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PARTIAL REGULARITY FOR A SELECTIVE SMOOTHING
FUNCTIONAL FOR IMAGE RESTORATION IN BV SPACE*
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Abstract. In this paper we study the partial regularity of a functional on BV space proposed by
Chambolle and Lions [Numer. Math., 76 (1997), pp. 167-188] for the purposes of image restoration.
The functional is designed to smooth corrupted images using isotropic diffusion via the Laplacian
where the gradients of the image are below a certain threshold € and retain edges where gradients
are above the threshold using the total variation. Here we prove that if the solution uw € BV of the
model minimization problem, defined on an open set €2, is such that the Lebesgue measure of the
set where the gradient of u is below the threshold e is positive, then there exists a nonempty open
region E for which u € C1® on E and |Vu| < ¢, and |Vu| > € on Q\E almost everywhere. Thus we
indeed have smoothing where |Vu| < e.
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1. Introduction. In the last decade PDE and variational method based dif-
fusion models have grown significantly to tackle the problems of image restoration,
reconstruction, and inpainting. The challenging aspect of these problems is to design
methods which can filter selectively the noise without losing significant features.

Total variation (TV) based regularization, as first proposed by Rudin, Osher, and
Fatemi [17], has proved to be an invaluable tool for preserving edges while reconstruct-
ing an image. This method has been studied extensively in [1, 7, 4, 20, 2, 5, 19, 16]
and a sequence of papers in the book of [2]. The definition of the total variation
seminorm for u € L*(Q), given by

TV (u) = sup {/ udiv(p)dzr : p € CL(Q,R™),|p| < 1} ,
Q

does not require differentiability or even continuity of w. Thus images with discon-
tinuities are allowed as solutions in the space of BV (Q), which is the space of the
functions u € L'(Q2) with TV (u) < oo. Moreover, the diffusion resulting from mini-
mizing TV norm is strictly orthogonal to the gradient of the image, and tangential to
the edges. This is important for preserving edges while image is smoothed. However,
TV-based denoising sometimes causes a staircasing effect [6, 7, 8]. The restored image
by this regularization can consequently be blocky and even contain false edges.

To overcome this problem and make the filter self-adjustable in order to reap the
benefits of isotropic smoothing and TV based regularization, Chambolle and Lions [7]
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proposed minimizing the following energy functional for image restoration:

2 _a 1 72
[Vul dx—|—/|vu>a (|Vu| 2) + 5 /Q(u I)*dux,

where I is an observed noisy image, and we want to recover an image u from I, which
is related to I by

1

20 J\vu|<a

I = u+ notse.

Using the above functional we then expect to have isotropic diffusion where the image
is more uniform (|Vu| < a) and feature preservation via TV-based diffusion where
the boundaries of features are present (the locations where the image gradients most
likely have high magnitude: |Vu| > a). It has been shown numerically in [7] that
this model is successful in restoring images where homogeneous regions are separated
by distinct edges. The purpose of this paper is to prove this mathematically. Our
partial regularity results for @ = 1 (without loss of generality) below indicates that
the restored image through this model is smooth on the region with smaller gradients.
The edges appear at the points where the gradient is larger.
More precisely, consider the problem

1
1.1 i D - — 1%
(L.1) uer?slzl)%w(Q) {/Q p(Du) + 2 /Q(u ) x} ’

where ¢ is the C* convex function defined on R"

1 .

Sl iflpl <1,
e(p) = 1 .
Ip| — 5 i Ip| > 1,

Q C R" is a bounded domain with Lipschitz boundary, and I € L>(Q) N BV (Q) is
given.

For u € BV () the gradient of u is a measure Du; it can be decomposed into its
absolutely continuous and singular parts with respect to Lebesgue measure, that is,

Du = Vudx + D?u.

See [10] for a complete discussion. Then we define ([12] or [9])

J(u) = /Q o(Du) = /Q o(Vu)dz + /Q Dl

with

/|Dsu|z/d|psu|=\psu|m).
Q Q

It is important to note ([21] or [12]) that the functional J can also be written as

J(u) = sup {/Q@|¢2+udiv(¢)) dx:|¢(££)|§1Vx€Q}.

$eCy(Q,R"™)

Using this, we see that the functional J is lower semicontinuous with respect to
convergence in L'(2). Then by a standard argument we can show that there is a
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unique solution u € BV (2) N L?(Q) to (1.1). Now we are interested as to whether
this solution u € BV is smooth on the region where |Vu| < 1. If so, it shows that
the denoising governed by (1.1) smoothes out lower gradients while preserving the
boundaries of features, which are the discontinuities in an image.

We now state the two main partial regularity results of this paper.

