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Cumulative Residual Entropy: A New
Measure of Information

Murali Rao, Yunmei Chen, Baba C. Vemuri, Fellow, IEEE, and Fei Wang

Abstract—In this paper, we use the cumulative distribution of a
random variable to define its information content and thereby de-
velop an alternative measure of uncertainty that extends Shannon
entropy to random variables with continuous distributions. We call
this measure cumulative residual entropy (CRE). The salient fea-
tures of CRE are as follows: 1) it is more general than the Shannon
entropy in that its definition is valid in the continuous and dis-
crete domains, 2) it possesses more general mathematical proper-
ties than the Shannon entropy, and 3) it can be easily computed
from sample data and these computations aymptotically converge
to the true values. The properties of CRE and a precise formula
relating CRE and Shannon entropy are given in the paper. Finally,
we present some applications of CRE to reliability engineering and
computer vision.

Index Terms—Distribution, entropy, information measurement.

I. INTRODUCTION

I N [15], Shannon proposed a measure of uncertainty in a dis-
crete distribution based on the Boltzmann entropy of clas-

sical statistical mechanics. He called it the entropy. The Shannon
entropy of a discrete distribution is defined by

(1)

where ’s are the probabilities computed from the distribu-
tion .

With this, he opened up a new branch of mathematics with
far-reaching applications in many areas such as Financial Anal-
ysis [16], Data Compression [14], Statistics [9], and Information
Theory [4].

This measure of uncertainty has many important properties
which agree with our intuitive notion of randomness. We men-
tion three. 1) It is always positive. 2) It vanishes if and only if it
is a certain event. 3) Entropy is increased by the addition of an
independent component, and decreased by conditioning.

However, extension of this notion to continuous distribution
poses some challenges. A straightforward extension of the dis-
crete case to continuous distributions with density , called
differential entropy, reads

(2)
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This definition raises the following concerns.

1) It is only defined for distributions with densities. For ex-
ample, there is no definition of entropy for a mixture den-
sity comprised of a combination of Guassians and delta
functions.

2) The entropy of a discrete distribution is always positive,
while the differential entropy of a continuous variable
may take any value on the extended real line.

3) It is ”inconsistent” in the sense that the differential en-
tropy of a uniform distribution in an interval of length
is , which is zero if , negative if , and
positive if .

4) The entropy of a discrete distribution and the differential
entropy of a continuous variable are decreased by condi-
tioning. Moreover, if and are discrete (continuous)
random variables, and the conditional entropy (differen-
tial entropy) of given equals the entropy (differential
entropy) of , then and are independent. Also, the
conditional entropy of the discrete variable given is
zero, if and only if is a function of , but the vanishing
of the conditional differential entropy of given does
not imply that is a function of .

5) Use of empirical distributions in approximations is of
great value in practical applications. However, it is impos-
sible, in general, to approximate the differential entropy
of a continuous variable using the entropy of empirical
distributions.

6) Consider the following situation: Suppose and
are two discrete random variables, with taking on
values , each with a probability and

taking on values again each with
probability . The information content measured in
these two random variables using Shannon entropy is
the same, i.e., Shannon entropy does not bring out any
differences between these two cases. However, if the two
random variables represented distinct payoff schemes
in a game of chance, the information content in the
two random variables would be considered as being
dramatically different. Nevertheless, Shannon entropy
fails to make any distinction whatsoever between them.

For additional discussion on some of these issues the reader is
referred to [6].

In this work, we propose an alternative measure of uncertainty
in a random variable and call it the cumulative residual en-
tropy (CRE) of . The main objective of our study is to extend
Shannon entropy to random variables with continuous distribu-
tions. The concept we propose overcomes the problems men-
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tioned above, while retaining many of the important properties
of Shannon entropy. For instance, both are decreased by con-
ditioning, while increased by independent addition. They both
obey the data processing inequality, etc. However, the differen-
tial entropy does not have the following important properties of
CRE.

1) CRE has consistent definitions in both the continuous and
discrete domains;

2) CRE is always nonnegative;
3) CRE can be easily computed from sample data and these

computations asymptotically converge to the true values.
4) The conditional CRE (defined in Section III) of given

is zero, if and only if is a function of .
The basic idea in our definition is to replace the density func-

tion with the cumulative distribution in Shannon’s definition (2).
The distribution function is more regular than the density func-
tion, because the density is computed as the derivative of the dis-
tribution. Moreover, in practice what is of interest and/or mea-
surable is the distribution function. For example, if the random
variable is the life span of a machine, then the event of interest
is not whether the life span equals , but rather whether the life
span exceeds . Our definition also preserves the well-estab-
lished principle that the logarithm of the probability of an event
should represent the information content in the event. The dis-
cussions about the properties of CRE in the following sections,
we trust, are convincing enough for further development of the
concept of CRE.

