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Abstract. We introduce a variational model and a numerical method for
simultaneous ODF smoothing and reconstruction. The model uses the sparsity

of MR images in finite difference domain and wavelet domain as the spatial

regularization means in ODF’s reconstruction. The model also incorporates
angular regularization using Laplace-Beltrami operator on the unit sphere. A

primal-dual scheme is applied to solve the model efficiently. The experimental

results indicate that with spatial and angular regularization in the process of
reconstruction, we can get better directional structures of reconstructed ODFs.

1. Introduction. Diffusion Weighted Magnetic Resonance Imaging (DW-MRI, or
shortened as DWI) has been implemented widely as a non-invasive method to quan-
tify water diffusion in tissues. Under the hypothesis that the preferred orientations
of water diffusion will coincide with the fiber directions, DWI can determine the
directionality of neuronal fiber bundles, that yield information on structural con-
nections in brains [6, 18, 24, 25].

Water diffusion within tissue depends on the microstructure of the tissue. The
average water diffusion probability density function (PDF) P (r) at a specific voxel
on a displacement r over an experiment diffusion time is related to the DWI mea-
surements S(q) [27] by a Fourier transform

(1) S(q) = S0

∫
R3

P (r)e−iq·rdr,

where S(q) is the attenuation of the MR signal with respect to the diffusion sen-
sitizing gradient q, S0 is the MRI signal in the absence of any gradient. The PDF
P (r) provides valuable information on the tissue microstructure. Since the water
diffusion is more likely to happen at the direction of fiber tissue, the direction r
of the maximum diffusion probability P (r) will highly coincide with the direction
of fiber tissue. However, for in vivo applications it is not feasible to reconstruct
the diffusion PDF P (r) from the MR signals S(q)/S0 using the complex Fourier
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transform, since it requires a large number of measurements of S(q) over a wide
range of q ∈ R3 in order to perform a stable inverse Fourier transform.

Diffusion Tensor Imaging (DTI) is a well-known classical MRI technique used
to explore fiber tissue information in the brain. There have been a large amount
of work on DTI that employs a second order, positive definite, symmetric diffusion
tensor D to represent the local tissue structure [4, 5, 6]. DTI implicitly assumes that
the probability density function of the displacement of water diffusion is Gaussian
with mean zero and covariance matrix D. The fractional anisotropy (FA) defined
using the eigenvalues of D has become the most widely used measure of diffusion
anisotropy in white matter. DTI has been shown to be a valuable tool in handling
voxels with only one fiber, and studies have shown increasing clinical utility of DTI
in the investigation of neuronal axon fiber integrity of white brain matter. However,
it has been recognized that the single Gaussian model is inappropriate for assessing
multiple fiber tract orientations, when complex tissue structure is found within a
voxel [15, 29, 34].

In order to overcome these difficulties several approaches have been taken. Tuch
et al. have proposed high angular resolution diffusion imaging (HARDI) method
in which the acquisition makes the diffusion sensitizing gradients sample on the
surface of a sphere [29, 30]. In [31] Tuch introduced Q-ball imaging (QBI), which
is a HARDI technique, and used the orientation distribution function (ODF) to
describe the orientational structure of fibre tissue. The local maxima of the ODFs
implies the most probable fiber directions. In deterministic fiber tracing methods,
such as streamline algorithms, the local maxima of the ODFs are assumed as the
fiber directions. In statistical fiber tracing methods, such as Markov Chain Monte
Carlo (MCMC) based algorithms, the ODFs can be used as the probability density
functions of the fiber orientation.

The original definition of ODF is of the form

Ψ1(u) =
1

Z

∫ ∞
0

P (ru)dr,(2)

where P (ru) is the same as in equation (1), r = |r|, and u = r/r. With proper
normalization constant Z, the ODF Ψ1(u) is a probability density function defined
on a unit sphere. Tuch also showed in [31] that the ODF could be approximated
directly from the raw HARDI signal S(u) on a single unit sphere of q-space by the
Funk-Radon transform (FRT) G:

Ψ1(u) ≈ 1

Z
G[S](u)

where G[S](u) is defined as

G[S](u) =

∫
|w|=1

δ(uTw)S(w)dw,

and δ is the Dirac delta function.
In [1, 32] it is pointed out that, if we represent the orientation of unit vector u

using spherical coordinate (θ, φ), then∫
R3

P (r)dr =

∫ π

0

∫ 2π

0

∫ ∞
0

P (ru)r2 sin(θ)drdφdθ

=

∫ π

0

∫ 2π

0

(∫ ∞
0

P (ru)r2dr

)
sin(θ)dφdθ,
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and thus the marginal PDF on the unit sphere should be represented by

(3) Ψ2(u) =

∫ ∞
0

P (ru)r2dr.