THEOREM 1.1. If u is the solution to (1.1), then for any given 0 < p < 1 there
exist positive constants €y and ko depending only on n and p such that if

1

—_ |Du — l‘ S €0
|Br| /B, (a)

holds for some ball B,.(a) CC Q and for some |l € R™, with
rC (1+|||p=(0)) < ko and |I| <1—2p,
for some constant C depending only on n and €2, then
|D*u|(B,/2(a)) =0 and |Vu|<1—p on B, (a)
and u solves
—Au=1I—-u on B,a).

Hence u € C*(B,2(a)) for any a < 1.
THEOREM 1.2. Let u be as in Theorem (1.1). If L*({|Vu| < 1}) > 0, then there
exists a nonempty open region E on which u is CH%, |Vu| < 1, and u solves

—Au=I—-u on E.

In addition we have [Vu| > 1 a.e. on Q\ E.

It is actually straightforward to show that Theorem 1.2 is a direct consequence of
Theorem 1.1. Thus from Theorem 1.2, we do indeed have smoothing where |Vu| < 1.

Here we should point out that partial regularity results were obtained in [3] for
minimizers in BV (Q) of functionals of the form [, (F(x, Du)+G(z,u)), where F(x,p)
is a convex function in p with ¢ |p| < F(z,p) < c2(1+|p|) for all p € R™, F is locally
Holder continuous in z, and G(z, z) satisfies Holder continuity conditions in both z
and z. In our case, G(z,2) = 1/2(z — I(x))? with only the stated assumption on
I, and therefore their results cannot directly be applied in our case. Moreover, our
approach is quite different from theirs and can be applied to more general cases.

The partial regularity results for the flow associated with the minimization prob-
lem (1) is also discussed in [15] for more general ¢. However, these hold only for
QC R”forn=1and n =2 We also apply some different techniques to get our
results.

2. Proof of Theorems 1.1 and 1.2. First we will show that the solution u
to (1.1) is in L°°(Q). To prove this we could consider the time evolution problem
corresponding to (1.1), prove an L* bound for the time-dependent solution u(x,t),
and then consider the time-asymptotic limit u, which is the solution to (1.1). We
would then conclude that v € L*°(£2). The following, however, provides a proof of
this without having to consider the time evolution of (1.1).

LEMMA 2.1. If u is the solution to (1.1), then v € L>*(Q). In fact, we have

lull Lo ) < Ml Lo (0)-
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Proof. Let ¢, be defined on R™ by

1 .
» 14N if [p| < 1,
PelP) = 1 . 1 1 .
e (5o ) iz

for € > 0, and consider the following minimization problem:

1
i (V - —D2%dxp.
uer,lel(lsI)l)ﬂLZ(Q) {/QQD (Vu) + 2 /Q(u ) x}

By standard methods, there is a unique solution u. to this problem. We follow a
standard truncation argument where we fix € and ¢ > 0 and let v = min(u,,t).
Noting that v € Wh+€(Q) N L3(Q2) with

Vu, if ue <t,
Vv =
0 if ue > t,

we have

(2.1) /Q%(Vue) + %/ﬂ(ue _1)de < /Q%(W) + % /Q(v _ )%z,

and thus after subtracting

/ 0 (Vue) dz + / (ue — I)*dx < / (t —I)?dx.
{ueZt} {uezt} {uezt}

Hence

/ (ue — I)%dx < / (t —I)?dx.
{ueZt} {ueZt}

But setting t = ||| (o) we see that if ess sup ue > ¢, then

/ (t — I)%dx < / (ue — I)?dz,
{ue>t} {ue>t}

which contradicts the above, hence ess sup uc < |[I[|z~(q). Applying a similar ar-
gument to v = max(uc,—t) for t = |[[||p~(q) we get ess inf ue > —|[|I|| 1~ ) and
thus [|ue| p=(q) < [[I||L>=(q). Furthermore, letting v = 0 in (2.1) we see that u. is
bounded in White(Q)n L2(2) ¢ BV (Q) N L*(Q) independent of €. Thus there is a
@ € BV (Q)NL2(Q) and a subsequence of {u.}, still denoted by {u.}, such that v, — @
strongly in L1(2), u, — @ weakly in L?*(Q), and u, — @ almost everywhere (a.e.) in
Q. Letting € — 0 in (2.1), noting that ¢(p) < ¢c(p) for all p, [, pc(Vv) — [, ©(Vv),
lower semicontinuity of the functional [, ¢(Vu) defined on BV (), and weak lower
semicontinuity of the second term on the left-hand side, we get

/S)<P(V&)+%/Sz(ﬂ—l)2dxg/Q(p(vv)_i_%/ﬂ(v_I)de

for all v € Wh+<(Q) N L?(Q). We now note [12] that for any v € BV () N L*()
there exists a sequence v, in C*°(£2) such that

/ng(an)dxH/ng(Vv)
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and v, — v in L(Q), and since v € L?*(Q) from the construction of v, [12] we
can also take v, — v in L?(Q). Therefore we see that the above holds for all v €
BV(Q) N L*(Q) as well. Hence @ solves (1.1). By uniqueness, @ = u. By the uniform
L bound for u. and the convergence of u, to u a.e. in  we have u € L>*(Q) with
lull @) < ML (o) O

Throughout the rest of the paper, we fix © > 0 and unless otherwise stated, all
constants depend at most on n, u, u, {2, ¢, and possibly I.