The remainder of the paper is organized as follows: Section II
contains the definition of CRE and a description of its proper-
ties in the form of several theorems. In Section III, we present
the definition of the conditional CRE and its properties. This is
followed by a discussion and derivation of the relationship be-
tween CRE and the Shannon (differential) entropy in the form
of theorems, in Section IV. In Section V, we present a discus-
sion of empirical CRE and its relation to the continuous case.
Section VI contains a discussion on applications of CRE in reli-
ability engineering and computer vision. Finally, in Section VII,
we present conclusions.

II. CUMULATIVE RESIDUAL ENTROPY: A NEW

MEASURE OF INFORMATION

In this section, we define an alternate measure of uncertainty
in a random variable and then derive some properties about this
new measurement.

Definition: Let be a random vector in , we define the
CRE of by

(3)

where , , and
means and

Now we give a few examples.

Example 1: (CRE of the uniform distribution) Consider a
general uniform distribution with the density function

(4)

Then its CRE is computed as follows:

(5)

Example 2: (CRE of the exponential distribution)
The exponential distribution with mean has the density

function

(6)

Correspondingly, the CRE of the exponential distribution is

(7)

Example 3: (CRE of the Gaussian distribution)
The Gaussian probability density function is

(8)

where is the mean and is the variance.
The cumulative distribution function is

(9)

where is the error function

Then the CRE of the Gaussian distribution is

(10)

Next we will prove some properties of CRE.
Using the convexity of , it is easy to see CRE is a con-

cave function of distribution.

Theorem 1: if for all and some
.

Proof: For simplicity we write the proof in steps.

Step 1) Using Hölder’s inequality ([1, p. 125])
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we see that for sets

(11)

Step 2) It is not difficult to see that for each

(12)

Step 3) From Step 2 and Step1, for any and any

(13)

Integrating both sides of (13), on , we get

(14)

Step 4) We have for any positive random variable

(15)

The second inequality on the right-hand side (RHS) above
follows from the Markov inequality. The last integral is finite
if , i.e., if . For , we can choose
to satisfy . Then the conclusion of the theorem follows
from (14) and (15).

The traditional Shannon entropy of a sum of independent
variables is larger than that of either. We have analogously the
following theorem.

Theorem 2: For any nonnegative and independent variables
and

Proof: Since and are independent

where is the cumulative distribution function of . Using
Jensen’s inequality

Integrating both sides with respect to from to

where in the first equality we used that for
, and in the second one we change variables in the inner

integral.
The next theorem shows one of the salient features of CRE.

In the discrete case, Shannon entropy is always nonnegative,
and equals zero if and only if the random variable is a certain
event. However, this is not valid for the Shannon entropy in the
continuous case as defined in (1). In contrast, in this regard CRE
does not differentiate between discrete and continuous cases, as
shown by the following theorem.

Theorem 3: and equality holds if and only if
for some vector , i.e.. with proba-

bility .
Proof: Now if and only if or . Thus,

implies or for almost all . If
for all , , then . Now we
consider the case that for some , . Note that
if and satisfy , then also

, where denotes the vector whose
coordinates are maxima of coordinates of and . Then

satisfies , where ,
and the maximum of is a vector whose coordinates are
the maxima of the coordinates of all .

Theorem 4: If are independent, then

We omit the proof.

No analog of the property that follows is valid for the Shannon
entropy. Weak convergence [11] is a fundamentally important
notion in probability theory.

Theorem 5: (Weak Convergence). Let the random vectors
converge in distribution to the random vector

(16)

for all bounded continuous functions on . If all the are
bound in for some , then

(17)

Proof: If converges to in distribution, it is known
that for almost all [10]
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In particular, for almost all

(18)

and using (13)

and for each and

(19)

Thus, if , is bounded
by an integrable function. The use of dominated convergence
theorem completes the proof.

III. CONDITIONAL CRE

In this section, we will recall formal definitions of cer-
tain concepts from probability theory [5] that will be used
subsequently.

Definition: A sigma field is a class of subsets containing
the empty set and closed under compliments and countable
unions.

Given a sigma field and a random variable with finite
expectation, we can define a random variable which is mea-
surable with respect to and is called the conditional expecta-
tion of given [5], denoted by . It should be noted
that the measure functions of and are the same.