The definition of Ψ2(u) was actually proposed before in Wedeen et al. [35] as a
“weighted radial summation”. Comparing to Ψ2(u), in the definition of Ψ1 the
Jacobian factor r2 is dropped, so Ψ1 does not represent a true probability density
function, and in practice the orientation information is blurred in the ODF estima-
tion by Ψ1. On the other hand, since Ψ2 is a probability distribution function, it
does not require the normalization factor Z anymore.

Tristán-Vega et al. [32] use the property of Fourier transform and propose to
estimate Ψ2(u) based on

Ψ2(u) ≈ CG
[
4S(q)

S0

]
(u)

= CG
[

1

q2S0

∂

∂q

(
q2 ∂S(q)

∂q

)
+

1

q2S0
4bS(q)

]
(u),

where C is a constant, q = |q|, and 4b is the Laplacian-Beltrami operator. Aganj
et al. [1] showed that

(4) G
[

1

q2S0

∂

∂q

(
q2 ∂S(q)

∂q

)]
≡ −2π,

and developed a simple relationship between Ψ2(u) and the signal intensity on the
unit sphere:

(5) Ψ2(u) ≈ 1

4π
+

1

16π2
G[4bS̃](u),

where

S̃(q) = ln(− ln(
S(q)

S0
)).

In equation (5), The ODF Ψ2(u) is estimated in each individual voxel, and no
connection between the neighborhood points is considered. This can result in the
error in ODF estimation when the data is noisy. There has been some work on
the spatial regularization of the ODF results. H-E. Assemlal et al. [3] presented a
variational framework for Ψ1(u). The model in his work is adaptable to the Rician
distribution of MRI noise and able to use neighboring information by total variation
(TV) based minimization. The similar methods have been proposed for the regu-
larization of DTI [10, 23, 28] apparent diffusion coefficient (ADC) [9], and HARDI
data [25]. However, there is still difficulty in incorporating TV based regularization
into ODF estimation. One big problem is the computational complexity caused by
non-differentiability of the TV norm. In many TV based smoothing algorithms a
regularized TV norm was used to avoid non-smoothness problems, so that gradient
descent methods can be applied. The drawback of using regularized TV norm is
that it is sensitive to the regularization parameter, and takes longer time to get
convergence.

Recently, several methods have been developed to solve the TV denoising prob-
lem efficiently with exact (not approximated) TV norm. They include using dual
formulation [7], variable splitting and continuation [33, 36], split Bregman [16],
primal-dual formulation [37, 38, 14, 8], proximity gradients [26, 19] and various
forms of operator splitting [20, 22]. Other alternatives to TV based regularizers are
also considered for magnetic resonance image reconstruction. One of them is the use
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of L1 sparsity under a wavelet transform. It has been exploited that MR images
are sparse both in the spatial finite differences domain and under wavelet trans-
form [21]. These properties have been successfully applied in MR reconstructions
in compressive sensing [21].

In this paper we focus on the joint estimation and regularization of the ODF Ψ2.
The purpose of this paper is to provide a framework that simultaneously estimate
and smooth the ODFs from the HARDI data, and a fast robust numerical algorithm
to get the model solutions. Inspired by the previous work on the regularization
for Ψ1, we apply the angular and spatial regularization framework on the ODF
model for Ψ2, which has not been implemented previously. Furthermore, we are
the first ones that consider the combination of total variation and wavelet based
regularization as the spatial regularization on ODF. We also adapt the primal-
dual numerical algorithm for solving combined total variation and wavelet based
regularization models in the estimation of the ODF. Moreover, unlike the work in
[1, 11, 12, 13, 31, 32], where the estimation of ODF is done after the reconstruction
of S is performed, we introduce a direct estimation and smoothing model on ODFs
in the hope to reduce the accumulation of estimation error in the calculation.

Experimental results and comparisons provided in this work indicate the effi-
ciency of the proposed method.