We begin with a local lower bound estimate for any BV function u and C!
function h with gradient strictly less than 1.

LEMMA 2.2. Let u € BV (B,(a)) for B.(a) CC Q and h € C*(B,(a)) with

sup |[Vh| <1 —
B,(a)

then

/ o(Du) — / o(Vh)dx > p/ | D —|—/ V(u—h) - Vhdzx
By (a) By(a) By (a) B..(a)

2
+/ Du-Vh+ / |Vuldz
B (a) 2 B (a)n{|Vul>1}
1
f/ IV (u— h)|?dz.
2 /B, (@)n{|Vul<1}

Proof. Where |Vu| > 1, we have

o(Vu) — o(Vh) = V(u—h)-Vh
1 1.,
=|Vu|—§—|—§|Vh| —Vu-Vh

> —(2|Vu| — 1 —2|Vu||Vh| + [Vh[?)

N =

1 2
= 5 @Vu| =1 = [VA|)(1 = [Vh]) 2 T [Vul.
Where |Vu| < 1, we have
1
©(Vu) — @(Vh) —V(u—h)-Vh = §|V(u —h)|?.

We now obtain the lemma by using

/ |Dsu|2/ Dsu-Vh+/ \D*u|(1 = |Vh)),
By(a) By.(a) By-(a)

the assumption on h, and the above estimates. 0

We now fix By,(a) CC Q. Let v be a Lipschitz function defined on Ba,(a) and
assume there exists an [ € R with |I| < 1—2pu, such that suppg, (,) Vo —1] < % for
6>0and 0 < 8 <1 to be chosen later. Also let ¥ be defined by v(z) = v(z) — 1 - z.
Let 7 be the usual mollifier on R™ and denote 7g = 7,53 * ¥ and vg = 1,3 x v. We
then have the following estimates from [18]:

(2.2) sup |Vug — 1| = sup |Vog| < 8%,
Br(a)

B, (a
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(23) sup [0p — | = sup [¥p — 7] < rf sup [Vog| < rfH,
B, (a) B, (a) B, (a)
(2.4) r e |z — y|~°|Vug(z) — Vos(y)|

<err’ sup [Vo—1f sup |2/ — o/ | lm((r8)~"a") — m((rB)~'y)|
By (a) z' #y’

<70 = cu3C.

Now for any 7 € [5, 7] there exists a unique solution [11] w € H'(B5(a))NC*(Bx(a))

with 6 € (0,1) for the problem

(2.5) —Aw=1I—-w on Bi(a), w=wvg on dB(a).
LEMMA 2.3. For I € L*°(Q), the solution w to (2.5) satisfies

(2.6) [wll Lo (B:(a)) < 1Vl L (0B:(a)) + ]|l L=(0)-

(2.7) Bsu(p) |Vw — 1| < c3(8° + r([ ||z () + [lvgllLe(@Br(a)))) for any l € R".

[Vw(z) = Vuw(y)| 1 -1
(2.8) sup <al s lvg| dH"™
2 S onsa)

z,y€ B 2(a) |z —y[!/2
+r 2| o) + |UB||L°°(8Bf(a)))> :

Proof. Estimate (2.6) is from Theorem 8.16 in [11]. To prove (2.7) and (2.8), we
decompose w as w = wy + wa, such that

(2.9) —Aw; =I—w on Bi(a), w; =0 on dB;(a)
and
(2.10) —Awy =0 on Bi(a), w=wvz on dB(a).