Definition: Given a random vector and a -field ,
we define the conditional CRE: by

(20)
where denotes the conditional expectation of the
indicator function, namely, . Note that
is a random variable measurable with respect to . For ex-
ample, if is the -field generated by a random variable
then, where

When is the trivial field

The following proposition says that the conditional CRE has
the ”super-martingale property.”

Proposition 1: Let for some , then for
-fields

(21)

Proof: The proof follows by applying Jensen’s inequality
[13] for the convex function .

In words, Proposition 1 states that conditioning decreases
CRE. The same result holds for the Shannon entropy. In
particular

for any random variables , , and . A simple consequence
is the data processing inequality.

If is a Markov chain, i.e., if the condi-
tional distribution of given equals that given , then

. This is so because
from Markov property.

For the same reason we have the data processing inequality
for CRE. If is Markov

Indeed, , and from (21)

Theorem 6: Let for some and a -field,
then

iff is -measurable (22)

More generally, if

(23)

then is -measurable, where is the indicator function
of the set , and on the set and zero elsewhere.
In particular, for random vectors and

iff is a function f

Note that is a scalar whereas is a function
of . Also, if is a generator of then .

Proof: Let , note that for any positive
random variable and any set , . In par-
ticular, if

Therefore, proving (22) implies the more general statement
(23). To prove (22) we will use the following easily verified fact:

iff –
(24)

Now suppose is -measurable. Then,
, where . Moreover, , since

for all sets . Conversely, if , then
for almost all

i.e., is valued. Using (18) we get that for
almost all the set belongs to . Otherwise
stated, is -measurable.

Theorem 7: For any and -field

(25)
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Equality holds iff is independent of . Where is said to be
independent of the -field means is independent of every
random variable measurable with respect to .

Proof: The inequality (25) follows from (21) by taking
to be the trivial field. Now we prove the necessary and sufficient
condition for the equality. First, it is clear from the definition that
if is independent of the equality in (21) holds. Conversely,
suppose that there is equality in (25). By Jensen’s inequality for
conditional expectations

(26)

for all . Integrating both sides of (26) with respect to and
using (25), we see that equality holds in (26) for almost all .
Note the following fact, which can be proved using Taylor with
remainder.

Fact: For any random variable and strictly convex
(i.e., )

implies almost surely.

Using this fact and strict convexity of , we get from
(26)

for a.e. , i.e., is independent of .

IV. CRE AND DIFFERENTIAL ENTROPY

We show below that CRE dominates the differential entropy
(which may exist when has density).

Definition: The differential entropy of a random vari-
able with density is defined as

Theorem 8: Let have density , Then

(27)

where

Proof: Let using the
log-sum inequality

(28)

If is infinite then the proof trivially follows.
The left-hand side (LHS) in (28) equals

so that

(29)

Finally, a change of variable gives

Therefore, we have from (29) the following equation:

(30)

Exponentiating both sides of (30), we get (27).

More generally, we have the following proposition.

Proposition 2: Let be a random variable, a -field,
and assume has conditional density relative to , i.e., has
a conditional probability density function given . Then

where

and is the conditional Shannon entropy defined as

with the conditional density

We omit the proof which is almost exactly the same as that of
the previous theorem.

Definition: The joint entropy of two random vari-
able and in Shannon’s sense is defined as

(31)

Analogously, we define the Cross CRE (CCRE) by

(32)

Note is symmetric, need not be. If we want
a symmetric measure, we can define CCRE as

.

Now using the last proposition we have the following
proposition.

Proposition 3:

(33)

Proof: Using Proposition 2, the convexity of , and
Jensen inequality

In the second inequality we used .
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A. Analytical Form Relating CRE and Differential Entropy

We now present a theorem which provides the exact formula
relating CRE and the differential entropy. Before stating our the-
orem, we first make some remarks. If is a continuous distri-
bution and is uniformly distributed, then has the dis-
tribution . Here is defined as the largest such that

, and is the smallest such that
. Further, if is a random variable with continuous

distribution function , then is uniformly distributed.
Thus, if is any random variable with continuous distribution
function and if is any continuous distribution function,
then has the distribution .

Proposition 4: Suppose is a nonnegative random variable
with continuous distribution. Then, there exists a function

(a formula for is given in the proof) such that the Shannon
entropy of is related to by

Proof: Let be the distribution with density

By the remarks preceding the proposition, simply choose
or, equivalently, . Now use

definitions of and .