2. Background. The Q-Ball Imaging scheme for solving ODF Ψ1 in [31] requires
very high load of calculation on the Funk-Radon Transform (FRT). A simplifciation
was provided by Descoteaux et al. [12], in which the HARDI data is represented by
spherical harmonic series (SHS). By introducing SHS, the calculation of the FRT
is much simpler. Descoteaux et al. implemented the SHS on the calculation of Ψ1

[11, 12, 13]. The use of SHS is also applied by Aganj et al. and Vega et al. [1, 32]
in the estimation of ODF Ψ2.

2.1. Spherical harmonics series. A spherical harmonic function, denoted as
Y ml (θ, φ), is of the form

Y ml (θ, φ) =

√
2l + 1

4π
· (l −m)!

(l +m)!
Pml (cos θ)eimφ,(6)

where Pml is the associated Legendre polynomial. l i s called the order of the
spherical harmonic function, m is the phase factor, and m = −l, . . . , 0, . . . , l. The
function Y ml (θ, φ) is defined on unit sphere, and the set of all spherical harmonic
functions is an orthonormal basis of complex functions defined on unit sphere.

For all real functions defined on unit sphere, the orthogonal set of real spherical
harmonic basis is usually used. For l even number, choose k = 0, 2, 4, . . . , l, m =
−k, . . . , 0, . . . , k, a modified spherical harmonic basis Yj can be defined by

Yj =


√

2 Re(Y mk ) , if −k ≤ m < 0
Y 0
k , if m = 0√
2 Im(Y mk ) , if 0 < m ≤ k

,(7)

where the index j follows j = (k2 + k + 2)/2 + m , and we still say that the order
of Yj is k [12]).

For any real valued function Ψ(u) on an unit sphere, it can be approximated by
the modified spherical harmonic basis mentioned above. Denoting the point u on
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the unit sphere by its polar angles (θ, φ), we will have

Ψ(θ, φ) ≈
R∑
j=1

cjYj(θ, φ),(8)

where cj ’s are real numbers, R = (l + 1)(l + 2)/2.
One useful property of spherical harmonic functions {Yj}Rj=1 is that they are the

eigenfunctions of the Laplace-Beltrami operator 4b on the unit sphere:

(9) 4bYj(u) = −lj(lj + 1)Yj(u),

where lj is the order of Yj(u). Descoteaux et al. [12] used this property on the
angular regularization of ODF Ψ1. Aganj et al. [1] applied this property in the
process of solving the analytical solution to the equation (5) for Ψ2.

2.2. Spherical harmonics series approximation of Funk-Radon transform.
In diffusion MRI, at a fixed voxel, the achieved signal intensities S(u) and its Funk-
Radon transform G[S](u) are real valued functions defined on unit sphere, and thus
they can be approximated by the real spherical harmonic basis. Descoteaux et al.
[12] proved that if S(u) can be approximated as

S(u) =

R∑
j=1

cjYj(u),(10)

then the Funk-Radon transform G[S](u) can be approximated by

G[S](u) =

R∑
j=1

2πPlj (0)cjYj(u),(11)

where lj is the order of the modified spherical harmonics function Yj , and Plj (0) is
the Legendre polynomial of degree lj evaluated at 0, i.e.,

Plj (0) =

{
0 lj odd,

(−1)lj/2
1·3·5···(lj−1)

2·4·6···lj lj even.
(12)

Aganj et al. [1] showed that if the signal is represented using SHS, i.e.,

(13) S̃(u) = ln(− ln(
S(u)

S0
)) =

R∑
j=1

cjYj(u),

then

(14) Ψ2(u) =

R∑
j=1

ajYj(u),

where

(15) aj =


1

2
√
π
, j = 1,

− 1

8π
Plj (0)lj(lj + 1)cj , j > 1.

In equation (15), a1 = 1/2
√
π is due to the fact that Y1(u) ≡ 1/2

√
π. In fact,

from equation (5),
R∑
j=2

ajYj(u) =
1

16π2
G[4bS̃](u).
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Aganj et al. [1] propose to estimate Ψ2(u) in two steps: First estimate the SHS
coefficients cj ’s of S(u) by least squares from equation (13), and then calculate the
SHS coefficients aj ’s of Ψ2(u) by the relationship in equation (15).

