)zl}, Vi=1,...,k.
i=1

Then, the loss function of the i-th player is modeled by

%(Az‘,ﬂu xi) + Z(% Aj ;).
J#i

There are two types of losses in the above function, i.e., the first term describes the
impact of strategy x; on the i-player him/herself, and the second term describes the
outcome of the i-th player’s strategy x; when interacting with the strategies of other
players. We assume that A; ; = —AjTJ- so that the pairwise interactions between any
two players 4 and j results in a zero-sum outcome, and that A; ; is positive semidefinite
for all ¢ so that our multi-player game is convex (For the detailed introduction of solving
the multi-player game using variational inequalities, see, e.g., [24,14]).

By [24], the Nash equilibrium of the above game is exactly the weak solution of
the VI problem (1), where Z = A™ x ... x A" is the k-product space of all possible

¢i(x1, ... 2p) =

collections of strategies, and for all z = (x?, . ,a:f)T,
A1 - Arg
F(z) = Az with A := . (109)[eqnFBlock]
Ap1 - Apk

Similarly to Section 5.1, we consider a decomposition of F' = VG + H + J with
G(z) = 1<(A 4+ ATYz, 2, H(z) = %(A — A7)z, and J(2) =

To compute a solution of (1), we consider the following entropy setting for the prox-
function used in the AMP algorithm: forall z = (z7 ,... 20T € Z,u=(y],...,y})T €
Zand € = (nf,...,nF)T € &, we define

k k
S laill2, flglls == 4|3 Imil%, and
=1 i=1

:ii (J)—FI//TL y(J +I//7’L

i=1j=1 Ej) +V/n

2] =

(110) [eqmmGaneSotiing|

Here, ygj) denotes the j-th entry of the strategy y;, and v is arbitrarily small (e.g.,
v= 10_16). With the above setting, the optimization problem in the prox-mapping (11)
can be efficiently solved within machine accuracy, and the strong convexity parameter
of the prox-function V(z,u) is p = 1 4+ v (See [4] for details on the entropy prox-
functions). Moreover, it should be noted that under the above definition of G(z) and
H(z), for any approximate solution u = (y7 ,...,yf )7, the gap function g(u) in (18)
becomes

k
w=>y {Gbi(u) = in $i(yn, - Yio1s T Yikls - Yk)
i=1 ‘
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Table 2 The comparison of the AMP algorithm and the mirror-prox (denoted by MP)
(tabnGame) algorithm in computing the equilibirum of multi-player games. k is the number of players in
the game, and n is the number of portfolio investments that describes the strategy of each

player.
Problem dimension AMP after 500 iterations | MP after 1000 iterations
g(u) CPU g(u) CPU
1000 (k =5, n = 200) 3.54e-4 1.0 3.02¢-3 1.6
4000 (k = 20, n = 200) 1.63e-3 15.2 2.17e-2 21.5
10000 (k = 50, n = 200) | 1.09e-2 96.2 9.61e-2 117.3

which is exactly the natural error estimate of Nash equilibria.

The matrix A in (109) is generated randomly by the following means: Firstly,
for all i < j, the entries of A;; are independently generated from the uniform [0, 1]
distribution, and then A;; is set to —AZ:]‘- Secondly, for all 7, A;; = BiTBi where
B; € RI™/21X" and each entry of B; ; are independently generated from the uniform
[0,1] distribution. Finally, for simplicity of this experiment, we rescale the matrices,
so that for any i # j the entry of A; ; with the maximum absolute value is 1, and
for any 7 the entry of A;; with the maximum absolute value is 10.? We compare the
performance between the AMP algorithm with backtracking in Algorithm 2 and the
mirror-prox algorithm with adaptive stepsizes in [23]. For any approximate solution u,
we evaluate its accuracy by estimating the gap function g(u), which is computed using
MOSEK [22].

The comparison between the computational performance of AMP and MP is dis-
played in Table 2. We can see that AMP outperforms MP for solving the aforementioned
multi-player game. This is consistent with our theoretical observations on the iteration
complexities of AMP and MP.