V. CRE AND EMPIRICAL CRE

Let be positive and independent and identi-
cally distributed (i.i.d.) with distribution . Let be the em-
pirical distribution of the -sample : put at each
of the sample points , then is the cumulative
distribution function (CDF) of this mass distribution. Writing

, the CRE of the empirical distribution
is

(34)

This is a random variable. A well-known theorem of
Glivento–Cantelli (see [11, p. 18]) asserts that

(35)

almost surely as . Using this result, we prove the fol-
lowing theorem, which provides a method of computing the
CRE of appropriate random variables using the CRE of empir-
ical data.

Theorem 9: For any random in for some , the
empirical CRE converges to the CRE of , i.e.,

almost surely

Proof: We will use dominated convergence theorem to
prove this. By dominated convergence theorem, the integral
of on any finite interval converges to that of

. Therefore, we need only show that as

almost surely

Recall that

where is the probability distribution on assigning mass
to each of the sample points , and is the random

variable with ,
It follows that

(36)

where is expectation relative to . By the strong law [11]

almost surely (37)

In particular

almost surely

The combination of (36) and (37) leads to

in

Now by applying the dominated convergence theorem and using
(35), we proved the theorem.

VI. APPLICATIONS

In this section, we will present some applications of our new
measure of information, the CRE, introduced in earlier sections.
We start with the characterization of distributions, in particular,
the exponential distribution which is the only distribution with
the “memoryless” property and is widely prevalent and funda-
mental in applications of queuing theory [8] and in reliability
engineering [7]. This is followed by applications of CRE in
computer vision, specifically to the image alignment/registra-
tion problem.

A. Application to Reliability Engineering

The exponential distribution is very widely used in reliability
applications. The exponential distribution is used to model data
with a constant failure rate (also described by the hazard func-
tion). We will not dwell on the various uses of the exponential
distribution in reliability engineering here but present a way of
characterizing this distribution using CRE.

There are many characterizations of the exponential distribu-
tion in literature. The one we give below is based on CRE. Since
the exponential distribution has no “memory,” intuition suggests
that it should have maximum CRE. This is borne out by the fol-
lowing theorem.

Theorem 10: Let be a random variable. Then

CRE CRE

where is the exponentially distributed random variable
with mean .

Proof: By log-sum inequality

(38)
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Expanding the LHS of (38) we get

Since , we get from above

(39)

This is valid for all positive. The maximum of the RHS of (39)
is attained when .

Substituting this value of into (39) we get

(40)

Here in the second inequality we used . Finally,
we note that the CRE of an exponential variable with mean
is .

Thus, one way to characterize the exponential distribution is
as the distribution that maximizes the CRE given the coefficient
of variation of the distribution.

B. Computer Vision Applications

Matching two or more images under varying conditions—il-
lumination, pose, acquisition parameters, etc.—is ubiquitous in
computer vision, medical imaging, geographical information
systems, etc. In the past several years, information-theoretic
measures have been very widely used in defining cost functions
to be optimized in achieving a match. An example problem
common to all the aforementioned areas is the image reg-
istration problem. This problem may be defined as follows:
Given two images and , with and

being the coordinates of each of the two im-
ages, respectively. Let , where is an unknown
transformation/registration between the two coordinate sys-
tems that needs to be estimated. The matching/registration
problem is then posed as maximize/minimize the cost function

over all the appropriate (rigid, affine, or
nonlinear nonparametric) class of transformations .

The most popular cost function presented in literature has
been the mutual information (MI), , between
the two given images which is maximized over the class of
transformations mentioned earlier [18], [3]. The key strength of
the MI-based methods is that the intensity functions in the two
images being matched need not be related in any known way,
e.g., the source and target images could be the images of the
same scene under different lighting conditions; e.g., view of a
room under artificial lighting and another under natural lighting.
Since MI does not compare intensity values at corresponding
points in the two images being registered, it is well suited for
registering images of the same scene taken from two different
sensing devices, e.g., video and infrared images. The MI be-
tween the source and the target images that are to be aligned
was maximized using a stochastic analog of the gradient de-

scent method in [18] and other optimization methods such as
the Powells method in [3] and a multiresolution scheme in [17].
In recent times, most of the effort on the MI-based methods has
been focussed on coping with nonrigid deformations between
the source and target multimodal image data sets [12], [2]. Many
variants of this technique have been published in literature and
we refer the reader to a recent survey [20] for these.