3. Model description. In this section we present our model that is able to simul-
taneously estimate and smooth the ODF Ψ2(u), where the smoothing is performed
with respect to both the spatial variable x and the angular variable (θ, φ).

The data fidelity term in our model is based on equation (14). Instead of voxel-

by-voxel least square fitting on S̃(u) as in [1], we start by assuming that

(16) Ψ2(x,u) =

R∑
j=1

aj(x)Yj(u), x ∈ Ω,

where Ω is the image domain. The goal is simultaneously estimating and regular-
izing Ψ2(x,u) from the data S(x,u) and S0(x). By the linear expansion described
in equation (16), this problem reduce to the estimation and regularization of the
coefficients aj(x), where j = 1, 2, . . . , R, x ∈ Ω. Moreover, from equation (15) we

already have a1(x) ≡ 1/
√

2π,∀x ∈ Ω.
Our model consists of four terms: a least squares energy, an angular regular-

ization energy, a total variation regularization energy, and a wavelet L1 sparsity
regularization energy.

3.1. Least squares energy. We first present a least squares type energy for the
estimation of the coefficients aj(x) in this subsection as the data fitting term in our
energy functional. By using the relation of equations (13) and (16), from (14) and
(15) we have

(17) S̃(x,u) = c1(x)Y1(u)−
R∑
j=2

aj(x) · 8π[Plj (0)lj(lj + 1)]−1Yj(u),

where c1(x) is the coefficient of Y1(u) in the SHS representation of S(x,u). In fact,

from the orthogonality of the real SHS, we have Y1(u) ≡ 1/
√

2π and∫
∂B1

Yj(u)du = 0, ∀j > 1,

therefore

c1(x)Y1(u) ≡ 1

4π

∫
∂B1

S̃(x,u)du,

and

(18)

(
1

4π

∫
∂B1

S̃(x,u)du

)
− S̃(x,u) =

R∑
j=2

aj(x) · 8π[Plj (0)lj(lj + 1)]−1Yj(u).

Now if we let

F (x,u) =

(
1

4π

∫
∂B1

S̃(x,u)du

)
− S̃(x,u),

and let
Ỹj(u) = 8π[Plj (0)lj(lj + 1)]−1Yj(u),

then from equation (18) we have

(19) F (x,u) =

R∑
j=2

aj(x)Ỹj(u).
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where F (x,u) can be calculated directly from the signal data S(x,u). Therefore
we define the least squares energy as

E1(a2, . . . , aR)

=
1

2

∫
Ω

∫
∂B1

(F (x,u)−
R∑
j=2

aj(x)Ỹj(u))2dudx,
(20)

where ∂B1 denotes the unit sphere.
Although the DWI data has Rician noise, we use the least squares fidelity for

simplicity, since the primal-dual optimization schemes are well studied especially for
least squares fidelity terms. For Rician noise, it is also possible to use a likelihood
based fidelity term, and then use a general primal-dual scheme to solve the problem.

3.2. Angular regularization. M. Descoteaux et al. [12] proposed a angular reg-
ularization on the signal S(x,u) by minimizing the following term:

(21)

∫
∂B1

42
bS(x,u)du,

where 4b denotes the Laplace-Beltrami operator on unit sphere. This angular reg-
ularization can reduce the affection by noise in ODF estimation, especially when
using higher order spherical harmonics in the representation of the ODF. Given the
property in equation (9), it is very easy to evaluate the Laplace-Beltrami opera-
tor acting on S in equation (21). Inspired by [12] we apply the Laplace-Beltrami
operator 4b on Ψ2(x,u). Then, we define

E2(a2, . . . , aR)

=
1

2

∫
∂B1

(4bΨ2(x,u))
2
du

=
1

2

∫
∂B1

 R∑
j=1

aj(x)4bYj(u)

2

du

=
1

2

R∑
j=2

a2
j (x)l2j (lj + 1)2,

(22)

where 4bY1(u) = 0 since Y1(u) ≡ 1/
√

2π.
There are two advantages by including the angular regularization. First, since the

weights l2j (lj + 1)2 are larger for high order coefficients, the angular regularization

tends to suppress the value of a2
j (x)’s when j is large, which helps in reducing

the fake ODF maxima caused by the noise. This effect is well studied in [12].
Second, the energy functional E2 is strongly convex with respects to the coefficients
a2(x), . . . , aR(x), which will provide faster convergence and better robustness for
the numerical scheme that solves our model.

