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Abstract. We present a novel accelerated primal-dual (APD) method for solving a class of deterministic and stochastic
saddle point problems (SPP). The basic idea of this algorithm is to incorporate a multi-step acceleration scheme into the primal-
dual method without smoothing the objective function. For deterministic SPP, the APD method achieves the same optimal
rate of convergence as Nesterov’s smoothing technique. Our stochastic APD method exhibits an optimal rate of convergence for
stochastic SPP not only in terms of its dependence on the number of the iteration, but also on a variety of problem parameters.
To the best of our knowledge, this is the first time that such an optimal algorithm has been developed for stochastic SPP in the
literature. Furthermore, for both deterministic and stochastic SPP, the developed APD algorithms can deal with the situation
when the feasible region is unbounded, as long as a saddle point exists. In the unbounded case, we incorporate the modified
termination criterion introduced by Monteiro and Svaiter in solving SPP problem posed as monotone inclusion, and demonstrate
that the rate of convergence of the APD method depends on the distance from the initial point to the set of optimal solutions.
Some preliminary numerical results of the APD method for solving both deterministic and stochastic SPPs are also included.
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1. Introduction. Let X and Y denote the finite-dimensional vector spaces equipped with an inner
product 〈·, ·〉 and norm ‖ · ‖, and X ⊆ X , Y ⊆ Y be given closed convex sets. The basic problem of interest
in this paper is the saddle-point problem (SPP) given in the form of:

min
x∈X

{
f(x) := max

y∈Y
G(x) + 〈Kx, y〉 − J(y)

}
. (1.1)

Here, G(x) is a general smooth convex function and K is a linear operator such that, for some LG, LK ≥ 0,

G(u)−G(x)− 〈∇G(x), u− x〉 ≤ LG
2
‖u− x‖2 and ‖Ku−Kx‖∗ ≤ LK‖u− x‖, ∀x, u ∈ X, (1.2)

and J : Y → R is a relatively simple, proper, convex, lower semi-continuous (l.s.c.) function (i.e., problem
(2.5) is easy to solve). In particular, if J is the convex conjugate of some convex function F and Y ≡ Y, then
(1.1) is equivalent to the primal problem:

min
x∈X

G(x) + F (Kx). (1.3)

Problems of these types have recently found many applications in data analysis, especially in imaging process-
ing and machine learning. In many of these applications, G(x) is a convex data fidelity term, while F (Kx)
is a certain regularization, e.g., total variation [47], low rank tensor [22, 50], overlapped group lasso [19, 30],
and graph regularization [19, 49].

This paper focuses on first-order methods for solving both deterministic SPP, where exact first-order
information on f is available, and stochastic SPP, where we only have access to inexact information about f .
Let us start by reviewing a few existing first-order methods in both cases.
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1.1. Deterministic SPP. Since the objective function f defined in (1.1) is nonsmooth in general, tra-
ditional nonsmooth optimization methods, e.g., subgradient methods, would exhibit an O(1/

√
N) rate of

convergence when applied to (1.1) [36], where N denotes the number of iterations. However, following the
breakthrough paper by Nesterov [41], much research effort has been devoted to the development of more
efficient methods for solving problem (1.1).

(1) Smoothing techniques. In [41], Nesterov proposed to approximate the nonsmooth objective function f
in (1.1) by a smooth one with Lipschitz-continuous gradient. Then, the smooth approximation function is
minimized by an accelerated gradient method in [39, 40]. Nesterov demonstrated in [41] that, if X and Y are
compact, then the rate of convergence of this smoothing scheme applied to (1.1) can be bounded by:

O
(
LG
N2

+
LK
N

)
, (1.4)

which significantly improves the previous bound O(1/
√
N). It can be seen that the rate of convergence in

(1.4) is actually optimal, based on the following observations:
a) There exists a function G with Lipschitz continuous gradients, such that for any first-order method,

the rate of convergence for solving min
x∈X

G(x) is at most O
(
LG/N

2
)

[40].

b) There exists b ∈ Y , where Y is a convex compact set of Rm for some m > 0, and a linear bounded
operator K, such that for any first-order method, the rate of convergence for solving min

x∈X
max
y∈Y
〈Kx, y〉−

J(y) := min
x∈X

max
y∈Y
〈Kx− b, y〉 is at most O (LK/N) [37, 34].

Nesterov’s smoothing technique has been extensively studied (see, e.g., [38, 2, 26, 10, 42, 51, 4, 25]). Observe
that in order to properly apply these smoothing techniques, we need to assume either X or Y to be bounded.

(2) Primal-dual methods. While Nesterov’s smoothing scheme or its variants rely on a smooth approximation
to the original problem (1.1), primal-dual methods work directly with the original saddle-point problem. This
type of method was first presented by Arrow et al. [1] and named as the primal-dual hybrid gradient (PDHG)
method in [52]. The results in [52, 9, 12] showed that the PDHG algorithm, if employed with well-chosen
stepsize policies, exhibits very fast convergence in practice, especially for some imaging applications. Recently
Chambolle and Pork [9] presented a unified form of primal-dual algorithms, and demonstrated that, with a
properly specified stepsize policy and averaging scheme, these algorithms can also achieve the O(1/N) rate of
convergence. They also discussed possible ways to extend primal-dual algorithms to deal with the case when
both X and Y are unbounded. In the original work of Chambolle and Pork, they assume G to be relatively
simple so that the subproblems can be solved efficiently. With little additional effort, one can show that, by
linearizing G at each step, their method can also be applied for a general smooth convex function G and the
rate of convergence of this modified algorithm is given by

O
(
LG + LK

N

)
. (1.5)

The rate of convergence in (1.4) has a significantly better dependence on LG than that in (1.5). Therefore,
Nesterov’s smoothing scheme allows a very large Lipschitz constant LG (as big as O(N)) without affecting the
rate of convergence (up to a constant factor of 2). This is desirable in many data analysis applications (e.g.,
image processing), where LG is usually significantly bigger than LK . Note that the primal-dual methods are
also related to the Douglas-Rachford splitting method [11, 29] and a pre-conditioned version of the alternating
direction method of multipliers [13, 16] (see, e.g., [9, 12, 18, 33] for detailed reviews on the relationship between
the primal-dual methods and other algorithms, as well as recent theoretical developments).

(3) Extragradient methods for variation inequality (VI) reformulation. Motivated by Nesterov’s work, Ne-
mirovski presented a mirror-prox method, by modifying Korpelevich’s extragradient algorithm [23], for solving
a more general class of variational inequalities [34] (see also [20]). Similar to the primal-dual methods men-
tioned above, the extragradient methods update iterates on both the primal space X and dual space Y, and
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do not require any smoothing technique. The difference is that each iteration of the extragradient methods
requires an extra gradient descent step. Nemirovski’s method, when specialized to (1.1), also exhibits a rate of
convergence given by (1.5), which, in view of our previous discussion, is not optimal in terms of its dependence
on LG. It can be shown that, in some special cases (e.g., G is quadratic), one can write explicitly the (strongly
concave) dual function of G(x) and obtain a result similar to (1.4), e.g., by applying an improved algorithm
in [20]. However, this approach would increase the dimension of the problem and cannot be applied for a
general smooth function G. It should be noted that, while Nemirovski’s initial work only considers the case
when both X and Y are bounded, Monteiro and Svaiter [31] recently showed that extragradient methods can
deal with unbounded sets X and Y by using a slightly modified termination criterion.

1.2. Stochastic SPP. While deterministic SPP has been extensively explored, the study on stochastic
first-order methods for stochastic SPP is still quite limited. In the stochastic setting, we assume that there
exists a stochastic oracle (SO) that can provide unbiased estimators to the gradient operators ∇G(x) and
(−Kx,KT y). More specifically, at the i-th call to SO, (xi, yi) ∈ X×Y being the input, the oracle will output
the stochastic gradient (Ĝ(xi), K̂x(xi), K̂y(yi)) ≡ (G(xi, ξi),Kx(xi, ξi),Ky(yi, ξi)) such that

E[Ĝ(xi)] = ∇G(xi), E
[(
−K̂x(xi)

K̂y(yi)

)]
=

(
−Kxi
KT yi

)
. (1.6)

Here {ξi ∈ Rd}∞i=1 is a sequence of i.i.d. random variables. In addition, we assume that, for some σx,G, σy, σx,K ≥
0, the following assumption holds for all xi ∈ X and yi ∈ Y :

A1. E[‖Ĝ(xi)−∇G(xi)‖2∗] ≤ σ2
x,G, E[‖K̂x(xi)−Kxi‖2∗] ≤ σ2

y and E[‖K̂y(yi)−KT yi‖2∗] ≤ σ2
x,K .

Sometimes we simply denote σx :=
√
σ2
x,G + σ2

x,K for the sake of notational convenience. Stochastic SPP

often appears in machine learning applications. For example, for problems given in the form of (1.3), G(x)
(resp. F (Kx)) can be used to denote a smooth (resp. nonsmooth) expected convex loss function. It should
also be noted that deterministic SPP is a special case of the above setting with σx = σy = 0.

In view of the classic complexity theory for convex programming [36, 21], a lower bound on the rate of
convergence for solving stochastic SPP is given by

Ω

(
LG
N2

+
LK
N

+
σx + σy√

N

)
, (1.7)

where the first two terms follow from the discussion after (1.4) and the last term follows from Section 5.3 and
6.3 of [36]. However, to the best of our knowledge, there does not exist an optimal algorithm in the literature
which exhibits exactly the same rate of convergence as in (1.7), although there are a few general-purpose
stochastic optimization algorithms which possess different nearly optimal rates of convergence when applied
to above stochastic SPP.

(1) Mirror-descent stochastic approximation (MD-SA). The MD-SA method developed by Nemirovski et al.
in [35] originates from the classical stochastic approximation (SA) of Robbins and Monro [46]. The classical
SA mimics the simple gradient descent method by replacing exact gradients with stochastic gradients, but
can only be applied to solve strongly convex problems (see also Polyak [44] and Polyak and Juditsky [45], and
Nemirovski et al. [35] for an account for the earlier development of SA methods). By properly modifying the
classical SA, Nemirovski et al. showed in [35] that the MD-SA method can optimally solve general nonsmooth
stochastic programming problems. The rate of convergence of this algorithm, when applied to the stochastic
SPP, is given by (see Section 3 of [35])

O
{

(LG + LK + σx + σy)
1√
N

}
. (1.8)
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However, the above bound is significantly worse than the lower bound in (1.7) in terms of its dependence on
both LG and LK .

(2) Stochastic mirror-prox (SMP). In order to improve the convergence of the MD-SA method, Juditsky et
al. [21] developed a stochastic counterpart of Nemirovski’s mirror-prox method for solving general variational
inequalities. The stochastic mirror-prox method, when specialized to the above stochastic SPP, yields a rate
of convergence given by

O
{
LG + LK

N
+
σx + σy√

N

}
. (1.9)

Note however, that the above bound is still significantly worse than the lower bound in (1.7) in terms of its
dependence on LG.

(3) Accelerated stochastic approximation (AC-SA). More recently, Lan presented in [24] (see also [14, 15]) a
unified optimal method for solving smooth, nonsmooth and stochastic optimization by developing a stochastic
version of Nesterov’s method [39, 40]. The developed AC-SA algorithm in [24], when applied to the aforemen-
tioned stochastic SPP, possesses the rate of convergence given by

O
{
LG
N2

+ (LK + σx + σy)
1√
N

}
. (1.10)

However, since the nonsmooth term in f of (1.1) has certain special structure, the above bound is still
significantly worse than the lower bound in (1.7) in terms of its dependence on LK . It should be noted that
some improvement for AC-SA has been made by Lin et al. [28] by applying the smoothing technique to (1.1).
However, such an improvement works only for the case when Y is bounded and σy = σx,K = 0. Otherwise,
the rate of convergence of the AC-SA algorithm will depend on the “variance” of the stochastic gradients
computed for the smooth approximation problem, which is usually unknown and difficult to characterize (see
Section 3 for more discussions).

Therefore, none of the stochastic optimization algorithms mentioned above could achieve the lower bound
on the rate of convergence in (1.7).

1.3. Contribution of this paper. Our contribution in this paper mainly consists of the following three
aspects. Firstly, we present a new primal-dual type method, namely the accelerated primal-dual (APD)
method, that can achieve the optimal rate of convergence in (1.4) for deterministic SPP. The basic idea of
this algorithm is to incorporate a multi-step acceleration scheme into the primal-dual method in [9]. We
demonstrate that, without requiring the application of the smoothing technique, this method can also achieve
the same optimal rate of convergence as Nesterov’s smoothing scheme when applied to (1.1). We also show
that the cost per iteration for APD is comparable to that of Nesterov’s smoothing scheme. Hence our method
can efficiently solve problems with a big Lipschtiz constant LG.

Secondly, in order to solve stochastic SPP, we develop a stochastic counterpart of the APD method, namely
stochastic APD and demonstrate that it can actually achieve the lower bound on the rate of convergence in
(1.7). Therefore, this algorithm exhibits an optimal rate of convergence for stochastic SPP not only in terms of
its dependence on N , but also on a variety of problem parameters including, LG, LK , σx and σy. To the best
of our knowledge, this is the first time that such an optimal algorithm has been developed for stochastic SPP
in the literature. In addition, we investigate the stochastic APD method in more details, e.g., by developing
the large-deviation results associated with the rate of convergence of the stochastic APD method.