In order to use the concept of CRE for the image alignment
problem, we defined a quantity called the CCRE earlier in Sec-
tion IV which is recalled here for convenience (also see [19])

(41)

Note that is symmetric but need not be. We
can define a symmetrized version of CCRE by adding

to and pre-multiplying it by a factor of .
It is easy to show that the symmetrized CCRE is nonnegative. In
all our image alignment experiments to date (see [19]), we have
used the nonsymmetric CCRE as it was sufficient to yield the
desired image registration results. The key experimental contri-
bution in this context is that we empirically show superior per-
formance of CCRE under low signal-to-noise ratio (SNR) and
also depict its larger capture range with regards to the conver-
gence to the optimal parameterized transformation [19]. We will
now present one example depicting the superior performance of
CCRE (in the context of higher amount of tolerance to noise in
the data) over the MI-based registration that is widely used in
computer vision and medical imaging fields. We refer the inter-
ested reader to [19] for a more detailed account of the image
alignment applications.

The first experiment involves registering a magnetic reso-
nance (MR) image of a human brain against a computerized to-
mographic (CT) image of the same brain. We choose the MR
image as the source, the target image in this case is generated
by applying a known misalignment (rigid transformation) to the
CT image. The source and target image pair along with the result
of estimated transformation using CCRE applied to the source
with an overlay of the target edge map are shown in Fig. 1. As
evident, the registration is quite accurate from a visual inspec-
tion. For quantitative assessment of accuracy of the estimated
registration, we refer the reader to [19]. The summary result pre-
sented in [19], in this context, is that CCRE is at least as accurate
as the competing methods, namely, the MI and normalized MI
(NMI) based methods.

Using an aerial image of a city as our source image (see
Fig. 2(a)), we generated the target image (Fig. 2(b)) by applying
a fixed rigid motion. We conduct this experiment by varying the
amount of Gaussian noise added and then for each instance of
the added noise, we register the two images using CCRE, MI,
and NMI. We expect that all the schemes are going to fail at
some level of noise. By comparing the noise magnitude of the
failure point, we can show the degree to which these methods
are tolerant. We choose the fixed motion to be 10 rotation,
and 5-pixel translation in both and direction. The numerical
scheme we used to achieve the optimization of the cost func-
tions (CCRE, MI, and NMI) to determine the estimated registra-
tions is the sequential quadratic programming (SQP) technique.
Table I shows the registration results obtained using optimiza-
tion of the three cost functions. From the table, we observe that
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TABLE I
COMPARISON OF THE REGISTRATION RESULTS BETWEEN CCRE-, MI-, AND NMI-BASED ALGORITHMS FOR A FIXED SYNTHETIC MOTION

UNDER VARYING NOISE CONDITIONS. THE TRUE MOTION IS (10 ; 5; 5). FAILED INDICATES DIVERGENCE OF THE NUMERICAL

OPTIMIZER WHEN USING THE SAME INITIAL GUESS AND PARAMETER SETTINGS

Fig. 1. Rigid motion example. Left: the MR (source) image; right:
synthetically transformed (with a rigid motion) CT (source) image. Middle:
overlay of the target edge map on the transformed source image obtained by
applying the CCRE estimate of the rigid motion.

(a) (b)

Fig. 2. (a) An aerial image of a city. (b) Rotated and translated version of (a).

the MI fails when the standard deviation of the noise is increased
to . It is slightly better for NMI, which fails at , while CCRE
is tolerant until , a significant difference when compared to

the traditional MI and NMI methods. This experiment depicts
that CCRE has more noise immunity than both MI and the nor-
malized MI. The key idea in our definition of CRE is to use the
cumulative distribution in place of the density function as was
done in Shannon’s definition of differential entropy. The distri-
bution function is more regular because it is defined in an in-
tegral form unlike the density function, which is computed as
the derivative of the distribution. This is the reason why CCRE
is more robust than MI or NMI in the presence of noise in the
input image data sets being registered.

VII. SUMMARY

In this paper, we presented a novel measure of information
which is based on the cumulative distribution of a random
variable and is more general than the well-known Shannon’s
entropy. This definition is consistent in that it is valid in both
discrete as well as continuous domains. We call this measure
of information the cumulative residual entropy (CRE). We
presented several theorems and propositions for CRE, some of
which parallel those for the Shannon’s entropy and others that
are more general. The key advantages of CRE over Shannon’s
entropy were outlined as well. We also presented some ap-
plications of CRE, specifically, to reliability engineering and
computer vision. We believe that this is just a scratch on the
surface and envision that there will be many others in the near
future. The results presented here are by no means compre-
hensive but hopefully will pave the way for re-examining the
popular notion of entropy in a different, more general and
rigorous setting.
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