5.3 Randomized algorithm for solving two-player game

The goal of this subsection is to demonstrate the efficiency of the SAMP algorithm in
computing the equilibrium of a two-player game. In particular, we consider the saddle
point problem

. 1 1
mip max - (Pr,w) + (Kz,y) - (Qu,v), (111)[oqu2Gane]

TEAT ye An

where P and @ are positive semidefinite matrices, and A" is a standard simplex.
Problem (111) is a special case of the problem in Section 5.2 with only two players.
For simplicity, we only consider the case when max; ; \P(i’j)| = max; j |Q(i’j)| (see the
footnote 2). Letting Z := A™ x A™, the above problem is equivalent to the VI problem
(1) with

T T
P = ( 1y ) 6o = )+ @ = (K1),

2 When the maximum absolute values of A; ;s are different, it is recommended to introduce

teScali
(noteScaling) weights w;’s and set ||z]| := Z?:l w;||lzs||? and ||| := 25:1 wlen”%, in which w;’s

depend on the blocks A; ;’s. See “mixed setups” in Section 5 of [23] for the detailed derivations.
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where u := (z,y) € Z. If P,Q and K are dense and n is large, the matrix-vector multi-
plication of Pz, Qy, KTy and Kx may be very expensive. In order to reduce the arith-
metic cost of computing these matrix-vector multiplications, Nemirovski et al. [25] de-
veloped randomized algorithms for solving this type of VI problems by replacing the cal-
culations of matrix-vector multiplications with calls to a stochastic oracle. Using similar
ideas to [251, we assume that for each input (x;,y;) € Z, the SO outputs the stochastic
gradients (Ge(s1), Gy (1), K (). Ky1)) = (G 01 ) Gl &), K €. K 1 6)
such that for all 7, k,l,m =1,.

Prob(Gx (w;) = Pj) = 217, Prob(Gy(yi) = Qi) =y,
Prob(Kz(z;) = K;) = 2", and Prob(—Ky(y;) = —K™) = y{™

Here, we denote by K; and (Km)T the I-th column and m-th row of K, respectively.
In other words, each call to the SO outputs the random samples of the columns of P
and @ and columns and rows of K whose distributions depend on the input (z;,y;).
It can be checked that E[Gx(z;)] = Pzi, E[Gy(vi)] = Qui, E[-Ks(2;)] = —Kz; and
E[Ky(y:)] = KTy;. Since problem (111) is a special case of the multi-player game in
Section 5.2, we still apply the entropy prox-function setting in (110). It is easy to check
that

L <max{max|P( 7) l, maX\Q( 7 I}, M<maX|K ’J)\ 22 = (1+K)1n(ﬁ +1),
k,j k,j n v

H( )|

ICm 1:Z )+ Kz
ICy yz KT

Therefore, we set

oG = 2\/(max |P(k.d)|2 4 max|Q(k’j)\2>, og =2, [2max|K*.J)),
k.,j k.j k.j

and o by (8).

In this experiment, we generate random matrices B, C € R199%" and K € R"*"
first, where each entry of these matrices are independently and uniformly distributed
over [0,1]. The matrices P and @ are then generated by P = BT B and Q = c’e,
and also rescaled so that P and @ are both positive semidefinite and max;, ; \P(k’j )\ =
maxy, ; |Q(k’j) |. For the SAMP algorithm, we use the scheme in Algorithm 3 with the
parameters described in (110) and Corollary 3. As a comparison, we also implement the
stochastic mirror-prox (SMP) method described in (3.6) and (3.7) in [14]. Noticing that
both the SAMP and SMP algorithms are robust with respect to the above estimates of o
and {2 (see the discussion after Corollary 3, and also the proof of Corollary 4.2 in [14]),
we run both algorithms twice with and without fine-tuning for each problem instances.
In the first run without fine-tuning, we set 8 = o/2z in the SAMP algorithm and use
the aforementioned stepsize constants for the SMP algorithm. In the second run, we
fine-tune the value of 8 in the implementation of the SAMP algorithm. Specifically,
for each o = 279,2787 .. .,28, 29, we run 50 iterations of the SAMP algorithm with
B = 00 /82z, and choose the best value 8 for the SAMP algorithm implementation by

} <4(mkax\P ’J)\ +maX\Q kg |2>7 and
i

:| < 8max|K(k’j)\2.
k.j

*
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Table 3 The comparison of the SAMP and SMP algorithms in computing the equilibirum
(tab2Game) of two-player games, in terms of the expectation and standard deviation of the gap function
value g(u) for any approximate solution w. The CPU time in the table is the average time of