Thirdly, for both deterministic and stochastic SPP, we demonstrate that the developed APD algorithms
can deal with the situation when either X or Y is unbounded, as long as a saddle point of problem (1.1)
exists. We incorporate into the APD method the termination criterion employed by Monteiro and Svaiter [32]
for solving variational inequalities, and generalize it for solving stochastic SPP. In both deterministic and
stochastic cases, the rate of convergence of the APD algorithms will depend on the distance from the initial
point to the set of optimal solutions.
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Finally, we demonstrate the advantages of the proposed deterministic and stochastic ADP method for
solving certain classes of SPP through numerical experiments.

1.4. Organization of the paper. We present the APD methods and discuss their main convergence
properties for solving deterministic and stochastic SPP problems, respectively, in Sections 2 and 3. In order to
facilitate the readers, we put the proofs of our main results in Section 4. Experimental results on deterministic
and stochastic APD methods including comparisons with several existing algorithms are presented in section
5. Some brief concluding remarks are made in Section 6.

2. Accelerated primal-dual method for deterministic SPP. Our goal in this section is to present
an accelerated primal-dual method for deterministic SPP and discuss its main convergence properties.

The study on first-order primal-dual method for nonsmooth convex optimization has been mainly moti-
vated by solving total variation based image processing problems (e.g. [52, 12, 43, 9, 6, 17]). Algorithm 1
shows a primal-dual method summarized in [9] for solving a special case of problem (1.1), where Y = Rm for
some m > 0, and J(y) = F ∗(y) is the convex conjugate of a convex and l.s.c. function F .

Algorithm 1 Primal-dual method for solving deterministic SPP

1: Choose x1 ∈ X, y1 ∈ Y . Set x̄1 = x1.
2: For t = 1, . . . , N , calculate

yt+1 = argmin
y∈Y

〈−Kx̄t, y〉+ J(y) +
1

2τt
‖y − yt‖2, (2.1)

xt+1 = argmin
x∈X

G(x) + 〈Kx, yt+1〉+
1

2ηt
‖x− xt‖2, (2.2)

x̄t+1 = θt(xt+1 − xt) + xt+1. (2.3)

3: Output xN = 1
N

∑N
t=1 xt, y

N = 1
N

∑N
t=1 yt.

Algorithm 2 Accelerated primal-dual method for deterministic SPP

1: Choose x1 ∈ X, y1 ∈ Y . Set xag1 = x1, y
ag
1 = y1, x̄1 = x1.

2: For t = 1, 2, . . . , N − 1, calculate

xmdt = (1− β−1
t )xagt + β−1

t xt, (2.4)

yt+1 = argmin
y∈Y

〈−Kx̄t, y〉+ J(y) +
1

τt
VY (y, yt), (2.5)

xt+1 = argmin
x∈X

〈∇G(xmdt ), x〉+ 〈x,KT yt+1〉+
1

ηt
VX(x, xt), (2.6)

xagt+1 = (1− β−1
t )xagt + β−1

t xt+1, (2.7)

yagt+1 = (1− β−1
t )yagt + β−1

t yt+1, (2.8)

x̄t+1 = θt+1(xt+1 − xt) + xt+1. (2.9)

3: Output xagN , y
ag
N .

The convergence of the sequence {(xt, yt)} in Algorithm 1 has been studied in [43, 12, 9, 6, 17] for various
choices of θt, and under different conditions on the stepsizes τt and ηt. In the study by Chambolle and Pock [9],
they consider the case when constant stepsizes are used, i.e., τt = τ , ηt = η and θt = θ for some τ, η, θ > 0 for
all t ≥ 1. If τηL2

K < 1, where LK is defined in (1.2), then the output (xN , yN ) possesses a rate of convergence
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of O(1/N) for θ = 1, and of O(1/
√
N) for θ = 0, in terms of partial duality gap (duality gap in a bounded

domain, see (2.13) below).
One possible limitation of [9] is that both G and J need to be simple enough so that the two subproblems

(2.1) and (2.2) in Algorithm 1 are easy to solve. To make Algorithm 1 applicable to more practical problems
we consider more general cases, where J is simple, but G may not be so. In particular, we assume that G
is a general smooth convex function satisfying (1.2). In this case, we can replace G in (2.2) by its linear
approximation G(xt) + 〈∇G(xt), x− xt〉. Then (2.2) becomes

xt+1 = argmin
x∈X

〈∇G(xt), x〉+ 〈Kx, yt+1〉+
1

2ηt
‖x− xt‖2. (2.10)

In the following context, we will refer to this modified algorithm as the “linearized version” of Algorithm 1. By
some extra effort we can show that, if for t = 1, . . . , N , 0 < θt = τt−1/τt = ηt−1/ηt ≤ 1, and LGηt+L

2
Kηtτt ≤ 1,

then (xN , yN ) has an O((LG + LK)/N) rate of convergence in the sense of the partial duality gap.
As discussed in Section 1, the aforementioned rate of convergence for the linearized version of Algorithm 1

is the same as that proved in [9], and not optimal in terms of its dependence on LG (see (1.5)). However, this
algorithm solves the problem (1.1) directly without smoothing the nonsmooth objective function. Considering
the primal-dual method as an alternative to Nesterov’s smoothing method, and inspired by his idea of using
accelerated gradient descent algorithm to solve the smoothed problem [39, 40, 41], we propose the following
accelerated primal-dual algorithm that integrates the accelerated gradient descent algorithm into the linearized
version of Algorithm 1.

Our accelerated primal-dual (APD) method is presented in Algorithm 2. Observe that in this algorithm,
the superscript “ag” stands for “aggregated”, and “md” stands for “middle”. For any x, u ∈ X and y, v ∈ Y ,
the functions VX(·, ·) and VY (·, ·) are Bregman divergences defined as

VX(x, u) := dX(x)− dX(u)− 〈∇dX(u), x− u〉, and VY (y, v) := dY (y)− dY (v)− 〈∇dY (v), y − v〉, (2.11)

where dX(·) and dY (·) are strongly convex functions with strong convexity parameters αX and αY . For
example, under the Euclidean setting, we can simply set VX(x, xt) := ‖x−xt‖2/2 and VY (y, yt) := ‖y−yt‖2/2,
and αX = αY = 1. We assume that J(y) is a simple convex function, so that the optimization problem in
(2.5) can be solved efficiently.

Note that if βt = 1 for all t ≥ 1, then xmdt = xt, x
ag
t+1 = xt+1, and Algorithm 2 is the same as the linearized

version of Algorithm 1. However, by specifying a different selection of βt (e.g., βt = O(t)), we can significantly
improve the rate of convergence of Algorithm 2 in terms of its dependence on LG. It should be noted that the
iteration cost for the APD algorithm is about the same as that for the linearized version of Algorithm 1.

In order to analyze the convergence of Algorithm 2, it is necessary to introduce a notion to characterize
the solutions of (1.1). Specifically, denoting Z = X × Y , for any z̃ = (x̃, ỹ) ∈ Z and z = (x, y) ∈ Z, we define

Q(z̃, z) := [G(x̃) + 〈Kx̃, y〉 − J(y)]− [G(x) + 〈Kx, ỹ〉 − J(ỹ)] . (2.12)

It can be easily seen that z̃ is a solution of problem (1.1), if and only if Q(z̃, z) ≤ 0 for all z ∈ Z. Therefore,
if Z is bounded, it is suggestive to use the gap function

g(z̃) := max
z∈Z

Q(z̃, z) (2.13)

to assess the quality of a feasible solution z̃ ∈ Z. In fact, we can show that f(x̃) − f∗ ≤ g(z̃) for all z̃ ∈ Z,
where f∗ denotes the optimal value of problem (1.1). However, if Z is unbounded, then g(z̃) is not well-defined
even for a nearly optimal solution z̃ ∈ Z. Hence, in the sequel, we will consider the bounded and unbounded
case separately, by employing a slightly different error measure for the latter situation.

The following theorem describes the convergence properties of Algorithm 2 when Z is bounded.
Theorem 2.1. Suppose that for some ΩX ,ΩY > 0,

sup
x1,x2∈X

VX(x1, x2) ≤ Ω2
X and sup

y1,y2∈Y
VY (y1, y2) ≤ Ω2

Y . (2.14)
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Also assume that the parameters βt, θt, ηt, τt in Algorithm 2 are chosen such that for all t ≥ 1,

β1 = 1, βt+1 − 1 = βtθt+1, (2.15)

0 < θt ≤ min{ηt−1

ηt
,
τt−1

τt
}, (2.16)

αX
ηt
− LG

βt
− L2

Kτt
αY

≥ 0. (2.17)

Then for all t ≥ 1,

g(zagt+1) ≤ 1

βtηt
Ω2
X +

1

βtτt
Ω2
Y . (2.18)

There are various options for choosing the parameters βt, ηt, τt and θt such that (2.15)–(2.17) hold. Below
we provide such an example.

Corollary 2.2. Suppose that (2.14) holds. In Algorithm 2, if the parameters are set to

βt =
t+ 1

2
, θt =

t− 1

t
, ηt =

αXt

2LG + tLKDY /DX
and τt =

αYDY

LKDX
, (2.19)

where DX := ΩX
√

2/αX and DY := ΩY
√

2/αY , then for all t ≥ 2,

g(zagt ) ≤ 2LGD
2
X

t(t− 1)
+

2LKDXDY

t
. (2.20)

Proof. It suffices to verify that the parameters in (2.19) satisfies (2.15)–(2.17) in Theorem 2.1. It is easy
to check that (2.15) and (2.16) hold. Furthermore,

αX

ηt
− LG

βt
− L2

Kτt
αY

= 2LG+tLKDY /DX

t − 2LG

t+1 −
LKDY

DX
≥ 0,

so (2.17) holds. Therefore, by (2.18), for all t ≥ 1 we have

g(zagt ) ≤ 1
βt−1ηt−1

Ω2
X + 1

βt−1τt−1
Ω2
Y = 4LG+2(t−1)LKDY /DX

αXt(t−1) · αX

2 D2
X + 2LKDX/DY

αY t
· αY

2 D2
Y

=
2LGD

2
X

t(t−1) + 2LKDXDY

t .

Clearly, in view of (1.4), the rate of convergence of Algorithm 2 applied to problem (1.1) is optimal when
the parameters are chosen according to (2.19). Also observe that we need to estimate DY /DX to use these
parameters. However, it should be pointed out that replacing the ratio DY /DX in (2.19) by any positive
constant only results in an increase in the RHS of (2.20) by a constant factor.

Now, we study the convergence properties of the APD algorithm for the case when Z = X × Y is
unbounded, by using a perturbation-based termination criterion recently employed by Monteiro and Svaiter
and applied to SPP [31, 33, 32]. This termination criterion is based on the enlargement of a maximal monotone
operator, which is first introduced in [7]. One advantage of using this criterion is that its definition does not
depend on the boundedness of the domain of the operator. More specifically, as shown in [32, 31], there always
exists a perturbation vector v such that

g̃(z̃, v) := max
z∈Z

Q(z̃, z)− 〈v, z̃ − z〉 (2.21)

is well-defined, although the value of g(z̃) in (2.13) may be unbounded if Z is unbounded. In the following
result, we show that the APD algorithm can compute a nearly optimal solution z̃ with a small residue g̃(z̃, v),
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for a small perturbation vector v (i.e., ‖v‖ is small). In addition, our derived iteration complexity bounds are
proportional to the distance from the initial point to the solution set.

Theorem 2.3. Let {zagt } = {(xagt , y
ag
t )} be the iterates generated by Algorithm 2 with VX(x, xt) =

‖x− xt‖2/2 and VY (y, yt) = ‖y − yt‖2/2. Assume that the parameters βt, θt, ηt and τt satisfy (2.15),

θt =
ηt−1

ηt
=
τt−1

τt
, (2.22)

1

ηt
− LG

βt
− L2

Kτt
p
≥ 0, (2.23)

for all t ≥ 1 and for some 0 < p < 1, then there exists a perturbation vector vt+1 such that

g̃(zag
t+1
, vt+1) ≤ (2− p)D2

βtηt(1− p)
=: εt+1 (2.24)

for any t ≥ 1. Moreover, we have

‖vt+1‖ ≤
1

βtηt
‖x̂− x1‖+

1

βtτt
‖ŷ − y1‖+

[
1

βtηt

(
1 +

√
η1

τ1(1− p)

)
+

2LK
βt

]
D, (2.25)

where (x̂, ŷ) is a pair of solutions for problem (1.1) and

D :=

√
‖x̂− x1‖2 +

η1

τ1
‖ŷ − y1‖2. (2.26)

Below we suggest a specific parameter setting which satisfies (2.15), (2.22) and (2.23).
Corollary 2.4. In Algorithm 2, if N is given and the parameters are set to

βt =
t+ 1

2
, θt =

t− 1

t
, ηt =

t+ 1

2(LG +NLK)
, and τt =

t+ 1

2NLK
(2.27)

then there exists vN that satisfies (2.24) with

εN ≤
10LGD̂

2

N2
+

10LKD̂
2

N
and ‖vN‖ ≤

15LGD̂

N2
+

19LKD̂

N
, (2.28)

where D̂ =
√
‖x̂− x1‖2 + ‖ŷ − y1‖2.