There is a slight difference between our energy functions E1, E2 and the energy
functions in the work of Descoteaux et al.. In [12, 13], where the least-squares fit
and angular smoothing are applied on S(x,u), the ODF Ψ1(x,u) is calculated using
the smoothed S(x,u) through the coefficients in the SH representations of S. In
this paper the estimation and smoothing are applied directly to the ODFs Ψ2(x,u).
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3.3. Spatial regularization. Minimizing the following energy functional

E3(a2, . . . , aR) =

R∑
j=2

∫
Ω

|∇xaj(x)| dx(23)

is the total variation (TV) based regularization, which is a technique used widely
in MRI reconstruction. The idea of applying TV on the spherical harmonic repre-
sentation for diffusion MRI is from [3, 9].

In our model we consider one other spatial regularization energy functional

E4(a2, . . . , aR) =

R∑
j=2

∫
Λ

|W [aj ](y)| dy,(24)

where W : Ω→ Λ is a wavelet transform operator. This is a sparsity constraint for
images aj ’s on domain Λ.

The purpose of spatial regularization is to enhance the images of aj(x)’s, and
remove image noises by regularizing the sparsity of aj(x)’s in finite difference do-
main and wavelet domain. The combination of total variation and wavelet based
regularization has been proven to be very effective in MRI, since most MRI images
have been shown to be sparse in both the finite difference domain and wavelet do-
main [21]. For TV based image restoration, the restored image is often sharper in
edge, but with possible staircase effects, while by wavelet based image restoration,
the restored image is smoother. In [21], Lustig et al. introduced this regularization
technique in multi-channel fast MRI reconstruction. In fact, our model can be seen
as an extension of the method by Lustig et al. on diffusion MRI with different
least squares energy, which represents the correlation between the multiple chan-
nels. Other studies on the total variation and wavelet regularization technique are
also in [17, 22].

Inspired by those work, we combine both the total variation and wavelet regu-
larization for analyzing diffusion MRI.

3.4. Proposed model. In this section we present our model. Define the following
energy functional:

E(a2, . . . , aR)
= E1(a2, . . . , aR) + λE2(a2, . . . , aR)
= +ηE3(a2, . . . , aR) + µE4(a2, . . . , aR),

where E1 is the least square energy defined in equation (20), E2 is the energy for
angular regularization defined in (22), E3 is the TV regularization energy in (23),
and E4 is the wavelet L1 sparsity regularization in (24). The parameters λ, η, µ
are the balancing weights for angular regularization, TV based regularization, and
wavelet based regularization. Our model estimates the coefficients a2, . . . , aR by
minimizing the energy functional E(a2, . . . , aR).

3.5. Discrete form of our model. In this section we provide the discrete form of
our model. Let F ∈ RM×N be the matrix representing the discrete form of the MR
signal information F(x,u). M is the total number of the sensitizing gradient applied
to get the data in Q-ball imaging, and N is the total number of voxels in image
domain Ω. Let A ∈ R(R−1)×N be the matrix of the discrete form of the aj(x)’s,

and B ∈ RM×(R−1) be the matrix for real spherical harmonic basis functions Ỹj(u).
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We can rewrite the least square energy function E1 as

E1(A) = ‖BA− F‖2F ,
where ‖ · ‖F is the Frobenius norm.

Also, write A = (A2,A3, . . . ,AR)T . Then, for each j = 2, 3, . . . , R, Aj ∈ R1×N

is the row vector for the image defined by function aj(x), x ∈ Ω. Under this notation
our model can be written as minimizing the following energy function E(A):

(25)

E(A) =
1

2
‖BA− F‖2F +

λ

2
‖LA‖2F

+η

R∑
j=2

‖AT
j ‖TV + µ

R∑
j=2

‖W (AT
j )‖1,

where L is a row vector with Lj = lj(lj + 1), W denotes the discrete wavelet
transform operator, and ‖ · ‖TV is the total variation of a image.

4. Numerical scheme. To minimize the energy function in (25), we adapt the
modified primal-dual hybrid gradient algorithm proposed by E. Esser, X, Zhang
and T. Chan [14], with slightly modification to cope with the wavelet regularization
term. The primal-dual scheme is also equivalent to a special case of the primal-dual
algorithms discussed in [8].