Let Wy = wy — vg. Then Wy solves
(2.11) —Awy = —div(Vvg — 1) on Bi(a), w2 =0 on 0B;(a),

for any [ € R™. Representing the solution of (2.9) using Green’s function, i.e., wy (x) =
fB~(a) I'(z—y)(I—w)(y)dy, where I is the fundamental solution of Laplace’s equation,
it is not difficult to get

(2.12) Vw1l Lo (B (a)) < el — Wl Lo (B:(a))s

where c is independent of r.
Moreover, by the Stobolev imbedding theorem, Theorem 9.9 in [11], and (2.6),

(2.13) [Vwillcor2(B,a)) < cllwillwzen(saa) < el — wllpzn (B, (a)

1/2

< 2T = wl|pee(Br(ay) < e 2(|0sll L= (0B (a)) + 1Tl (@)-
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Next we shall estimate wo. Multiplying both sides of (2.11) by ws, and integrating
over Bji(a), carrying out a simple computation, and using (2.2), we have for any
leR™,

(2.14) / |Vwy — 1)?dx < c/ Vo — 1|*de < er™ 3%,
Br(a) By (a)

where ¢ > 0 is a constant independent of r.
Furthermore, applying Theorem 8.16 and 8.33 (with a rescaling argument) in [11]
to (2.11), we get the following estimates:

(2.15) ||U~)2HL°°(B;) < c||Vus — l||L°°(B7-)
and
(2.16) 7°[Dibo]cos(p,y < c(llwall (B, + IVvs = Ul (B,) + r°[Duslcos(s,))

where ¢ > 0 is a constant independent of r. Inserting (2.15) into (2.16), and using
(2.2) and (2.4), it yields

(2.17) 7’6[D1U2]00a5(3;) <(r [Di2]cos (g + 7”6[D'U[3}CO=5(BF))

< c([[Vvg =z (B;) + Té[DUﬂ}CUvﬁ(B,-.)) < B

Now we can estimate supp_,) |[Vwa—I|. Denoting |Bj(a)| ™" fB;(a) fdz by (f)B,(a);
and using (2.14) and (2.17), we get

(2.18) sup [Vws — 1] < SU(P){WW — (Vwsz) ()| + [(Vw2) 5oy — U}
Bz(a Bir(a

1/2
< P [Dwscos (s + | Br(a) ( [ v l|2> di < B
B

#(a)

here we used (2.14) and (2.17) in the last inequality.
We then have from (2.6) and (2.18)

sup |Vw —I| < sup |[Vws — | + sup |Vuwy|
B;(a) B,:(a) B;(a)
< e3(8° + (Il oo (81 (a)) + 08l Lo @B:(a))-

Hence (2.7) is proved. To prove (2.8) we represent wq by the Poisson’s formula on
the ball Br(a), i.e.,

2 02
wa(z) = ﬂ/ L(y)dgw z € B(a),
nant  JoBa(a) 1T —Y"

where «,, represents the volume of n dimensional unit ball. A direct computation
leads to the estimate

sup \Dzwg\ < cr_"_l/ lvg(y)|dSy,
By /a(a) Bir(a)
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where ¢ > 0 dependents only on n. Then we have

(2.19) sup |Vw2(x) — Y/ZJQ(y” < sup |D2w2| ‘SL’ _ y|1/2
z,y€Bs /2 (a) |£C - y| z,y€Bs /2 (a)
c
< —— dH" L.
= ontl/2 /BB;(a)) |vs]
Now (2.8) immediately follows from (2.13) and (2.19). ad

LEMMA 2.4. Suppose there is a v € C%(Ba,(a)) and | € R™ with |I| <1 — 2u,
Supp, (o) |Vo—I| < B2, and SUpp, (a) [V| < Cu, where Cy, is a constant depending only
on u. Let vg,7, and w be as in the previous discussion. Then there exists constants
cs and cg such that if 3 < cs and v(Cy + ||I]| L)) < c6, then

/ p(Du) — / e(Vw)dx > / (u— vg)a—w dH™ !
Bi(a) Bi(a) OBx(a) on

2
+/ (u—w)([—w)dx—i—u/ |D%u| + 'u—/ |Vuldx
Br(a) B (a) 2 JBa(@)n{|Vul21}
1
7/ IV (u — w)|*da
2 Br(a)n{|Vul<1}
ow 1 1
2/ (u—vﬁ)—dH"_l-l—f/ (w—I)2dx—f/ (u—1)%dx
9B (a) on 2 /B (a) 2 /B (a)

w

—|—,u/ |D%u| + / |Vuldz
Br(a) 2 JBr@)n{|Vul>1}

1

/ IV (1 — w)|2da.
2 /Br(a)n{|Vul<1}

Proof. From (2.7)—(2.8), the definition of vg, and the assumption on ! we see that

sup |Vw| < sup |[Vw — | + [{|
Bia Bia)

< e3(B° + r(||v]|l Lo (@Bs(ay) + L)) + 1 — 24

< c3(8° +7(Cy + ||| oo ())) + 1 — 20

Later, v will be chosen (see, for instance, [14]) to be a Lipschitz approximation of u
so that |[v]|(B,,(a)) can be bounded by a constant C., depending only on u. Now
choose ¢5 and cg such that 55 < ¢5 and

T(Cu + [ o)) < c6
imply

e3(B° +1r(Cu + ||| 1= (0))) < p
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Thus