Proof. For the parameters βt, γt, ηt, τt in (2.27), it is clear that (2.15), (2.22) holds. Furthermore, let
p = 1/4, for any t = 1, . . . , N − 1, we have

1
ηt
− LG

βt
− L2

Kτt
p = 2LG+2LKN

t+1 − 2LG

t+1 −
2L2

K(t+1)
LKN

≥ 2LKN
t+1 −

2LK(t+1)
N ≥ 0,

thus (2.23) holds. By Theorem 2.3, inequalities (2.24) and (2.25) hold. Noting that ηt ≤ τt, in (2.24) and
(2.25) we have D ≤ D̂, ‖x̂− x1‖+ ‖ŷ − y1‖ ≤

√
2D̂, hence

‖vt+1‖ ≤
√

2D̂
βtηt

+
(1+
√

4/3)D̂

βtηt
+ 2LKD̂

βt

and

εt+1 ≤ (2−p)D̂2

βtηt(1−p) = 7D̂2

3βtηt
.

Also note that by (2.27), 1
βN−1ηN−1

= 4(LG+LKN)
N2 = 4LG

N2 + 4LK

N . Using these three relations and the definition

of βt in (2.27), we obtain (2.28) after simplifying the constants.
It is interesting to notice that, if the parameters in Algorithm 2 are set to (2.27), then both residues εN

and ‖vN‖ in (2.28) reduce to zero with approximately the same rate of convergence (up to a factor of D̂). Also
observe that in Theorem 2.3 and Corollary 2.4, we fix VX(·, ·) and VY (·, ·) to be regular distance functions
rather than more general Bregman divergences. This is due to fact that we need to apply the Triangular
inequality associated with

√
VX(·, ·) and

√
VY (·, ·), while such an inequality does not necessarily hold for

Bregman divergences in general.
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3. Stochastic APD method for stochastic SPP. Our goal in this section is to present a stochastic
APD method for stochastic SPP (i.e., problem (1.1) with a stochastic oracle) and demonstrate that it can
actually achieve the lower bound in (1.7) on the rate of convergence for stochastic SPP.

The stochastic APD method is a stochastic counterpart of the APD algorithm in Section 2, obtained
by simply replacing the gradient operators −Kx̄t, ∇G(xmdt ) and KT yt+1, used in (2.5) and (2.6), with the
stochastic gradient operators computed by the SO, i.e., −K̂x(x̄t), Ĝ(xmdt ) an K̂y(yt+1), respectively. This
algorithm is formally described as in Algorithm 3.

Algorithm 3 Stochastic APD method for stochastic SPP

Modify (2.5) and (2.6) in Algorithm 2 to

yt+1 = argmin
y∈Y

〈−K̂x(x̄t), y〉+ J(y) +
1

τt
VY (y, yt) (3.1)

xt+1 = argmin
x∈X

〈Ĝ(xmdt ), x〉+ 〈x, K̂y(yt+1)〉+
1

ηt
VX(x, xt) (3.2)

A few more remarks about the development of the above stochastic APD method are in order. Firstly,
observe that, although primal-dual methods have been extensively studied for solving deterministic saddle-
point problems, it seems that these types of methods have not yet been generalized for stochastic SPP in
the literature. Secondly, as noted in Section 1, one possible way to solve stochastic SPP is to apply the
AC-SA algorithm in [24] to a certain smooth approximation of (1.1) by Nesterov [41]. However, the rate
of convergence of this approach will depend on the variance of the stochastic gradients computed for the
smooth approximation problem, which is usually unknown and difficult to characterize. On the other hand,
the stochastic APD method described above works directly with the original problem without requiring the
application of the smoothing technique, and its rate of convergence will depend on the variance of the stochastic
gradient operators computed for the original problem, i.e., σ2

x,G, σ2
y and σ2

x,K in A1. We will show that it can
achieve exactly the lower bound in (1.7) on the rate of convergence for stochastic SPP.

Similarly to Section 2, we use the two gap functions g(·) and g̃(·, ·), respectively, defined in (2.13) and
(2.21) as the termination criteria for the stochastic APD algorithm, depending on whether the feasible set
Z = X × Y is bounded or not. Since the algorithm is stochastic in nature, for both cases we establish its
expected rate of convergence in terms of g(·) or g̃(·, ·), i.e., the “average” rate of convergence over many runs
of the algorithm. In addition, we show that if Z is bounded, then the convergence of the APD algorithm can
be strengthened under the following “light-tail” assumption on SO.

A2. E
[
exp{‖∇G(x)− Ĝ(x)‖2∗/σ2

x,G}
]
≤ exp{1}, E

[
exp{‖Kx− K̂x(x)‖2∗/σ2

y}
]
≤ exp{1}

and E
[
exp{‖KT y − K̂y(y)‖2∗/σ2

x,K}
]
≤ exp{1}.

It is easy to see that A2 implies A1 by Jensen’s inequality.

Theorem 3.1 below summarizes the convergence properties of Algorithm 3 when Z is bounded. Note that
the following quantity will be used in the statement of this result and the convergence analysis of the APD
algorithms (see Section 4):

γt =

{
1, t = 1,
θ−1
t γt−1, t ≥ 2.

(3.3)

Theorem 3.1. Suppose that (2.14) holds for some ΩX ,ΩY > 0. Also assume that for all t ≥ 1, the
parameters βt, θt, ηt and τt in Algorithm 3 satisfy (2.15), (2.16), and

qαX
ηt
− LG

βt
− L2

Kτt
pαY

≥ 0 (3.4)

9



for some p, q ∈ (0, 1). Then,
(a). Under assumption A1, for all t ≥ 1,

E[g(zagt+1)] ≤ Q0(t), (3.5)

where

Q0(t) := 1
βtγt

{
2γt
ηt

Ω2
X + 2γt

τt
Ω2
Y

}
+ 1

2βtγt

∑t
i=1

{
(2−q)ηiγi
(1−q)αX

σ2
x + (2−p)τiγi

(1−p)αY
σ2
y

}
. (3.6)

(b). Under assumption A2, for all λ > 0 and t ≥ 1,

Prob{g(zagt+1) > Q0(t) + λQ1(t)} ≤ 3 exp{−λ2/3}+ 3 exp{−λ}, (3.7)

where

Q1(t) := 1
βtγt

(√
2σxΩX√
αX

+
σyΩY√
αY

)√
2
∑t
i=1 γ

2
i + 1

2βtγt

∑t
i=1

{
(2−q)ηiγi
(1−q)αX

σ2
x + (2−p)τiγi

(1−p)αY
σ2
y

}
. (3.8)

We provide below a specific choice of the parameters βt, θt, ηt and τt for the stochastic APD method for
the case when Z is bounded.

Corollary 3.2. Suppose that (2.14) holds and let DX and DY be defined in Corollary 2.2. In Algo-
rithm 3, if the parameters are set to

βt =
t+ 1

2
, θt =

t− 1

t
, ηt =

2αXDXt

6LGDX + 3LKDY t+ 3σxt3/2
and τt =

2αYDY

3LKDX + 3σy
√
t
. (3.9)

Then under Assumption A1, (3.5) holds, and

Q0(t) ≤ 6LGD
2
X

t(t+ 1)
+

6LKDXDY

t
+

6(σxDX + σyDY )√
t

. (3.10)

If in addition, Assumption A2 holds, then for all λ > 0, (3.7) holds, and

Q1(t) ≤ 5σxDX + 4σyDY√
t

. (3.11)

Proof. First we check that the parameters in (3.9) satisfy the conditions in Theorem 3.1. The inequalities
(2.15) and (2.16) can be checked easily. Furthermore, setting p = q = 2/3 we have for all t,

qαX

ηt
− LG

βt
− L2

Kτt
pαY

≥ 2LGDX+LKDY t
DXt

− 2LG

t+1 −
L2

KDY t
LKDXt

≥ 0,

thus (3.4) hold, and hence Theorem 3.1 holds. Now it suffice to show that (3.10) and (3.11) hold.

Observe that by (3.3) and (3.9), we have γt = t. Also, observe that
∑t
i=1

√
i ≤

∫ t+1

1

√
udu ≤ 2

3 (t+1)3/2 ≤
2
√

2
3 (t+ 1)

√
t, thus

1
γt

∑t
i=1 ηiγi ≤

2αXDX

3σxt

∑t
i=1

√
i ≤ 4

√
2αXDX(t+1)

√
t

9σxt
and 1

γt

∑t
i=1 τiγi ≤

2αYDY

3σyt

∑t
i=1

√
i ≤ 4

√
2αYDY (t+1)

√
t

9σyt
.

Apply the above bounds to (3.6) and (3.8), we get

Q0(t) ≤ 2
t+1

(
6LGDX+3LKDY t+3σxt

3/2

αXDXt
· αX

2 D2
X +

3LKDX+3σy

√
t

αYDY
· αY

2 D2
Y

+
2σ2

x

αX
· 4
√

2αXDX(t+1)
√
t

9σxt
+

2σ2
y

αY
· 4
√

2αYDY (t+1)
√
t

9σyt

)
,

Q1(t) ≤ 2
t(t+1)

(
σxDX +

σyDY√
2

)√
2t(t+1)2

3 +
4σ2

x

αX(t+1) ·
4
√

2αXDX(t+1)
√
t

9σxt
+

4σ2
y

αY (t+1) ·
4
√

2αYDY (t+1)
√
t

9σyt
.
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Simplifying the above inequalities, we see that (3.10) and (3.11) hold.

Comparing the rate of convergence established in (3.10) with the lower bound in (1.7), we can clearly
see that the stochastic APD algorithm is an optimal method for solving the stochastic saddle-point problems.
More specifically, in view of (3.10), this algorithm allows us to have very large Lipschitz constants LG (as big

as O(N
3
2 )) and LK (as big as O(

√
N)) without significantly affecting its rate of convergence.

We now present the convergence results for the stochastic APD method applied to stochastic saddle-point
problems with possibly unbounded feasible set Z. It appears that the solution methods of these types of
problems have not been well-studied in the literature.

Theorem 3.3. Let {zagt } = {(xagt , y
ag
t )} be the iterates generated by Algorithm 2 with VX(x, xt) =

‖x− xt‖2/2 and VY (y, yt) = ‖y − yt‖2/2. Assume that the parameters βt, θt, ηt and τt in Algorithm 3 satisfy
(2.15), (2.22) and (3.4) for all t ≥ 1 and some p, q ∈ (0, 1), then there exists a perturbation vector vt+1 such
that

E[g̃(zag
t+1
, vt+1)] ≤ 1

βtηt

(
6− 4p

1− p
D2 +

5− 3p

1− p
C2

)
=: εt+1 (3.12)

for any t ≥ 1. Moreover, we have

E[‖vt+1‖] ≤
2‖x̂− x1‖
βtηt

+
2‖ŷ − y1‖
βtτt

+
√

2D2 + 2C2

[
2

βtηt
+

1

βtτt

√
τ1
η1

(√
1

1− p
+ 1

)
+

2LK
βt

]
, (3.13)

where (x̂, ŷ) is a pair of solutions for problem (1.1), D is defined in (2.26) and

C :=

√√√√ t∑
i=1

η2
i σ

2
x

1− q
+

t∑
i=1

ηiτiσ2
y

1− p
. (3.14)

Below we specialize the results in Theorem 3.3 by choosing a set of parameters satisfying (2.15), (2.22)
and (3.4).