4.1. Primal-dual formulation. In [37] a primal-dual hybrid gradient (PDHG)
scheme was developed on linear inversion problems with only TV regularization.
Now we extend their scheme to the problem consisting of more regularization terms:

(26) min
x∈Rn

H(x) + η

n∑
i=1

‖Dix‖2 + µ‖Wx‖1.

Here H(x) is a closed proper convex function, Di ∈ R2×n,Ψ1 ∈ Rn×n are linear
operators acting on x. For the norms ‖ · ‖2 and ‖ · ‖1, we have

η‖Dix‖2 = max
pi∈R2,‖pi‖2≤1

< ηDix, pi >

= max
pi∈R2,‖pi‖2≤1

< x, ηDT
i pi >,

µ‖Wx‖1 = max
q∈Rn,‖q‖∞≤1

< µWx, q >

= max
q∈Rn,‖q‖∞≤1

< x, µWT q > .

Therefore if we let

D =


ηD1

ηD2

...
ηDn

µW

 ∈ R3n×n, p =


p1

p2

...
pn
q

 ∈ R3n,

then

η

n∑
i=1

‖Dix‖2 + µ‖Ψ1x‖1 = max
p∈X

< Dx, p >,

where
X = {p ∈ R3n : ‖(p2i−1, p2i)

T ‖2 ≤ 1,∀i = 1, · · · , n,
‖(p2n+1, p2n+2, · · · , p3n)T ‖∞ ≤ 1}.
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Then the minimization problem in equation (26) becomes a min-max problem:

min
x∈Rn

max
p∈X

H(x)+ < Dx, p > .

By [14, 37], the PDHG scheme is as follows:

(Dual Step)

pk+1 = argmax
p∈X

< Dxk, p > − 1

2τk
‖p− pk‖22

= argmin
p∈X

< −Dxk, p > +
1

2τk
‖p− pk‖22

= argmin
p∈X

1

2τk
‖p− (pk + τkDx

k)‖22
= πX(pk + τkDx

k),

(Primal Step)

xk+1 = argmin
x∈Rn

< x,DT pk+1 > +H(x)

+
1

2θk
‖x− xk‖22,

where πX denotes the projection onto space X, τk and θk are stepsizes.
A modified PDHG scheme is proposed in [14], by modifying the iteration of pk+1

in dual step to

pk+1 = argmin
p∈X

< −Dyk, p > +
1

2τk
‖p− pk‖22

= πX(pk + τkDy
k),

where

yk = (1 +
θk
θk−1

)xk − θk
θk−1

xk−1.

In fact, if {θk} is a constant sequence, yk = 2xk − xk−1. In this case, the modified
PDHG algorithm is also a special case of the primal-dual algorithms studied in [8].
The convergence analysis is discussed in [14, 8].

4.2. Primal-dual scheme for our model. The variable x in the minimization
problem (26) is a vector in Rn. In our proposed model, the variable A is a matrix.
However, since the Frobenius norm is an entry-wise matrix norm, we can easily
adapt our model to a vector form.

Assume A = {ai,j}(R−1)×N = (A2,A3, . . . ,AR)T , and F = {si,j}M×N . Here

each Ai can be treated as a vector form of a 2D image. Now let x ∈ R(R−1)N×1

and s ∈ RMN×1 be the vector form of A and F by using dictionary order, i.e.,

x = (a2,1, . . . , aR,1, a2,2, . . . , aR,2, . . . , a2,N , . . . , aR,N )T ,
s = (s1,1, . . . , sM,1, s1,2, . . . , sR,2, . . . , s1,N , . . . , sM,N )T .

Then we have

1

2
‖BA− F‖2F +

λ

2
‖LA‖2F =

1

2
‖B′x− s‖22 +

λ

2
‖L′x‖22,

where B′ = diag(B,B, . . . ,B), L′ = diag(L,L, . . . ,L), B′,L′ ∈ R(R−1)N×(R−1)N .
Now define Di ∈ R2×(R−1)N to be the discrete form of gradient operator acting
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on x at voxel i, define Ψ1 to be the operator that performs 2D discrete wavelet
transform on each Ai, and let

H(x) =
1

2
‖B′x− s‖22 +

λ

2
‖L′x‖22.