(2.20) sup |[Vw| <1 — p.
Bi(a)

The conditions of Lemma 2.2 now hold for A = w. Substituting in w for h in the
inequality in Lemma 2.2, integrating by parts, and using Young’s inequality for (u —
w)(I —w) = —(u—I)(w —I) + (I —w)? the lemma is proved. d

LEMMA 2.5. If the function uw € BV (Q) is solution to (1.1), then

/Br ¢(Du) —/ o(Dw) < 1/2/ (w — 1)2dz

B, B

—1/2/ (u—])de—l—/ |Tw — Tu|dH"*
B

s r

for any w € BV(B,.), B, CC Q. Here T denotes the trace operator on BV .
Proof. Let w € BV (B,) and define

w—u on By,
¢= B
0 in Q\B;.

Then since v is a solution we have letting v = u + ¢ in (1.1) and using Theorem 1 of
section 5.4 in [10],

/Qtp(Du)Jrl/Q/Q(u_I)zdxg/ go(Dw)+/ Tw — TuldH"?

. 9B,
—|—/ B @(Du)+1/2/
O\B. B

/E o(Du) + 1/2/3

r d

(w—I)Zdz+1/2/Q\B (u —I)?dx.

r

Hence

(w—I)%dx < /

w w — 2:1;
[ e )+1/2/( N2

By

+/ |Tw — TuldH™'. D
OB,

We use the above lemma, Lemma 2.4, and estimates (2.2)-(2.4) to obtain the
following inequality for the solution u to (1.1).
LEMMA 2.6. Let v, | be as in Lemma 2.4 with
7(Cu + ]|z (0)) < cs,

w as in (2.5), and u a solution to (1.1). Then

/ | D% +/ \Vu|dx+/ IV (u —w)|*dz
Br (a) Broyn{|Vul>1} Biay"{IVul<1}

<er / Ju— o] dH" T cgr” BT
8B,~(a)

where u and v on OB;(a) is understood in the sense of trace.
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Proof. By the previous lemma with w from (2.5) and Lemma 2.4 we have

1
/ lu —vg|dH" " > / o(Du) + = / (u—1)%dx
9B (a) Bi(a) 2 /B ()

7

1
—/ e(Vw)dz — = / (w— I)*dx
B(a) 2 /s (a)

0 2
> / (u— vg)—w dH" ' + u/ |Du| + 'u—/ |Vuldz
9B (a) on Br(a) 2 J By n{IVul>1}
1
+7/ |V (u —w)|*dz.
2 J By {|Vul<1}
The lemma is thus proved by using (2.20) and the estimate for |[v—vg| from (2.3). ad

The following first variational formula is from Hardt and Kinderlehrer [12]: if u
is a solution to (1.1), then

(2.21) /QU-VCdx—i—/Qa-f\DSM :—/Q(u—I)Cdx,

where ¢ is any function in BVy(Q2) with D*¢ << |D*%ul, € is the Radon—Nikodym
derivative of D*¢ with respect to |D*u|, and o € L(Q) is the stress tensor defined by

op(Vu) in Q,
o(u) =
Dsu/|D%u| in Q.
Here D*u/|D*u| denotes the Radon—Nikodym derivative of D*u with respect to |Du]
and Q = Q, U Qg is the decomposition of  with respect to the mutually singular

measures L™ and |D%ul|. Clearly |o(u)| < 1. Note that o(u) depends only on u. In
the sequel we will write o instead of o(u) and write the left-hand side of (2.21) as

/Qa-Dg.
Aal%z—AW—DMx

holds for arbitrary ¢ € BV(2) for some u where o is defined as above, then u solves
(1.1). In fact, for arbitrary v € BV (Q2) we take { = v — u, noting that by convexity
of ¢ we have p(Vv) — p(Vu) > V(v —u) - op(Vu) on £, and that on Q, we have

DS
/|st|—/ |Dsu|2/ D (v —u) - .
Qs Qs Qs | Dsul

The proof of the lemma below is based on [13], with some necessary modifications.
LEMMA 2.7. Suppose u is a solution to our minimization problem, Ba,.(a) CC €,
v € C%(Ba,(a)) with supp, (4 |Vo| <1 —p, and

We may also note that if

L'{u #v}NB,(a)) < %|BP\ forall r<p<2r;
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then there exists positive constants cg and c19 such that if
L"({u # v} N Bar(a)) < cor™,
then
la = vllzo (8 0y < 10 (£"({u # v} 0 Bay(a))) 7
Proof. First we note that the function ¢ satisfies |p| — A < (p) < |p| for all
p € R", some A > 0. By convexity of ¢ we have ¢(p) < ¢p(p) - p + ¢(0) for all

p € R". Hence we have

|Du| = |Vul|dz + |D?u| < p(Vu)dz + | D u| + Adz

< pp(Vu) - Vudzr + |D°u|l + (A + ¢(0))dz = 0 - Du + Adzx.