Corollary 3.4. In Algorithm 3, if N is given and the parameters are set to

βt =
t+ 1

2
, θt =

t− 1

t
, ηt =

3t

4η
, and τt =

t

η
, (3.15)

where

η = 2LG + 2LK(N − 1) +N
√
N − 1σ/D̃ for some D̃ > 0, σ =

√
9

4
σ2
x + σ2

y, (3.16)

then there exists vN that satisfies (3.12) with

εN ≤
36LGD

2

N(N − 1)
+

36LKD
2

N
+
σD

(
18D/D̃ + 6D̃/D

)
√
N − 1

, (3.17)

E[‖vN‖] ≤
50LGD

N(N − 1)
+
LKD(55 + 4D̃/D)

N
+
σ(9 + 25D/D̃)√

N − 1
, (3.18)

where D is defined in (2.26).
Proof. For the parameters in (3.15), it is clear that (2.15) and (2.22) hold. Furthermore, let p = 1/4,

q = 3/4, then for all t = 1, . . . , N − 1, we have

q
ηt
− LG

βt
− L2

Kτt
p = η

t −
2LG

t+1 −
4L2

Kt
η ≥ 2LG+2LK(N−1)

t − 2LG

t −
2L2

Kt
LK(N−1) ≥ 0,
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thus (3.4) holds. By Theorem 3.3, we get (3.12) and (3.13). Note that ηt/τt = 3/4, and

1
βN−1ηN−1

‖x̂− x1‖ ≤ 1
βN−1ηN−1

D, 1
βN−1τN−1

‖ŷ − y1‖ ≤ 1
βN−1ηN−1

· ηN−1

τN−1
·
√

4
3D =

√
3/4D

βN−1ηN−1
,

so in (3.12) and (3.13) we have

εN ≤
1

βN−1ηN−1
(
20

3
D2 +

17

3
C2), (3.19)

E[‖vN‖] ≤
(2 +

√
3)D

βN−1ηN−1
+

√
2D2 + 2C2

(
3 +

√
3/4
)

βN−1ηN−1
+

2LK
√

2D2 + 2C2

βN−1
. (3.20)

By (3.14) and the fact that
∑N−1
i=1 i2 ≤ N2(N − 1)/3, we have

C =
√∑N−1

i=1
9σ2

xi
2

4η2 +
∑N−1
i=1

σ2
yi

2

η2 ≤
√

1
3η2N

2(N − 1)
(

9σ2
x

4 + σ2
y

)
= σN

√
N−1√
3η

Applying the above bound to (3.19) and (3.20), and using (3.16) and the fact that
√

2D2 + C2 ≤
√

2D + C,
we obtain

εN ≤ 8η
3N(N−1)

(
20
3 D

2 + 17σ2N2(N−1)
9η2

)
= 8

3N(N−1)

(
20
3 ηD

2 + 17σ2N2(N−1)
9η

)
≤ 320LGD

2

9N(N−1) + 320LK(N−1)D2

9N(N−1) + 160N
√
N−1σD2/D̃

9N(N−1) + 136σ2N2(N−1)

27N2(N−1)3/2σ/D̃

≤ 36LGD
2

N(N−1) + 36LKD
2

N +
σD(18D/D̃+6D̃/D)√

N−1
,

E[‖vN‖] ≤ 1
βN−1ηN−1

(
2D +

√
3D + 3

√
2D +

√
6D/2 + 3

√
2C +

√
6C/2

)
+ 2
√

2LKD
βN−1

+ 2
√

2LKC
βN−1

≤ 16LG+16LK(N−1)+8N
√
N−1σ/D̃

3N(N−1)

(
2 +
√

3 + 3
√

2 +
√

6/2
)
D

+ 8σ
3
√
N−1

(√
6 +
√

2/2
)

+ 4
√

2LKD
N + 4

√
2LKσN

√
N−1

N
√

3N
√
N−1σ/D̃

≤ 50LGD
N(N−1) + LKD(55+4D̃/D)

N + σ(9+25D/D̃)√
N−1

.

Observe that the parameter settings in (3.15)-(3.16) are more complicated than the ones in (2.27) for the
deterministic unbounded case. In particular, for the stochastic unbounded case, we need to choose a parameter
D̃ which is not required for the deterministic case. Clearly, the optimal selection for D̃ minimizing the RHS of
(3.17) is given by

√
6D. Note however, that the value of D will be very difficult to estimate for the unbounded

case and hence one often has to resort to a suboptimal selection for D̃. For example, if D̃ = 1, then the RHS
of (3.17) and (3.18) will become O(LGD

2/N2 +LKD
2/N+σD2/

√
N) and O(LGD/N

2 +LKD/N+σD/
√
N),

respectively.

4. Convergence analysis. Our goal in this section is to prove the main results presented in Section 2
and 3, namely, Theorems 2.1, 2.3, 3.1 and 3.3.

4.1. Convergence analysis for the deterministic APD algorithm. In this section, we prove Theo-
rems 2.1 and 2.3 which, respectively, describe the convergence properties for the deterministic APD algorithm
for the bounded and unbounded SPPs.

Before proving Theorem 2.1, we first prove two technical results: Proposition 4.1 shows some important
properties for the function Q(·, ·) in (2.12) and Lemma 4.2 establishes a bound on Q(xagt , z).

Proposition 4.1. Assume that βt ≥ 1 for all t. If zagt+1 = (xagt+1, y
ag
t+1) is generated by Algorithm 2, then

for all z = (x, y) ∈ Z,

βtQ(zagt+1, z)− (βt − 1)Q(zagt , z)

≤ 〈∇G(xmdt ), xt+1 − x〉+
LG
2βt
‖xt+1 − xt‖2 + [J(yt+1)− J(y)] + 〈Kxt+1, y〉 − 〈Kx, yt+1〉.

(4.1)
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Proof. By equations (2.4) and (2.7), xagt+1−xmdt = β−1
t (xt+1−xt). Using this observation and the convexity

of G(·), we have

βtG(xagt+1) ≤ βtG(xmdt ) + βt〈∇G(xmdt ), xagt+1 − xmdt 〉+ βtLG

2 ‖x
ag
t+1 − xmdt ‖2

= βtG(xmdt ) + βt〈∇G(xmdt ), xagt+1 − xmdt 〉+ LG

2βt
‖xt+1 − xt‖2

= βtG(xmdt ) + (βt − 1)〈∇G(xmdt ), xagt − xmdt 〉+ 〈∇G(xmdt ), xt+1 − xmdt 〉+ LG

2βt
‖xt+1 − xt‖2

= (βt − 1)
[
G(xmdt ) + 〈∇G(xmdt ), xagt − xmdt 〉

]
+
[
G(xmdt ) + 〈∇G(xmdt ), xt+1 − xmdt 〉

]
+ LG

2βt
‖xt+1 − xt‖2

= (βt − 1)
[
G(xmdt ) + 〈∇G(xmdt ), xagt − xmdt 〉

]
+
[
G(xmdt ) + 〈∇G(xmdt ), x− xmdt 〉

]
+ 〈∇G(xmdt ), xt+1 − x〉

+LG

2βt
‖xt+1 − xt‖2

≤ (βt − 1)G(xagt ) +G(x) + 〈∇G(xmdt ), xt+1 − x〉+ LG

2βt
‖xt+1 − xt‖2.

Moreover, by (2.8) and the convexity of J(·), we have

βtJ(yagt+1)− βtJ(y) ≤ (βt − 1)J(yagt ) + J(yt+1)− βtJ(y) = (βt − 1) [J(yagt )− J(y)] + J(yt+1)− J(y).

By (2.12), (2.7), (2.8) and the above two inequalities above, we obtain

βtQ(zagt+1, z)− (βt − 1)Q(zagt , z)
= βt

{[
G(xagt+1) + 〈Kxagt+1, y〉 − J(y)

]
−
[
G(x) + 〈Kx, yagt+1〉 − J(yagt+1)

]}
−(βt − 1) {[G(xagt ) + 〈Kxagt , y〉 − J(y)]− [G(x) + 〈Kx, yagt 〉 − J(yagt )]}

= βtG(xagt+1)− (βt − 1)G(xagt )−G(x) + βt
[
J(yagt+1)− J(y)

]
−(βt − 1) [J(yagt )− J(y)] + 〈K(βtx

ag
t+1 − (βt − 1)xagt ), y〉 − 〈Kx, βtyagt+1 − (βt − 1)yagt 〉

≤ 〈∇G(xmdt ), xt+1 − x〉+ LG

2βt
‖xt+1 − xt‖2 + J(yt+1)− J(y) + 〈Kxt+1, y〉 − 〈Kx, yt+1〉.

Lemma 4.2 establishes a bound for Q(zagt+1, z) for all z ∈ Z, which will be used in the proof of both
Theorems 2.1 and 2.3.

Lemma 4.2. Let zagt+1 = (xagt+1, y
ag
t+1) be the iterates generated by Algorithm 2. Assume that the parameters

βt, θt, ηt, and τt satisfy (2.15), (2.16) and (2.17). Then, for any z ∈ Z, we have

βtγtQ(zagt+1, z) ≤ Bt(z, z[t]) + γt〈K(xt+1 − xt), y − yt+1〉 − γt
(
αX
2ηt
− LG

2βt

)
‖xt+1 − xt‖2, (4.2)

where γt is defined in (3.3), z[t] := {(xi, yi)}t+1
i=1 and

Bt(z, z[t]) :=

t∑
i=1

{
γi
ηi

[VX(x, xi)− VX(x, xi+1)] +
γi
τi

[VY (y, yi)− VY (y, yi+1)]

}
. (4.3)

Proof. First of all, we explore the optimality conditions in iterations (2.5) and (2.6). Apply Lemma 2 in
[15] to (2.5), we have

〈−Kx̄t, yt+1 − y〉+ J(yt+1)− J(y) ≤ 1

τt
VY (y, yt)−

1

τt
VY (yt+1, yt)−

1

τt
VY (y, yt+1)

≤ 1

τt
VY (y, yt)−

αY
2τt
‖yt+1 − yt‖2 −

1

τt
VY (y, yt+1),

(4.4)

where the last inequality follows from the fact that, by the strong convexity of dY (·) and (2.11),

VY (y1, y2) ≥ αY
2
‖y1 − y2‖2, for all y1, y2 ∈ Y. (4.5)

Similarly, from (2.6) we can derive that

〈∇G(xmdt ), xt+1 − x〉+ 〈xt+1 − x,KT yt+1〉 ≤
1

ηt
VX(x, xt)−

αX
2ηt
‖xt+1 − xt‖2 −

1

ηt
VX(x, xt+1). (4.6)
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Our next step is to establish a crucial recursion of Algorithm 2. It follows from (4.1), (4.4) and (4.6) that

βtQ(zagt+1, z)− (βt − 1)Q(zagt , z)

≤ 〈∇G(xmdt ), xt+1 − x〉+
LG
2βt
‖xt+1 − xt‖2 + [J(yt+1)− J(y)] + 〈Kxt+1, y〉 − 〈Kx, yt+1〉

≤ 1

ηt
VX(x, xt)−

1

ηt
VX(x, xt+1)−

(
αX
2ηt
− LG

2βt

)
‖xt+1 − xt‖2

+
1

τt
VY (y, yt)−

1

τt
VY (y, yt+1)− αY

2τt
‖yt+1 − yt‖2

− 〈xt+1 − x,KT yt+1〉+ 〈Kx̄t, yt+1 − y〉+ 〈Kxt+1, y〉 − 〈Kx, yt+1〉.

(4.7)

Also observe that by (2.9), we have

− 〈xt+1 − x,KT yt+1〉+ 〈Kx̄t, yt+1 − y〉+ 〈Kxt+1, y〉 − 〈Kx, yt+1〉
= 〈K(xt+1 − xt), y − yt+1〉 − θt〈K(xt − xt−1), y − yt+1〉
= 〈K(xt+1 − xt), y − yt+1〉 − θt〈K(xt − xt−1), y − yt〉 − θt〈K(xt − xt−1), yt − yt+1〉.

Multiplying both sides of (4.7) by γt, using the above identity and the fact that γtθt = γt−1 due to (3.3), we
obtain

βtγtQ(zagt+1, z)− (βt − 1)γtQ(zagt , z)

≤ γt
ηt
VX(x, xt)−

γt
ηt
VX(x, xt+1) +

γt
τt
VY (y, yt)−

γt
τt
VY (y, yt+1)

+ γt〈K(xt+1 − xt), y − yt+1〉 − γt−1〈K(xt − xt−1), y − yt〉

− γt
(
αX
2ηt
− LG

2βt

)
‖xt+1 − xt‖2 −

αY γt
2τt
‖yt+1 − yt‖2 − γt−1〈K(xt − xt−1), yt − yt+1〉.

(4.8)

Now, applying Cauchy-Schwartz inequality to the last term in (4.8), using the notation LK in (1.2) and
noticing that γt−1/γt = θt ≤ min{ηt−1/ηt, τt−1/τt} from (2.16), we have

−γt−1〈K(xt − xt−1), yt − yt+1〉 ≤ γt−1‖K(xt − xt−1)‖∗‖yt − yt+1‖
≤ LKγt−1‖xt − xt−1‖ ‖yt − yt+1‖ ≤

L2
Kγ

2
t−1τt

2αY γt
‖xt − xt−1‖2 + αY γt

2τt
‖yt − yt+1‖2

≤ L2
Kγt−1τt−1

2αY
‖xt − xt−1‖2 + αY γt

2τt
‖yt − yt+1‖2.

Noting that θt+1 = γt/γt+1, so by (2.15) we have (βt+1 − 1)γt+1 = βtγt. Combining the above two relations
with inequality (4.8), we get the following recursion for Algorithm 2.

(βt+1 − 1)γt+1Q(zagt+1, z)− (βt − 1)γtQ(zagt , z) = βtγtQ(zagt+1, z)− (βt − 1)γtQ(zagt , z)
≤ γt

ηt
VX(x, xt)− γt

ηt
VX(x, xt+1) + γt

τt
VY (y, yt)− γt

τt
VY (y, yt+1)

+γt〈K(xt+1 − xt), y − yt+1〉 − γt−1〈K(xt − xt−1), y − yt〉
−γt

(
αX

2ηt
− LG

2βt

)
‖xt+1 − xt‖2 +

L2
Kγt−1τt−1

2αY
‖xt − xt−1‖2,∀t ≥ 1.

Applying the above inequality inductively and assuming that x0 = x1, we conclude that

(βt+1 − 1)γt+1Q(zagt+1, z)− (β1 − 1)γ1Q(zag1 , z) ≤ Bt(z, z[t]) + γt〈K(xt+1 − xt), y − yt+1〉
−γt

(
αX

2ηt
− LG

2βt

)
‖xt+1 − xt‖2 −

∑t−1
i=1 γi

(
αX

2ηi
− LG

2βi
− L2

Kτi
2αY

)
‖xi+1 − xi‖2,

which, in view of (2.17) and the facts that β1 = 1 and (βt+1 − 1)γt+1 = βtγt by (2.15), implies (4.2).