100 runs.
Problem Paramters SAMP SMP
dimension n [E] N Elg(u)] std. CPU | E[g(u)] std. CPU
1000 o 1000 | 3.0le-1  8.23e-2 0.4 1.31lel  6.25e-4 0.4
(L =184.7 B = ?Z 2000 | 2.15e-1  4.96e-2 0.7 1.29el 6.16e-4 0.8
M=1.0 ’ 5000 | 1.38e-1  3.37e-2 1.7 1.24el  6.84e-4 2.1
P 89.4: 1000 | 7.32e-1  1.49e-1 0.4 5.89¢0  1.67e-2 0.4

tuned 2000 | 5.72e-1  1.04e-2 0.8 4.31e0 1.29e-2 0.8

g(uo) = 1.37el) 5000 | 3.99e-1 7.21e2 2.4 | 2.73¢0  8.00e-3 2.1

1000 | 6.98e-1  1.84e-1 0.5 2.0lel  4.87e-4 0.6

(o2
(L 305)26 4 B = 0, 2000 | 4.89e-1 1.14e-1 0.9 1.99¢1  4.24e-4 1.1
M_, 10, Z 5000 | 3.09¢-1 8.18e-2 2.3 1.93e1  5.00e-4 2.7
o :54'2’ 1000 | 1.03e0 2.12e-1 0.5 5.40e0  3.83e-2 0.6

tuned 2000 | 7.46e-1  1.76e-1 0.9 2.65e0 1.92e-2 1.1

9(uo) = 2.07¢l) 5000 | 4.92e-1 9.32e-2 2.3 | 1.02¢0 5.83e-3 2.7

1000 | 1.70e0  3.06e-3 0.9 3.51lel  3.19e-4 1.1

g
(L 30383 5 B = O, 2000 | 1.22¢0  2.25e-1 1.8 3.48¢1  3.14e-4 2.1
M_, 10 Z 5000 | 7.80e-1 1.27e-1 44 3.43el  3.34e-4 5.2
o __84'6’ 1000 | 3.89¢0  5.98e-1 1.0 1.49e1  4.24e-2 1.1

tuned 2000 | 2.83e0  3.93e-1 1.9 7.63e0  2.92e-2 2.1
5000 | 2.96e0  2.99e-1 4.6 4.00e0  1.47e-2 5.2

g(uo) = 3.56¢e1)

comparing the gap function values (18). The same fine-tuning strategy is also applied
to the SMP algorithm as it is robust with respect to the value of M/v/O in (4.3) in
[14]. The performance of the SAMP and SMP algorithms are compared in terms of the
mean and standard deviation of the gap function values (18) (computed by MOSEK
[22]) in 100 runs.

The comparison between the SAMP and SMP algorithms in terms of the perfor-
mance on computing approximate solutions of (111) is described in Table 3. We can
see that the SAMP algorithm outperforms the SMP algorithm, which is consistent
with our theoretical observation on the iteration complexities of the SAMP and SMP
algorithms.

6 Conclusion
(secConclusion) . . . .

We present in this paper a novel accelerated mirror-prox (AMP) method for solving
a class of deterministic and stochastic variational inequality (VI) problems. The basic
idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-
prox method in [23, 14]. For both the deterministic and stochastic VI, the AMP achieves
the optimal iteration complexity, not only in terms of its dependence on the number
of the iterations, but also on a variety of problem parameters. Moreover, the iteration
cost of the AMP is comparable to, or even less than that of the mirror-prox method in
that it saves one compuation of VG(+). To the best of our knowledge, this is the first
algorithm with the optimal iteration complexity bounds for solving the deterministic
and stochastic VIs of type (2). Furthermore, we show that the developed AMP scheme
can deal with the situation when the feasible region is unbounded, as long as a strong
solution of the VI exists. In the unbounded case, we adopt the modified termination
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criterion employed by Monteiro and Svaiter in solving monotone inclusion problem,

and demonstrate that the rate of convergence of AMP depends on the distance from
the initial point to the set of strong solutions. Specially, in the unbounded case of the
deterministic VI, the AMP scheme achieves the iteration complexity without requiring
any knowledge on the distance from the initial point to the set of strong solutions. Our
preliminary numerical results show that the proposed AMP algorithm is promising to
solve large-scale variational inequality problems.
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