Let # : R — R be a bounded, increasing, piecewise differentiable function with
0'(t) <1 for almost all ¢. Let 0 < p < h and

1 in B,(a),
n(@)=1¢ (h=p)"'(h—|z—al) inBy(a)\By(a),
0 in Q\By,(a).

Now apply the first variational formula to ¢ = nf(u — v) to get

o u—v) = — o)t a~u u—v)dx
/B e Dot = (=) / 0u — v)d

Bn(a)\B,(a) |z — al
(2.22) —/ n0(u — v)(u — Idz.
Bh(a)

To obtain a lower bound for no - D[f(u — v)] we use the above properties of p. We
have D[f(u — v)] = 0'(u — v)D(u — v) and hence by noting the bound of |Vv|

/Bp(a) ID[O(u — v)]| < /BP(@ 0/ (u — v)|Dul + /BP(@ 0 (u — v)

< /Bp(a) 0" (u — v)p(Du) +/ A+ 10 (u—v)

Bp(a)

§/Bp(a) 9’(u—v)0'Du+/ A+ 1)0'(u—v)

B,,(a)

:/Bp(a)e'(u—u)a-p(u—uw/ 0'(u— v)o - Do

Bp(a)

(2.23) —&-/Bp(a)()\—&—l)H'(u—v) < /Bh(a) no - D[O(u — v)] —&-/Bh(a) CA\0' (u—v)
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for some constant C depending only on A. Inserting (2.22) into (2.23), and noting
the L bound for u, we get

/ D6(u — v)]
Bp(a)

<t-p" [ 6(u — v)|dz + Calsuppnd(u — v)|
Br(a)\By(a)

+ 20Ty [ (60— v)lds.

n(a)
For 0 < k£ < s we choose 6 as

0 for t <k,
0t)y=¢ t—k fork<t<s,
s—k fort>s.

Now let A(k,h) = By N {u—v > k}. Clearly supp [nf(u — v)] C A(k,h). Thus

| iplet -
Bp(“)

<((h= o)+ 2Tz o) [ 0l + oA )
Bh a

By assumption, |A(0, p)| < $|B,(a)| for r < p < 2r. Thus we see that

L{{0(u —v) =0} N By(a)}
By (a)l

We can then apply the isoperimetric inequality for s > k > 0 to get

>

1
5"

n—1

(s — k) A(s, p)| "7 < (/B ( )|e<u_u>|n’““—1dx>

<en /B e

< ena((h— )" 4 | Tm ) / 18(u — v)|dz + ez Ak, )|

Bha

So since h < 2r we get

(s — k)| A(s, p)

2t §014(h—p)_1/ 10— v)[dz + cra] Ak, b)),
Bh(a)

And since

/ 10(u — v)|da < (s — k)| Ak, B),
Bp(a)
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we arrive at
|A(s, )| "% < cra((h—p) ™ + (s — k) V)| Ak, h)|

for every r < p < h < 2r and s > k > 0. We now apply Lemma 2.1 in [13] to obtain
the upper bound.

The lower bound for u — v is obtained by using a similar argument for 0 < k <
5 < 00,

0 for t > —k,
0t) =< —t—Fk for —s<t<—k,
s—k for t < —s,
and A(k7 h) = BpN{u—v < —k}. The lemma then follows by again applying Lemma

2.1 in [13]. 0
Now define the energy function

1
®(r,l,z) = {/ |Vu|dz +/ |Vu — 1|?dx +/ |Dsu|}.
| By By (z)N{|Vu|>1} B, (z)N{|Vu|<1} B,(z)

The following theorem provides a decay estimate for ®.
THEOREM 2.8. If u solves (1.1) with By(a) CC , I3 € R™ with |l1] < 1 — pu,
then there exist positive constants w, €, k, c37, c3g, and c3g such that

@(4Ta ll> a) <e

and
r<kK
implies
D (wr,la,a) < %@(47“,11,@) + c37r,
where

1y — Io] < c3s®(4r, 1y, a)? + caor.
Proof. For fixed A > 0, define
R = {x € Ba.(a) | ®(p,11,2) < X for all 0 < p < 2r}.
By Vitali’s covering theorem, there exist disjoint balls {B,, (z;)}5°; such that
By, (a)\R* C U2, Bs,, (;)
and ®(r;, 11, z;) > A. Then we have

L"(Bar(a)\RY) < 5" Y | By, (2:)] < %IBM(G)I@(% lh,a).

i=1
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Let g(x) = u(x) — I; - . By Poincare’s inequality we have for x € R and 0 < p < 2r