We are now ready to prove Theorem 2.1, which follows as an immediate consequence of Lemma 4.2.
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Proof of Theorem 2.1. Let Bt(z, z[t]) be defined in (4.3). First note that by the definition of γt in (3.3)
and relation (2.16), we have θt = γt−1/γt ≤ ηt−1/ηt and hence γt−1/ηt−1 ≤ γt/ηt. Using this observation and
(2.14), we conclude that

Bt(z, z[t]) = γ1
η1
VX(x, x1)−

∑t−1
i=1

(
γi
ηi
− γi+1

ηi+1

)
VX(x, xi+1)− γt

ηt
VX(x, xt+1)

+γ1
τ1
VY (y, y1)−

∑t−1
i=1

(
γi
τi
− γi+1

τi+1

)
VY (y, yi+1)− γt

τt
VY (y, yt+1)

≤ γ1
η1

Ω2
X −

∑t−1
i=1

(
γi
ηi
− γi+1

ηi+1

)
Ω2
X −

γt
ηt
VX(x, xt+1)

+γ1
τ1

Ω2
Y −

∑t−1
i=1

(
γi
τi
− γi+1

τi+1

)
Ω2
Y −

γt
τt
VY (y, yt+1)

= γt
ηt

Ω2
X −

γt
ηt
VX(x, xt+1) + γt

τt
Ω2
Y −

γt
τt
VY (y, yt+1).

(4.9)

Now applying Cauchy-Schwartz inequality to the inner product term in (4.2), we get

γt〈K(xt+1 − xt), y − yt+1〉 ≤ LKγt‖xt+1 − xt‖‖y − yt+1‖ ≤
L2
Kγtτt
2αY

‖xt+1 − xt‖2 +
αY γt
2τt
‖y − yt+1‖2.

(4.10)

Using the above two relations, (2.17), (4.2) and (4.5), we have

βtγtQ(zagt+1, z) ≤
γt
ηt

Ω2
X −

γt
ηt
VX(x, xt+1) + γt

τt
Ω2
Y −

γt
τt

(
VY (y, yt+1)− αY

2 ‖y − yt+1‖2
)

−γt
(
αX

2ηt
− LG

2βt
− L2

Kτt
2αY

)
‖xt+1 − xt‖2 ≤ γt

ηt
Ω2
X + γt

τt
Ω2
Y , ∀z ∈ Z,

which together with (2.13), then clearly imply (2.18).

Our goal in the remaining part of this subsection is to prove Theorem 2.3, which summarizes the con-
vergence properties of Algorithm 2 when X or Y is unbounded. We will first prove a technical result which
specializes the results in Lemma 4.2 for the case when (2.15), (2.22) and (2.23) hold.

Lemma 4.3. Let ẑ = (x̂, ŷ) ∈ Z be a saddle point of (1.1). If VX(x, xt) = ‖x − xt‖2/2 and VY (y, yt) =
‖y − yt‖2/2 in Algorithm 2, and the parameters βt, θt, ηt and τt satisfy (2.15), (2.22) and (2.23), then

(a). ‖x̂− xt+1‖2 +
ηt(1− p)

τt
‖ŷ − yt+1‖2 ≤ ‖x̂− x1‖2 +

ηt
τt
‖ŷ − y1‖2, for all t ≥ 1. (4.11)

(b). g̃(zagt+1, vt+1) ≤ 1

2βtηt
‖xagt+1 − x1‖2 +

1

2βtτt
‖yagt+1 − y1‖2 =: δt+1, for all t ≥ 1, (4.12)

where g̃(·, ·) is defined in (2.21) and

vt+1 =

(
1

βtηt
(x1 − xt+1),

1

βtτt
(y1 − yt+1)− 1

βt
K(xt+1 − xt)

)
. (4.13)

Proof. It is easy to check that the conditions in Lemma 4.2 are satisfied. By (2.22), (4.2) in Lemma 4.2
becomes

βtQ(zagt+1, z) ≤
1

2ηt
‖x− x1‖2 −

1

2ηt
‖x− xt+1‖2 +

1

2τt
‖y − y1‖2 −

1

2τt
‖y − yt+1‖2

+ 〈K(xt+1 − xt), y − yt+1〉 −
(

1

2ηt
− LG

2βt

)
‖xt+1 − xt‖2.

(4.14)

To prove (4.11), observe that

〈K(xt+1 − xt), y − yt+1〉 ≤
L2
Kτt
2p
‖xt+1 − xt‖2 +

p

2τt
‖y − yt+1‖2 (4.15)
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where p is the constant in (2.23). By (2.23) and the above two inequalities, we get

βtQ(zagt+1, z) ≤ 1
2ηt
‖x− x1‖2 − 1

2ηt
‖x− xt+1‖2 + 1

2τt
‖y − y1‖2 − 1−p

2τt
‖y − yt+1‖2.

Letting z = ẑ in the above, and using the fact that Q(zagt+1, ẑ) ≥ 0, we obtain (4.11).
Now we prove (4.12). Noting that

‖x− x1‖2 − ‖x− xt+1‖2 = 2〈xt+1 − x1, x〉+ ‖x1‖2 − ‖xt+1‖2

=2〈xt+1 − x1, x− xagt+1〉+ 2〈xt+1 − x1, x
ag
t+1〉+ ‖x1‖2 − ‖xt+1‖2

=2〈xt+1 − x1, x− xagt+1〉+ ‖xagt+1 − x1‖2 − ‖xagt+1 − xt+1‖2,
(4.16)

we conclude from (2.23) and (4.14) that for any z ∈ Z,

βtQ(zagt+1, z) + 〈K(xt+1 − xt), yagt+1 − y〉 − 1
ηt
〈x1 − xt+1, x

ag
t+1 − x〉 − 1

τt
〈y1 − yt+1, y

ag
t+1 − y〉

≤ 1
2ηt

(
‖xagt+1 − x1‖2 − ‖xagt+1 − xt+1‖2

)
+ 1

2τt

(
‖yagt+1 − y1‖2 − ‖yagt+1 − yt+1‖2

)
+〈K(xt+1 − xt), yagt+1 − yt+1〉 −

(
1

2ηt
− LG

2βt

)
‖xt+1 − xt‖2

≤ 1
2ηt

(
‖xagt+1 − x1‖2 − ‖xagt+1 − xt+1‖2

)
+ 1

2τt

(
‖yagt+1 − y1‖2 − ‖yagt+1 − yt+1‖2

)
+ p

2τt
‖yagt+1 − yt+1‖2 −

(
1

2ηt
− LG

2βt
− L2

Kτt
2p

)
‖xt+1 − xt‖2

≤ 1
2ηt
‖xagt+1 − x1‖2 + 1

2τt
‖yagt+1 − y1‖2.

The result in (4.12) and (4.13) immediately follows from the above inequality and (2.21).

We are now ready to prove Theorem 2.3.
Proof. Proof of Theorem 2.3. We have established the expression of vt+1 and δt+1 in Lemma 4.3. It

suffices to estimate the bound on ‖vt+1‖ and δt+1. It follows from the definition of D, (2.22) and (4.11) that

for all t ≥ 1, ‖x̂− xt+1‖ ≤ D and ‖ŷ − yt+1‖ ≤ D
√

τ1
η1(1−p) . Now by (4.13), we have

‖vt+1‖ ≤ 1
βtηt
‖x1 − xt+1‖+ 1

βtτt
‖y1 − yt+1‖+ LK

βt
‖xt+1 − xt‖

≤ 1
βtηt

(‖x̂− x1‖+ ‖x̂− xt+1‖) + 1
βtτt

(‖ŷ − y1‖+ ‖ŷ − yt+1‖) + LK

βt
(‖x̂− xt+1‖+ ‖x̂− xt‖)

≤ 1
βtηt

(‖x̂− x1‖+D) + 1
βtτt

(
‖ŷ − y1‖+D

√
τ1

η1(1−p)

)
+ 2LK

βt
D

= 1
βtηt
‖x̂− x1‖+ 1

βtτt
‖ŷ − y1‖+D

[
1

βtηt

(
1 +

√
η1

τ1(1−p)

)
+ 2LK

βt

]
.

To estimate the bound of δt+1, consider the sequence {γt} defined in (3.3). Using the fact that (βt+1−1)γt+1 =
βtγt due to (2.15) and (3.3), and applying (2.7) and (2.8) inductively, we have

xagt+1 =
1

βtγt

t∑
i=1

γixi+1, y
ag
t+1 =

1

βtγt

t∑
i=1

γiyi+1 and
1

βtγt

t∑
i=1

γi = 1. (4.17)

Thus xagt+1 and yagt+1 are convex combinations of sequences {xi+1}ti=1 and {yi+1}ti=1 . Using these relations
and (4.11), we have

δt+1 = 1
2βtηt

‖xagt+1 − x1‖2 + 1
2βtτt

‖yagt+1 − y1‖2 ≤ 1
βtηt

(
‖x̂− xagt+1‖2 + ‖x̂− x1‖2

)
+ 1

βtτt

(
‖ŷ − yagt+1‖2 + ‖ŷ − y1‖2

)
= 1

βtηt

(
D2 + ‖x̂− xagt+1‖2 + ηt(1−p)

τt
‖ŷ − yagt+1‖2 + ηtp

τt
‖ŷ − yagt+1‖2

)
≤ 1

βtηt

[
D2 + 1

βtγt

∑t
i=1 γi

(
‖x̂− xi+1‖2 + ηt(1−p)

τt
‖ŷ − yi+1‖2 + ηtp

τt
‖ŷ − yi+1‖2

)]
≤ 1

βtηt

[
D2 + 1

βtγt

∑t
i=1 γi

(
D2 + ηtp

τt
· τ1
η1(1−p)D

2
)]

= (2−p)D2

βtηt(1−p) .
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4.2. Convergence analysis for the stochastic APD algorithm. In this subsection, we prove The-
orems 3.1 and 3.3 which describe the convergence properties of the stochastic APD algorithm presented in
Section 3.

Let Ĝ(xmdt ), K̂x(x̄t) and K̂y(yt+1) be the output from the SO at the t-th iteration of Algorithm 3.
Throughout this subsection, we denote

∆t
x,G := Ĝ(xmdt )−∇G(xmdt ), ∆t

x,K := K̂y(yt+1)−KT yt+1, ∆t
y := −K̂x(x̄t) +Kx̄t,

∆t
x := ∆t

x,G + ∆t
x,K and ∆t := (∆t

x,∆
t
y).

Moreover, for a given z = (x, y) ∈ Z, let us denote ‖z‖2 = ‖x‖2 + ‖y‖2 and its associate dual norm for ∆ =
(∆x,∆y) by ‖∆‖2∗ = ‖∆x‖2∗ + ‖∆y‖2∗. We also define the Bregman divergence V (z, z̃) := VX(x, x̃) + VY (y, ỹ)
for z = (x, y) and z̃ = (x̃, ỹ).

Before proving Theorem 3.1, we first estimate a bound on Q(zagt+1, z) for all z ∈ Z. This result is analogous
to Lemma 4.2 for the deterministic APD method.

Lemma 4.4. Let zagt = (xagt , y
ag
t ) be the iterates generated by Algorithm 3. Assume that the parameters

βt, θt, ηt and τt satisfy (2.15), (2.16) and (3.4). Then, for any z ∈ Z, we have

βtγtQ(zagt+1, z) ≤ Bt(z, z[t]) + γt〈K(xt+1 − xt), y − yt+1〉 − γt
(
qαX
2ηt
− LG

2βt

)
‖xt+1 − xt‖2 +

t∑
i=1

Λi(z),

(4.18)

where γt and Bt(z, z[t]), respectively, are defined in (3.3) and (4.3), z[t] = {(xi, yi)}t+1
i=1 and

Λi(z) := − (1− q)αXγi
2ηi

‖xi+1 − xi‖2 −
(1− p)αY γi

2τi
‖yi+1 − yi‖2 − γi〈∆i, zi+1 − z〉. (4.19)

Proof. Similar to (4.4) and (4.6), we conclude from the optimality conditions of (3.1) and (3.2) that

〈−K̂x(x̄t), yt+1 − y〉+ J(yt+1)− J(y) ≤ 1
τt
VY (y, yt)− αY

2τt
‖yt+1 − yt‖2 − 1

τt
VY (y, yt+1),

〈Ĝ(xmdt ), xt+1 − x〉+ 〈xt+1 − x, K̂y(yt+1)〉 ≤ 1
ηt
VX(x, xt)− αX

2ηt
‖xt+1 − xt‖2 − 1

ηt
VX(x, xt+1).

Now we establish an important recursion for Algorithm 3. Observing that Proposition 4.1 also holds for
Algorithm 3, and applying the above two inequalities to (4.1) in Proposition 4.1, similar to (4.8), we have

βtγtQ(zagt+1, z)− (βt − 1)γtQ(zagt , z)

≤ γt
ηt
VX(x, xt)−

γt
ηt
VX(x, xt+1) +

γt
τt
VY (y, yt)−

γt
τt
VY (y, yt+1)

+ γt〈K(xt+1 − xt), y − yt+1〉 − γt−1〈K(xt − xt−1), y − yt〉

− γt
(
αX
2ηt
− LG

2βt

)
‖xt+1 − xt‖2 −

αY γt
2τt
‖yt+1 − yt‖2 − γt−1〈K(xt − xt−1), yt − yt+1〉

− γt〈∆t
x,G + ∆t

x,K , xt+1 − x〉 − γt〈∆t
y, yt+1 − y〉, ∀z ∈ Z.