1 / _ C15
e 19(Y) = Ga pldy < —— / | Dyl
|BP| B,(x) P P ! B, (x)

C15 s

15 2/ |Vu|dx+/ D%l
p By (z)n{|Vu|>1} By ()

1/2
+|B,|Y/? </ Vu — ll|2d:c>
By (z)n{|Vu|<1}

< c16p®(p, 11, )% < e16A%p,

where g, , = ‘E}p‘ fBP(m) g(y)dy. Then

g Top < | 190) T py2eld

Gz, p/2k+1 = 9o pjak| = |Bp/2k+1‘ B, e (1) g\y 9, p/2k QY

n 1 —
<2 T/ 19(y) = Guv o 1dy < cr7pA!/? /2",
| p/2’“| B, gk ()
Since g(z) = lim,_09, , for L a.e. z € R,
‘g(l’) _gz,p| < Z ‘gz,p/2k+1 _ym,p/2k| < 017[))\1/2.
k=1

For z, y € R with |z —y| < 2r, set p = |x — y|. Then

1
|Bo(z) N Bp(y)| JB,(2)nB, ()

1 _ _
< Cl8§ (/ |g(Z) - gm,p|dz +/ |g(z) - gy,p|dz> < C19A1/2p'
P Bp(z) Bp(y)

So by combining the above, we have

‘gz,p - gy,p' < ‘gz,p - g(z)| + |g(z) - gy,p|dz

9(z) — g(y)| < 202 p = ca0A 2|z — g
for L™ a.e. x, y € R* C By,(a). Let A\ = ;7 3%, so that

u(@) =l @ —u(y) + h -yl = g(x) — g(y)| < e —yl,
and let v be a Lipschitz function defined on Bs,(a) such that

(2.24) v=wuon R and sup |Vov-—Ii| < (%.
B27‘(a)

Such a v exists by a standard extension for a Lipschitz function. Also note that for

this choice of v we have supp, (4 [v] < Cy. With the choice of A, and by choosing

1

=4 = —
8 (4r,l1,a) and & ST 1)
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we can estimate the size of the nonzero set of u — v as
L™(Bar(a) N{u # v}) < enr™ B0 ®(4r, 11, a) < corr™ ®(4r, 1y, a)' .

We made the choice of § so that (1 —46) - 2L =1+ 2L > 1. Now choose 7 € [1r,7]

so that both
/ lu —v|dH" ! < §/ lu — v|dx
0Bj(a) T Bi(a)
and

/ i =Ty — by - (2 — a)|dHP ' < 2 / i — Ty — 11 - (2 — a)|da
dBi(a) r

Bi(a)

are satisfied. By the choice of 7,
_ 3 n
/ lu—v|ldH" ™" < Z|lu — || (B, (a)) - L{Br(a) N {u # v}}.
9B (a) r
Choose r(Cy + |||~ () < c6. By Lemma 2.7, for ®(4r,11,a) < co2, we have

1 1
= vl @) < 10, (£ (Bar(a) 0 {u £ 0}) V",

Thus

1
— lu —v|dH" "t < co3®(4r, 1y, a)1+ﬁ.
" JoBs )

We now apply Lemma 2.6 to the above, using the estimate for the boundary integral
of u — v, to obtain

(2.25) / |D%u| + / |Vu|dz + / IV (u — w)|*da
B,,.w(a) Bm(,,,)ﬁ{\Vu\Zl} Brw(a,)m{‘vu‘<1}

< cour™ (<I>(47',l1,a)1+ﬁ + <I>(4r,ll,a)1+4(”1+2>)

for any w < 1/2. Let I = Vw(a). By using the gradient estimate, (2.7)—(2.8), for w,
the choice of 7, the definition of vg, the above bound for v, and Poincare’s inequality,

1
= lo| < Bl g — Tar — b - (2 — a)|dH" ™ + cosr(| ]| L) + Clu)
"1 /9B (a)
1
~ Bzl Jam v = ul + [u = Tar =l - (& = a)|dH" ™" + cosr(|[1]| o= o) + Cu)
r 7(a)

c

< cud(irtia) + 2 [ Du= b+ exr( (@) +C).
By (a)

By the Holder inequality, we obtain |l1 —la| < cog®(4r, 11, a)1/2+0257"(|\1\|,;x(9) +Ch).

The last term on the left side of inequality (2.25) satisfies

1
|V(u—w)\2da:2/ LV - b2 — |V — b 2de.

/Bm,(a)ﬁ{Vu<1} Brw(a)N{|Vu|<1} 2
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Thus by (2.25) and the above inequality,

(2.26)  |Bro|®(rw,la,a) < cogr” ®(4r, ll,a)1+4("1+2) + 030/ |Vw — Ip|*d.
Bro

To estimate the last term, we again use the estimates for the gradient of w. Note that

Vuw(z) — Vw(y
wp  1T0l) = V)
z,Yy€ B, /4(a) |aj - y|
1 _ e
<C47m+1/2/8_()lvﬁ—ua,r—h~<x—a>|dﬁ !