(4.20)

By Cauchy-Schwartz inequality and (2.16), for all p ∈ (0, 1),

− γt−1〈K(xt − xt−1), yt − yt+1〉 ≤ γt−1‖K(xt − xt−1)‖∗‖yt − yt+1‖

≤ LKγt−1‖xt − xt−1‖‖yt − yt+1‖ ≤
L2
Kγ

2
t−1τt

2pαY γt
‖xt − xt−1‖2 +

pαY γt
2τt

‖yt − yt+1‖2

≤L
2
Kγt−1τt−1

2pαY
‖xt − xt−1‖2 +

pαY γt
2τt

‖yt − yt+1‖2.

(4.21)
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By (2.15), (4.19), (4.20) and (4.21), we can develop the following recursion for Algorithm 3:

(βt+1 − 1)γt+1Q(zagt+1, z)− (βt − 1)γtQ(zagt , z) = βtγtQ(zagt+1, z)− (βt − 1)γtQ(zagt , z)
≤ γt

ηt
VX(x, xt)− γt

ηt
VX(x, xt+1) + γt

τt
VY (y, yt)− γt

τt
VY (y, yt+1)

+γt〈K(xt+1 − xt), y − yt+1〉 − γt−1〈K(xt − xt−1), y − yt〉
−γt

(
qαX

2ηt
− LG

2βt

)
‖xt+1 − xt‖2 +

L2
Kγt−1τt−1

2pαY
‖xt − xt−1‖2 + Λt(x), ∀z ∈ Z.

Applying the above inequality inductively and assuming that x0 = x1, we obtain

(βt+1 − 1)γt+1Q(zagt+1, z)− (β1 − 1)γ1Q(zag1 , z)

≤ Bt(z, z[t]) + γt〈K(xt+1 − xt), y − yt+1〉 − γt
(
qαX

2ηt
− LG

2βt

)
‖xt+1 − xt‖2

−
∑t−1
i=1 γi

(
qαX

2ηi
− LG

2βi
− L2

Kτi
2pαY

)
‖xi+1 − xi‖2 +

∑t
i=1 Λi(x), ∀z ∈ Z.

Relation (4.18) then follows immediately from the above inequality, (2.15) and (3.4).

We also need the following technical result whose proof is based on Lemma 2.1 of [35].
Lemma 4.5. Let ηi, τi and γi, i = 1, 2, . . ., be given positive constants. For any z1 ∈ Z, if we define

zv1 = z1 and

zvi+1 = argmin
z=(x,y)∈Z

{
−ηi〈∆i

x, x〉 − τi〈∆i
y, y〉+ V (z, zvi )

}
, (4.22)

then
t∑
i=1

γi〈−∆i, zvi − z〉 ≤ Bt(z, zv[t]) +

t∑
i=1

ηiγi
2αX

‖∆i
x‖2∗ +

t∑
i=1

τiγi
2αY
‖∆i

y‖2∗, (4.23)

where zv[t] := {zvi }ti=1 and Bt(z, zv[t]) is defined in (4.3).

Proof. Noting that (4.22) implies zvi+1 = (xvi+1, y
v
i+1) where xvi+1 = argmin

x=∈X

{
−ηi〈∆i

x, x〉+ VX(x, xvi )
}

and

yvi+1 = argmin
y∈Y

{
−τi〈∆i

y, y〉+ V (y, yvi )
}

, from Lemma 2.1 of [35] we have

VX(x, xvi+1) ≤ VX(x, xvi )− ηi〈∆i
x, x− xvi 〉+

η2i ‖∆
i
x‖

2
∗

2αX
, and VY (y, yvi+1) ≤ VY (y, yvi )− τi〈∆i

y, y − yvi 〉+
τ2
i ‖∆

i
y‖

2
∗

2αY

for all i ≥ 1. Thus

γi
ηi
VX(x, xvi+1) ≤γi

ηi
VX(x, xvi )− γi〈∆i

x, x− xvi 〉+
γiηi‖∆i

x‖2∗
2αX

, and

γi
τi
VY (y, yvi+1) ≤γi

τi
VY (y, yvi )− γi〈∆i

y, y − yvi 〉+
γiτi‖∆i

y‖2∗
2αY

.

Adding the above two inequalities together, and summing up them from i = 1 to t we get

0 ≤ Bt(z, zv[t])−
∑t
i=1 γi〈∆i, z − zvi 〉+

∑t
i=1

γiηi‖∆i
x‖

2
∗

2αX
+
∑t
i=1

γiτi‖∆i
y‖

2
∗

2αY
,

so (4.23) holds.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1 Firstly, applying the bounds in (4.9) and (4.10) to (4.18), we get

βtγtQ(zagt+1, z) ≤
γt
ηt

Ω2
X −

γt
ηt
VX(x, xt+1) +

γt
τt

Ω2
Y −

γt
τt
VY (y, yt+1) +

αY γt
2τt
‖y − yt+1‖2

− γt
(
qαX
2ηt
− LG

2βt
− L2

Kτt
2αY

)
‖xt+1 − xt‖2 +

t∑
i=1

Λi(z)

≤ γt
ηt

Ω2
X +

γt
τt

Ω2
Y +

t∑
i=1

Λi(z), ∀ z ∈ Z.

(4.24)

18



By (4.19), we have

Λi(z) = − (1− q)αXγi
2ηi

‖xi+1 − xi‖2 −
(1− p)αY γi

2τi
‖yi+1 − yi‖2 + γi〈∆i, z − zi+1〉

= − (1− q)αXγi
2ηi

‖xi+1 − xi‖2 −
(1− p)αY γi

2τi
‖yi+1 − yi‖2 + γi〈∆i, zi − zi+1〉+ γi〈∆i, z − zi〉

≤ ηiγi
2(1− q)αX

‖∆i
x‖2∗ +

τiγi
2(1− p)αY

‖∆i
y‖2∗ + γi〈∆i, z − zi〉,

(4.25)

where the last relation follows from Young’s inequality. For all i ≥ 1, letting zv1 = z1, and zvi+1 as in (4.22),
we conclude from (4.25) and Lemma 4.5 that, ∀z ∈ Z,

t∑
i=1

Λi(z) ≤
t∑
i=1

{
ηiγi

2(1− q)αX
‖∆i

x‖2∗ +
τiγi

2(1− p)αY
‖∆i

y‖2∗ + γi〈∆i, zvi − zi〉+ γi〈−∆i, zvi − z〉
}

≤ Bt(z, zv[t]) +
1

2

t∑
i=1

{
(2− q)ηiγi
(1− q)αX

‖∆i
x‖2∗ +

(2− p)τiγi
(1− p)αY

‖∆i
y‖2∗ + γi〈∆i, zvi − zi〉

}
︸ ︷︷ ︸

Ut

,
(4.26)

where similar to (4.9) we have Bt(z, zv[t]) ≤ Ω2
Xγt/ηt + Ω2

Y γt/τt. Using the above inequality, (2.13), (2.14) and

(4.24), we obtain

βtγtg(zagt+1) ≤ 2γt
ηt

Ω2
X +

2γt
τt

Ω2
Y + Ut. (4.27)

Now it suffices to bound the above quantity Ut, both in expectation (part a)) and in probability (part b)).
We first show part a). Note that by our assumptions on SO, at iteration i of Algorithm 3, the random

noises ∆i are independent of zi and hence E[〈∆i, z − zi〉] = 0. In addition, Assumption A1 implies that
E[‖∆i

x‖2∗] ≤ σ2
x,G+σ2

x,K = σ2
x (noting that ∆i

x,G and ∆i
x,K are independent at iteration i), and E[‖∆i

y‖2∗] ≤ σ2
y.

Therefore,

E[Ut] ≤
1

2

t∑
i=1

{
(2− q)ηiγiσ2

x

(1− q)αX
+

(2− p)τiγiσ2
y

(1− p)αY

}
. (4.28)

Taking expectation on both sides of (4.27) and using the above inequality, we obtain (3.5).
We now show that part b) holds. Note that by our assumptions on SO and the definition of zvi , the

sequences {〈∆i
x,G, x

v
i −xi〉}i≥1 is a martingale-difference sequence. By the well-known large-deviation theorem

for martingale-difference sequence (e.g., Lemma 2 of [27]), and the fact that

E[exp
{
αXγ

2
i 〈∆i

x,G, x
v
i − xi〉2/

(
2γ2
i Ω2

Xσ
2
x,G

)}
] ≤ E[exp

{
αX‖∆i

x,G‖2∗‖xvi − xi‖2/
(
2Ω2

Xσ
2
x,G

)}
]

≤E[exp
{
‖∆i

x,G‖2∗VX(xvi , xi)/
(
Ω2
Xσ

2
x,G

)}
] ≤ E[exp

{
‖∆i

x,G‖2∗/σ2
x,G

}
] ≤ exp{1},

we conclude that

Prob
{∑t

i=1 γi〈∆i
x,G, x

v
i − xi〉 > λ · σx,GΩX

√
2
αX

∑t
i=1 γ

2
i

}
≤ exp{−λ2/3},∀λ > 0.

By using a similar argument, we can show that, ∀λ > 0,

Prob
{∑t

i=1 γi〈∆i
y, y

v
i − yi〉 > λ · σyΩY

√
2
αY

∑t
i=1 γ

2
i

}
≤ exp{−λ2/3},

Prob
{∑t

i=1 γi〈∆i
x,K , x− xi〉 > λ · σx,KΩX

√
2
αX

∑t
i=1 γ

2
i

}
≤ exp{−λ2/3}.
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Using the previous three inequalities and the fact that σx,G + σx,K ≤
√

2σx, we have, ∀λ > 0,

Prob

{∑t
i=1 γi〈∆i, zvi − zi〉 > λ

[√
2σxΩX√
αX

+
σyΩY√
αY

]√
2
∑t
i=1 γ

2
i

}
≤

Prob

{∑t
i=1 γi〈∆i, zvi − zi〉 > λ

[
(σx,G+σx,K)ΩX√

αX
+

σyΩY√
αY

]√
2
∑t
i=1 γ

2
i

}
≤ 3 exp{−λ2/3}.

(4.29)

Now let Si := (2 − q)ηiγi/[(1 − q)αX ] and S :=
∑t
i=1 Si. By the convexity of exponential function, we

have

E
[
exp

{
1
S

∑t
i=1 Si‖∆i

x,G‖2∗/σ2
x,G

}]
≤ E

[
1
S

∑t
i=1 Si exp

{
‖∆i

x,G‖2∗/σ2
x,G

}]
≤ exp{1}.

where the last inequality follows from Assumption A2. Therefore, by Markov’s inequality, for all λ > 0,

Prob
{∑t

i=1
(2−q)ηiγi
(1−q)αX

‖∆i
x,G‖2∗ > (1 + λ)σ2

x,G

∑t
i=1

(2−q)ηiγi
(1−q)αX

}
= Prob

{
exp

{
1
S

∑t
i=1 Si‖∆i

x,G‖2∗/σ2
x,G

}
≥ exp{1 + λ}

}
≤ exp{−λ}.

Using an similar argument, we can show that

Prob
{∑t

i=1
(2−q)ηiγi
(1−q)αX

‖∆i
x,K‖2∗ > (1 + λ)σ2

x,K

∑t
i=1

(2−q)ηiγi
(1−q)αX

}
≤ exp{−λ},

Prob
{∑t

i=1
(2−p)τiγi
(1−p)αY

‖∆i
y‖2∗ > (1 + λ)σ2

y

∑t
i=1

(2−p)τiγi
(1−p)αY

}
≤ exp{−λ}.

Combining the previous three inequalities, we obtain

Prob
{∑t

i=1
(2−q)ηiγi
(1−q)αX

‖∆i
x‖2∗ +

∑t
i=1

(2−p)τiγi
(1−p)αY

‖∆i
y‖2∗ >

(1 + λ)
[
σ2
x

∑t
i=1

(2−q)ηiγi
(1−q)αX

+ σ2
y

∑t
i=1

(2−p)τiγi
(1−p)αY

]}
≤ 3 exp{−λ},

(4.30)

Our result now follows directly from (4.26), (4.27), (4.29) and (4.30).

In the remaining part of this subsection, our goal is to prove Theorem 3.3, which describes the convergence
rate of Algorithm 3 when X and Y are both unbounded. Similar as proving Theorem 2.3, first we specialize
the result of Lemma 4.4 under (2.15), (2.22) and (3.4). The following lemma is analogous to Lemma 4.3.

Lemma 4.6. Let ẑ = (x̂, ŷ) ∈ Z be a saddle point of (1.1). If VX(x, xt) = ‖x − xt‖2/2 and VY (y, yt) =
‖y − yt‖2/2 in Algorithm 3, and the parameters βt, θt, ηt and τt satisfy (2.15), (2.22) and (3.4), then

(a).
‖x̂− xt+1‖2 + ‖x̂− xvt+1‖2 +

ηt(1− p)
τt

‖ŷ − yt+1‖2 +
ηt
τt
‖ŷ − yvt+1‖2

≤ 2‖x̂− x1‖2 +
2ηt
τt
‖ŷ − y1‖2 +

2ηt
γt
Ut, for all t ≥ 1,

(4.31)

where (xvt+1, yvt+1) and Ut are defined in (4.22) and (4.26), respectively.
(b).

g̃(zagt+1, vt+1) ≤ 1

βtηt
‖xagt+1 − x1‖2 +

1

βtτt
‖yagt+1 − y1‖2 +

1

βtγt
Ut =: δt+1, for all t ≥ 1, (4.32)

where g̃(·, ·) is defined in (2.21) and

vt+1 =

(
1

βtηt
(2x1 − xt+1 − xvt+1),

1

βtτt
(2y1 − yt+1 − yvt+1) +

1

βt
K(xt+1 − xt)

)
. (4.33)

Proof. Apply (3.4), (4.15) and (4.26) to (4.18) in Lemma 4.4, we get

βtγtQ(zagt+1, z) ≤ B̄(z, z[t]) + pγt
2τt
‖y − yt+1‖2 + B̄(z, zv[t]) + Ut,
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where B̄(·, ·) is defined as

B̄(z, z̃[t]) := γt
2ηt
‖x− x̃1‖2 − γt

2ηt
‖x− x̃t+1‖2 + γt

2τt
‖y − ỹ1‖2 − γt

2τt
‖y − ỹt+1‖2, ∀z ∈ Z and z̃[t] ⊂ Z

thanks to (2.22). Now letting z = ẑ, and noting that Q(zagt+1, ẑ) ≥ 0, we get (4.31).
On the other hand, if we only apply (3.4) and (4.26) to (4.18) in Lemma 4.4, then we get

βtγtQ(zagt+1, z) ≤ B̄(z, z[t]) + γt〈K(xt+1 − xt), y − yt+1〉+ B̄(z, zv[t]) + Ut.

Apply (2.22) and (4.16) to B̄(z, z[t]) and B̄(z, zv[t]) in the above inequality, we get (4.32).

With the help of Lemma 4.6, we are ready to prove Theorem 3.3.
Proof of Theorem 3.3 Let δt+1 and vt+1 be defined in (4.32) and (4.33), respectively. Also let C and D,
respectively, be defined in (3.14) and (2.26). It suffices to estimate E[‖vt+1‖] and E[δt+1]. First it follows from
(2.22), (3.14) and (4.28) that

E[Ut] ≤
γt
ηt
C2. (4.34)

Using the above inequality, (2.22), (2.26) and (4.31), we have E[‖x̂ − xt+1‖2] ≤ 2D2 + 2C2 and E[‖ŷ −
yt+1‖2] ≤ (2D2 + 2C2) τ1

η1(1−p) , which, by Jensen’s inequality, then imply that E[‖x̂ − xt+1‖] ≤
√

2D2 + 2C2

and E[‖ŷ − yt+1‖] ≤
√

2D2 + 2C2
√

τ1
η1(1−p) . Similarly, we can show that E[‖x̂ − xvt+1‖] ≤

√
2D2 + 2C2 and

E[‖ŷ − yvt+1‖] ≤
√

2D2 + 2C2
√

τ1
η1
. Therefore, by (4.33) and the above four inequalities, we have

E[‖vt+1‖]
≤ E

[
1

βtηt

(
‖x1 − xt+1‖+ ‖x1 − xvt+1‖

)
+ 1

βtτt

(
‖y1 − yt+1‖+ ‖y1 − yvt+1‖

)
+ LK

βt
‖xt+1 − xt‖

]
≤ E

[
1

βtηt

(
2‖x̂− x1‖+ ‖x̂− xt+1‖+ ‖x̂− xvt+1‖

)
+ 1
βtτt

(
2‖ŷ − y1‖+ ‖ŷ − yt+1‖+ ‖ŷ − yvt+1‖

)
+ LK

βt
(‖x̂− xt+1‖+ ‖x̂− xt‖)

]
≤ 2‖x̂−x1‖

βtηt
+ 2‖ŷ−y1‖

βtτt
+
√

2D2 + 2C2
[

2
βtηt

+ 1
βtτt

√
τ1
η1

(√
1

1−p + 1
)

+ 2LK

βt

]
,

thus (3.13) holds.
Now let us estimate a bound on δt+1. By (4.17), (4.28), (4.31) and (4.34), we have

E[δt+1] = E
[

1
βtηt
‖xagt+1 − x1‖2 + 1

βtτt
‖yagt+1 − y1‖2

]
+ 1

βtγt
E[Ut]

≤ E
[

2
βtηt

(
‖x̂− xagt+1‖2 + ‖x̂− x1‖2

)
+ 2

βtτt

(
‖ŷ − yagt+1‖2 + ‖ŷ − y1‖2

)]
+ 1

βtηt
C2

= E
[

1
βtηt

(
2D2 + 2‖x̂− xagt+1‖2 + 2ηt(1−p)

τt
‖ŷ − yagt+1‖2 + 2ηtp

τt
‖ŷ − yagt+1‖2

)]
+ 1

βtηt
C2

≤ 1
βtηt

[
2D2 + 2

βtγt

∑t
i=1 γi

(
E
[
‖x̂− xi+1‖2

]
+ ηt(1−p)

τt
E
[
‖ŷ − yi+1‖2

]
+ ηtp

τt
E
[
‖ŷ − yi+1‖2

])
+ C2

]
≤ 1

βtηt

[
2D2 + 2

βtγt

∑t
i=1 γi

(
2D2 + C2 + ηtp

τt
· τ1
η1(1−p) (2D2 + C2)

)
+ C2

]
= 1

βtηt

(
6−4p
1−p D

2 + 5−3p
1−p C

2
)
.

Therefore (3.12) holds.

5. Numerical examples. In this section we will present our experimental results on solving three saddle
point problems using the deterministic or stochastic APD algorithm. The comparisons with the linearized
version of the primal dual algorithm in [9], Nesterov’s smoothing technique in [43], Nemirovski’s mirror-prox
method in [36], the mirror-descent stochastic approximation method in [35] and the stochastic mirror-prox
method in [21] are provided for a better examination of the performance of the APD algorithm.
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5.1. Image reconstruction. Our primary goal in this subsection is to compare the performance of
Algorithms 1 and 2. Consider the following total variation (TV) regularized linear inversion problem, which
has been widely used as a framework for image reconstruction:

min
x∈X

f(x) :=
1

2
‖Ax− b‖2 + λ‖Dx‖2,1, (5.1)

where x is the reconstructed image, ‖Dx‖2,1 is the discrete form of the TV semi-norm, A is a given structure
matrix (depending on the physics of the data acquisition), b represents the observed data, and X := {x ∈ Rn :
l∗ ≤ x(i) ≤ u∗,∀i = 1, . . . , n}. For simplicity, we consider x as a n-vector form of a two-dimensional image.
Problem (5.1) can be reformulated as the following SPP problem of in the form of (1.1):

min
x∈X

max
y∈Y
{1

2
‖Ax− b‖2 + λ〈Dx, y〉},

where Y := {y ∈ R2n : ‖y‖2,∞ := maxi=1,...,n ‖yi‖2 ≤ 1}, and ‖yi‖2 is the Euclidean norm of yi in R2.
In our experiment, we consider two types of instances depending on how the structure matrix A ∈ Rk×n

is generated. More specifically, the entries of A are normally distributed according to N(0, 1/
√
k) for the

first tye of instance, while for the second one, the entries of A are generated independently from a Bernoulli
distribution, i.e., each entry of A is given by 1/

√
k or −1/

√
k with equal probability. Both types of structure

matrices are widely used in compressive sensing (see, e.g., [3]). For a given A, the measurements are generated
by b = Axtrue + ε, where xtrue is a 64 by 64 Shepp-Logan phantom [48] with intensities in [0, 1], and ε ≡
N(0, 10−6Ik) with k = 2048. We set X := {x ∈ Rn : 0 ≤ x(i) ≤ 1,∀i = 1, . . . , n} and λ = 10−3 in (5.1).

We applied the linearized version of Algorithm 1, denoted by LPD, in which (2.2) replaced by (2.10), and
the APD algorithm to solve problem (5.1). In LPD the stepsize parameters are set to ηt = 1/(LG+LKDY /DX),
τt = DY /(LKDX) and θt = (t− 1)/t. The stepsizes in APD are chosen as in Corollary 2.2, and the Bregman
divergences are defined as VX(xt, x) := ‖xt − x‖22/2 and VY (yt, y) := ‖yt − y‖22/2, hence DY /DX = 1. In
addition, we also applied the APD algorithm with unbounded feasible sets, denoted APD-U, to solve (5.1) by
assuming that X is unbounded. The stepsizes in APD-U are chosen as in Corollary 2.4, and we set N = 150. To
have a fair comparison, we use the same Lipschitz constants LG and LK for all algorithms without performing
a backtracking. It can be easily seen that L∗G = λmax(ATA) and L∗K = λ

√
8 (see [8]) are the smallest Lipschitz

constants that satisfy (1.2). Moreover, since in many applications the Lipschitz constants are either unknown
or expensive to compute, the robustness to the overestimated Lipschitz constants of the algorithm is important
in practice. Hence, we also compare the sensitivity to the overestimated Lipschitz constants of the algorithms
APD, APD-U and LPD in image reconstruction.

To do so, we supply all algorithms with the best Lipschitz constants LG = L∗G and LK = L∗K first. For an
approximate solution x̃ ∈ Rn, we report both the primal objective function value f(x̃) and the reconstruction
error relative to the ground truth, i.e., r(x̃) := ‖x̃− xtrue‖2/‖xtrue‖2, versus CPU time, as shown in Figure
5.1. Moreover, to test the sensitivity of all algorithms with respect to LG and LK , we also supply all algorithms
with over-estimated Lipschitz constants LG = ζGL

∗
G and LK = ζKL

∗
K , where ζG, ζK ∈ {2i/2}8i=0. We report

in Figure 5.2 the relationship between the multipliers ζG, ζK and the primal objective function value of all
algorithms after N iterations. We make a few observations about the obtained results. Firstly, for solving
the image reconstruction problem (5.1), both APD and APD-U outperform LPD in terms of the decreasing
of objective value and relative error. Secondly, although APD-U has the same rate of convergence as APD,
its practical performance is not as good as APD. A plausible explanation is that we need to specify more
conservative stepsize parameters in APD-U (see (2.27) and (2.19)) in order to ensure its convergence for
unbounded sets X and Y , which may contribute to its inferior practical performance. Finally, the performance
of both APD and APD-U is more robust than LPD when LG is over-estimated. This is consistent with our
theoretical observations that both APD and APD-U have better rates of convergence than LPD in terms of
the dependence on LG.

5.2. Nonlinear game. Our next experiment considers a nonlinear two-person game

min
x∈∆n

max
y∈∆m

1

2
〈Qx, x〉+ 〈Kx, y〉, (5.2)
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where Q = ATA is a positive semidefinite matrix with A ∈ Rk×n, and ∆n and ∆m are standard simplices:

∆n :=
{
x ∈ Rn+ :

∑n
i=1 x

(i) = 1
}

and ∆m :=
{
y ∈ Rn+ :

∑m
i=1 y

(i) = 1
}
.

We generate each entry of A independently from the standard normal distribution, and each entry of K
independently and uniformly from the interval [−1, 1].

Problem (5.2) can be interpreted as a two-person game, in which the first player has n strategies and
chooses the i-th strategy with probability x(i), i = 1, . . . , n. On the other hand, the second player has m
strategies and chooses strategy i = 1, . . . ,m with probability y(i). The goal of the first player is to minimize
the loss while the second player aims to maximize the gain, and the payoff of the game is a quadratic function
that depends on the strategies of both players. A saddle point of (5.2) is a Nash equilibrium of this nonlinear
game.

It has been shown (e.g., [41, 34, 35]) that the Euclidean distances VX(xt, x) = ‖xt−x‖22/2 andVY (yt, y) =
‖yt − y‖22/2 are not the most suitable for solving optimization problems on simplices. In this experiment, we
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Fig. 5.1: Comparisons of APD, APD-U and LPD in image reconstruction. The top and bottom rows, respectively, show the
performance of these algorithms on the “Gaussian” and “Bernoulli” instances. Left: the objective function values f(xagt ) from
APD and APD-U, and f(xt) from LPD vs. CPU time. The straight line at the bottom is f(xtrue). Right: the relative errors
r(xagt ) from APD and APD-U and r(xt) in LPD vs. CPU time.
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Fig. 5.2: Sensitivity to the overestimated Lipschitz constants: comparisons of APD, APD-U and LPD in image reconstruction.
Left: the primal objective function values f(xagN ) from APD and APD-U, and f(xN ) from LPD vs. ζG and ζK on the “Gaussian”
instance. Right: the primal objective function values f(xagN ) from APD and APD-U, and f(xN ) from LPD vs. ζG and ζK on the
“Bernoulli” instance.

choose ‖ · ‖ := ‖ · ‖1 and ‖ · ‖∗ := ‖ · ‖∞ in both spaces X and Y, and use the following entropy setting for
Bregman divergences VX(·, ·) and VY (·, ·):

VX(xt, x) :=

n∑
i=1

(x(i) + ν/n) ln
x(i) + ν/n

x
(i)
t + ν/n

, VY (yt, y) :=

m∑
i=1

(y(i) + ν/m) ln
y(i) + ν/m

y
(i)
t + ν/m

,

L∗G = max
i,j
|Q(i,j)|, L∗K = max

i,j
|K(i,j)|, αX = 1 + ν, αY = 1 + ν,

Ω2
X = (1 +

ν

n
) ln(

n

ν
+ 1), Ω2

Y = (1 +
ν

m
) ln(

m

ν
+ 1), DX = ΩX

√
2/αX , DY = ΩY

√
2/αY ,

(5.3)

where L∗G and L∗K are the smallest Lipschitz constants, and ν is arbitrarily small (e.g., ν = 10−16), see [5] for
the calculation of αX , αY , ΩX and ΩY . With this setting, the subproblems in (2.5) and (2.6) can be efficiently
solved within machine accuracy [5].