+ e 2 (|| po= () + Cu).

Therefore, similar to the estimate for |I; — l2|, we have

Vw(x) — Vw
wp V0D = Vu0)
cyeB,a(a) =Yl

< eq(r 20 (4r, 11, a) 2 4 0 (||| oo o) + Cu))-

Using this we then have

/ |Vw — I dz < c3p(rw)™ {w®(4r, 11, a)
B, (a)
+ r®(dr, I, a) 2 (| oo @) + Cu) + 12 (]2 0) + Cu)?}

< esz(rw) " {w®(4r, I, a) + (||| Lo (o) + Cu)}-
Hence by combining the above with (2.26) we arrive at
D(rw,la, a) < cgqw™ "D (4r, ll,a)1+4<"1+1> + c3sw®(4r, 11, a)
+ cser([[ ]| 2o (0) + Cu)-

Choose w < 1/4 so small so that cssw < 1/4, and again restrict ®(4r,1;,a) so that
1

)1+4<"+1> < 1/4. This now proves the theorem. O

We now prove Theorem 1.1 using an iteration argument (see, for example, [14] or

cqw ™" P (41,11, a

3)-
Proof. Assume that \Bilrl fBr(a) |Du — 11| < €p for some I; € R™ with |l;| <1—4pu
and for any r with » < k. For each z € B, /3(a) we have

D(r/2,l1,x) < 2"D(r,l1,a) < ey |Du — l1] < eqp€p.

|BT| B, (a)

We will use Theorem 2.8 iteratively. Choose ¢y so small so that cypeg < € and restrict
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r so that cgzr <r/2. Assume |l;_1] <1—2p and

w\Ii—1lr 1\’! r
® (7) PERYE < s q)<77 ) )
(6 5)=(2) oo
j—1 1 -1
+Z (2> W ey for j=2,... k.
i=1

We need to show <I>( (%)kil %,lk,:z:) < eand |lg] < 1—2u in order to continue the
inductive step. Since w < 1/2,

k—1 i-1 k—2 k/2
1 woii1 (1 1
E - il < (2 1)< -

for all k. By further restricting r, we have

k—1
@((j) ;,lk,x> <e.

Note that

k-1
|lk] < Z L1 = Ll + [l

Jj=1

k-1 o 1/2 .
w\Ji—1r w\i—1
< . {838@ <(4> 27lj7$) + c39 (Z) 7‘}—#1—4#
J=1
il (G-1/2 j/a
1 r 12 (1 1/2
<38 ; { <2> @(5,11795)1/2 +el (2> ey Tl/Q}
2wyt
+C397 (Z) +1—4p
j=1

r 1/2 1/2
< cgp® (§7l17$) +cgor /T + 1 —4p.

So by restricting €y and r again, we see that |lx| < 1 —2u. Thus we may continue the
iterative step indefinitely, giving

) w\kr
khm @(Z) §,Zk+1,x =0 for all z € B, 5(a).

Thus

1
lim —— / |D%u| —|—/ |Vuldz | =0
p=0[Bp| \ /B, () By(@)n{|Vul>1}

for all € B, /2(a). We then have (see, for instance, [10]) |D*u| (B, 2(a)) = 0 with
|Vu| <1—p < 1a.e. on B, y(a). By (2.21), u also satisfies the stated equation. O
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Using Theorem 1.1, we can now easily prove Theorem 1.2.
Proof. Assume that v is a minimizer of (1.1) and that F = {|Vu| < 1} has
positive Lebesgue measure. From standard measure theory (see, for example, [10]),

r—0

1
(2.27) lim —/ |D*ul =0
1Bl JB, (x)
for L"-a.e. x € E. Also, since |Vu| € L'(Q),

1
(2.28) lim — [Vu(y) — Vu(z)|de =0
=0 |B.| /g, (z)

for £L™-a.e. x € E by Lebesgue’s differentiation theorem. Now let E be the set of all
points of E for which both (2.27) and (2.28) hold. Clearly £*(E\E) = 0, |Vu| < 1
on E, and both (2.27) and (2.28) hold at each point of E. For each fixed x € E, there
exists some p, > 0 such that

[Vu(z)] < 1—2pu,.

Then (2.27) and (2.28) combined with Theorem 1.1 show that there exists an r, such
that

|D*u|(By,(x)) =0 and |Vu| <1 — pg on B, ()

and u € C1*(B,, (x)), giving B, (z) C E in particular. Thus E is an open set in
with the required properties. 0
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