In this experiment, we compare the proposed APD algorithm with Nesterov’s smoothing technique in [41]
and Nemirovski’s mirror-prox method in [34]. The notation APD denotes the APD algorithm with the stepsizes
in Corollary 2.2 and (5.3). NEST denotes Nesterov’s algorithm in Section 5.3 of [41] with entropy distance
(See Theorem 3 and Section 4.1 in [41] for details about the setting for Nesterov’s algorithm). NEM denotes
Nemirovski’s mirror-prox method in (3.2)-(3.4) of [34] in which L = maxi,j |Q(i,j)|D2

X/2+maxi,j |K(i,j)|DXDY

(see “Mixed setups” in Section 5 in [34] for the variational inequality formation of SPP (5.2). In particular,
we set L11 = LG, L12 = L21 = LK , L22 = 0, Θ1 = Ω2

X , Θ2 = Ω2
Y , α1 = αX and α2 = αY in (5.11) in [34]).

Our basic observations are as follows. First, both APD and NEST exhibit similar numerical performance
when applied to the test problems in Table 5.1. It should be noted, however, that APD can be potentially
applied to a wider class of problems, e.g., those with unbounded dual feasible set Y . Second, both APD
and NEST decrease the primal objective function value faster than NEM, and are more robust to the over-
estimation of LG. This is consistent with our theoretical observations that both APD and NEST enjoy the
optimal rate of convergence (1.4), while NEM obeys a sub-optimal rate of convergence in (1.5). In addition,
both APD and NEST have lower iteration cost than NEM, since NEM requires an extragradient step in its
inner iteration.
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Table 5.1: Nonlinear game.

Algorithm N

Instance 1: k=100, Instance 2: k=1000, Instance 3: k=100 Instance 4: k=1000,
n=1000, m=1000 n=1000, m=1000 n=10000, m=1000 n=10000, m=1000

LG = 148.60, LK = 1 LG = 1139.98, LK = 1 LG = 161.93, LK = 1 LG = 1198.02, LK = 1
Obj. Val. CPU Obj. Val. CPU Obj. Val. CPU Obj. Val. CPU

APD
100 0.038 0.7 0.302 0.4 0.015 17.8 0.031 14.3
1000 0.014 6.3 0.203 4.0 -0.023 184.7 -0.005 141.2
2000 0.010 12.5 0.202 8.1 -0.025 354.1 -0.018 285.0

NEST
100 0.047 0.6 0.304 0.4 0.016 18.0 0.031 14.4
1000 0.008 6.3 0.205 4.0 -0.021 279.6 -0.011 141.8
2000 0.006 12.5 0.202 8.0 -0.026 441.9 -0.019 284.6

NEM
100 0.114 1.2 0.604 0.8 0.023 35.5 0.073 28.4
1000 0.038 12.1 0.427 7.6 0.009 401.5 0.043 279.6
2000 0.028 24.1 0.352 15.3 0.005 1127.3 0.029 562.0

(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

Fig. 5.3: Sensitivity to the overestimated Lipschitz constants: comparisons of APD, NEST and NEM in nonlinear game. The
figures are the primal objective function values vs. ζG and ζK after N = 2000 iterations.
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5.3. Randomized algorithms for nonlinear game. Our goal in the last experiment is to test the
efficiency of stochastic APD in solving the nonlinear game in (5.2). In particular, we consider the case when
both A and K are full matrix, and m = n� k. Consequently, the computation of Kx and KT y is much more
expensive than that of Qx. In order to reduce the arithmetic cost for computing Kx and KT y, Nemirovski et
al. introduced a novel randomized algorithm in [35], where the calculations of Kx and KT y are replaced by
calls to a stochastic oracle and then the mirror-descent SA algorithm is applied to solve the resulting stochastic
SPP. When Q = 0 in (5.2), it is reported in [35] that the time for mirror-descent SA to solve (5.2) is almost
within one call to the deterministic oracle to compute [KT y,−Kx] (see Sections 3.3 and 4.6 in [35]).

Using similar ideas to [35], we assume that for each input (xi, yi) ∈ X ×Y , the SO outputs the stochastic
gradient (∇G(xi), K̂x(xi), K̂y(yi)) ≡ (Qxi,Kx(xi, ξi),Ky(yi, ξi)) such that

Prob(K̂x(xi) = Kj) = x
(j)
i , ∀j = 1, . . . n, and Prob(−K̂y(yi) = −Kl) = y

(l)
i , ∀l = 1, . . .m, (5.4)

where Kj and (Kl)T are the j-th column and l-th row of K, respectively. In other words, each call to the SO
outputs the random samples of the columns and rows of K whose distributions depend on the input (xi, yi).
It can be checked that E[−K̂x(xi)] = −Kxi, E[K̂y(yi)] = KT yi, and under the settings in (5.3),

E
[
‖K̂x(xi)−Kxi‖2∗

]
=

n∑
j=1

x
(j)
i max

1≤k≤n

(
K(k,j) −

n∑
l=1

K(k,l)x
(l)
i

)2

=

n∑
j=1

x
(j)
i max

1≤k≤n
〈Kk, ej − xi〉2

≤
n∑
j=1

x
(j)
i max

1≤k≤n
‖Kk‖2∞‖ej − xi‖21 ≤ 4 max

k,j
|K(k,j)|2,

and similarly E[‖K̂y(yi) − KT yi‖2∗] ≤ 4 maxl,j |K(l,j)|2. Therefore, we set σx,G = 0, and σy = σx,K =

2 max
l,j
|K(l,j)|.

In our experiment we set n = m = 104, k = 100, and use the same matrix K as in [35], i.e.,

K(i,j) =

(
i+ j − 1

2n− 1

)c
, 1 ≤ i, j ≤ n, (5.5)

or

K(i,j) =

(
|i− j|+ 1

2n− 1

)c
, 1 ≤ i, j ≤ n, (5.6)

for some constants c > 0. We use S-APD 1 to denote the proposed stochastic APD method with pa-
rameters described in (5.3) and Corollary 3.2, MD-SA to denote the mirror-descent SA method in [35],
and SMP to denote the stochastic mirror-prox method in [21]. The iterations of MD-SA are described in
(3.7) as well as Sections 3.2 and 3.3 in [35]. We set the stepsize constants (3.12) in [35] to θ = 1 and
M2
∗ = 2 lnn[(maxi,j |Q(i,j)| + maxi,j |K(i,j)|)2 + maxi,j(K

(i,j))2]. For SMP, we use the technique in NEM to
formulate SPP (5.2) as a variational inequality, and apply the scheme described in (3.6) and (3.7) in [21], using
the suggested stepsize constants (4.3) in [21] with Θ = 1, L = maxi,j |Q(i,j)|D2

X/2+maxi,j |K(i,j)|DXDY , and
M2 = 4(µ−2

1 + µ−2
2 ) maxi,j |K(i,j)| (see (5.11) in [34] for the definition of µ1 and µ2).

We report in Table 5.2 the average objective values obtained by S-APD, MD-SA and SMP over 100
runs, along with the estimated standard deviations. While a statistically more sound way to compare these
algorithms is to estimate the confidence intervals associated with these objective values and/or conduct some
statistical tests (e.g., the paired t test) on the collected observations, we can safely draw some conclusions
directly from Table 5.2 since most of the estimated standard deviations are relatively small in comparison

1It should be noted that x̄t in (2.9) is not necessary in ∆n, thus K̂x(x̄t) may not be sampled by (5.4). However, we can set

K̂x(x̄1) := K̂x(x1) and K̂x(x̄t) := (1 + θt)K̂x(xt) − θtK̂x(xt−1) when t > 1. This setting does not affect the proof of Theorem
3.1, hence the rate of convergence of stochastic APD remains the same.
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Table 5.2: Randomized algorithms for nonlinear game. The Lipschitz constant LG = 161.2 in all the experi-
ments.

Alg. N

Instance 5: K in (5.5) Instance 6: K in (5.5) Instance 7: K in (5.6) Instance 8: K in (5.6)
with c = 2. LK = 1 with c = 0.5. LK = 1 with c = 2. LK = 0.25 with c = 0.5. LK = 0.5
Value of f CPU Value of f CPU Value of f CPU Value of f CPU

Mean Std. (Avg.) Mean Std. (Avg.) Mean Std. (Avg.) Mean Std. (Avg.)

S-APD
100 0.457 8.8e-4 0.6 0.834 3.0e-4 0.6 0.088 4.1e-3 0.6 0.495 1.6e-2 0.6
1000 0.272 4.5e-5 3.9 0.727 5.0e-5 4.1 0.069 1.6e-3 3.9 0.472 2.8e-3 4.1
2000 0.262 1.6e-5 9.8 0.718 1.5e-5 9.2 0.066 9.5e-4 9.8 0.449 6.7e-3 8.0

SMP
100 0.579 1.2e-4 0.9 0.865 2.0e-5 0.9 0.087 1.6e-4 0.9 0.476 1.0e-3 0.9
1000 0.510 1.1e-4 7.4 0.850 2.0e-5 7.6 0.086 1.7e-3 7.5 0.474 5.0e-3 7.7
2000 0.483 8.8e-5 18.6 0.844 2.1e-5 14.9 0.084 1.2e-3 15.6 0.472 2.8e-3 15.1

MD-SA
100 0.583 1.3e-4 0.6 0.866 2.5e-5 0.6 0.087 2.5e-5 0.5 0.476 1.9e-4 0.6
1000 0.574 1.3e-4 3.7 0.861 2.1e-5 3.8 0.086 2.1e-5 3.7 0.474 1.5e-4 3.9
2000 0.569 1.2e-4 7.3 0.859 2.2e-4 7.5 0.085 2.3e-5 7.3 0.474 1.6e-4 7.6

with the average objective values. Firstly, it can be seen that S-APD exhibits better performance than both
MD-SA and SMP for the first two instances in Table 5.2. More specifically, the objective values obtained by
S-APD in 100 iterations for these instances are better than those obtained by the other two algorithms in 2, 000
iterations. Secondly, for the last two instances in Table 5.2, when the number of iterations is small (N = 100),
the objective values obtained by S-APD does not seem to be significantly different from and may even turn
out to be worse than those obtained by MD-SA and SMP, respectively, for Instance 7 and 8. However, it
seems that S-APD can decrease the objective values faster than the latter two algorithms, and hence that its
advantages become more apparent as the number of iterations increases. In particular, the objective values
obtained by S-APD in 1, 000 iterations appear to be better than those obtained by the other two algorithms
in 2, 000 iterations for these two instances.

6. Concluding remarks. We present in this paper the APD method by incorporating a multi-step
acceleration scheme into the primal-dual method in [9]. We show that this algorithm can achieve the optimal
rate of convergence for solving both deterministic and stochastic SPP. In particular, the stochastic APD
algorithm seems to be the first optimal algorithm for solving this important class of stochastic saddle-point
problems in the literature. For both deterministic and stochastic SPP, the developed APD algorithms can
deal with either bounded or unbounded feasible sets as long as a saddle point of SPP exists. In the unbounded
case, the rate of convergence of the APD algorithms will depend on the distance from the initial point to the
set of optimal solutions.

It should be noted that, although some preliminary numerical results have been reported, this paper focuses
more on the theoretical studies of the iteration complexity associated with the proposed APD methods. We
expect that the practical performance of these algorithms can be further improved, for example, by adaptively
choosing a few algorithmic parameters, e.g., ηk, based on some backtracking techniques to search for the most
appropriate Lipschitz constants LG and LK . It is also worth mentioning that in the APD algorithm the range
of the combination parameter θ is restricted to (0, 1]. On the other hand, He and Yuan [17] recently showed
that the range of θ in the primal-dual algorithm can be enlarged from [0, 1] to [−1, 1] from the perspective
of contraction methods. As a result, the primal and dual stepsize condition with respect to LK in [9] is
relaxed when θ ∈ (0, 1]. Moreover, both the primal and dual stepsizes can be arbitrarily large if θ = −1.
These enlarged ranges of the involved parameters can allow us to choose more aggressive stepsizes and hence
possibly to improve the practical performance of the primal-dual algorithm. It will be interesting to study if
the ranges of the parameters in the APD algorithm can be enlarged by incorporating the ideas in [17] or other
novel methods.
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