Then the minimization problem

min
x∈R(R−1)N

H(x) + η

(R−1)N∑
i=1

‖Dix‖2 + µ‖Wx‖1

will be equivalent to our model in (25).
To be consistent in notation, we write the primal-dual scheme here using our

original notation with matrices.
Define D : R(R−1)×N → R(R−1)×N×2 to be the discrete form of gradient operator,

and W : R(R−1)×N → R(R−1)×N to be the discrete wavelet transform operator:

DA = D(A2, . . . ,AN )T = (DAT
2 , . . . , DAT

N ),

WA = W(A2, . . . ,AN )T = (WAT
2 , . . . ,WAT

N ),

Notice that in the above Ai are actually the vector form of a 2D image. Thus D is
a 2D gradient operator, and W is a 2D wavelet transform operator.

In dual step, we have

(27)
Pk+1 = πX1(Pk + τkηDYk),
Qk+1 = πX2(Qk + τkµWYk),

where Pk ∈ R(R−1)×N×2, Yk,Qk ∈ R(R−1)×N , and

X1 = {(Pi,j) ∈ R(R−1)×N×2 : ‖Pi,j‖2 ≤ 1,
∀i = 2, . . . , R,∀j = 1, . . . , N},

X2 = {(Qi,j) ∈ R(R−1)×N : |Qi,j | ≤ 1,
∀i = 2, . . . , R,∀j = 1, . . . , N}.

For any P = (Pi,j) ∈ R(R−1)×N×2, Q = (Qi,j) ∈ R(R−1)×N , we can actually write
the projections component-wise as follows:

(πX1(P))i,j =
Pi,j

max(‖Pi,j‖2, 1)
,

(πX2(Q))i,j =
Qi,j

max(|Qi,j |, 1).

In primal step, the optimal condition for Ak+1 is

ηDTPk+1 + µWTQk+1 + BT (BAk+1 − F)

+λL2Ak+1 +
1

θk
(Ak+1 −Ak) = 0,

Thus, we can write

(28)

Ak+1 =
(
θk(BTB + λL2) + I

)−1
(Ak

−θkηDTPk+1 − θkµWTQk+1

+θkB
TF),

Yk+1 = (1 +
θk
θk−1

)Ak+1 − θk
θk−1

Ak.

Here DT : R(R−1)×N×2 → R(R−1)×N is in fact the discrete form of negative diver-
gence operator.

Finally, we write our primal-dual scheme as follows:
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Algorithm 1 Primal-Dual Scheme for solving (25)

A0 ← 0,P0 ← 0,Q0 ← 0,Y0 ← 0
repeat

Iterate Pk+1, Qk+1 by (27)
Iterate Ak+1, Yk+1 by (28)

until convergence condition is met

5. Experimental results. To verify the effectiveness of the proposed model and
numerical algorothms in this section we provide our experimental results, and com-
pare with the algorithms in [1], which incorporate least squares estimation and
angular regularization over signal information F (x,u) defined in equation (19). For
the 2D wavelet transforms, we use a level 2 Daubechies-6 wavelet transform. To
perform the transform in our program we use the Rice Wavelet Toolbox (RWT).

5.1. Synthetic results. The aim of this experiment is to examine the accuracy
and robustness to noise of the proposed model in the reconstruction of ODFs.
We generate the diffusion weighted signal S using a bi-Gaussian model. For each
gradient direction u, we generate the signal intensity by

S(u) =
1

2
exp(−buTD1u) +

1

2
exp(−buTD2u),

whereD1 andD2 are diffusion tensor profiles with eigenvalues [1700, 300, 300]×10−6,
and b = 3000. The eigenvectors of the tensor profiles D1 and D2 are chosen to
simulate a system of two crossing fiber bundles in a domain of 32x32 voxels. The
region of the simulated fiber crossings is shown in figure 1. 55 gradient directions are
used, and Rician random noise is added to the signal with different signal-to-noise
ratio (SNR): 15, 20, 25 and 30.

Figure 1. The simulated region of fiber crossings.

To examine the accuracy of the proposed model on the directional structures
of the reconstructed ODFs, we estimate the regularized ODF, and then compare
the fiber directions with the true values. By comparison, we also apply the scheme
by Aganj et al. [1]. For each voxel, the estimated fiber directions are assumed to
be the local maxima that surpasses a certain threshold (we use 0.5 here) of the
estimated ODF, as suggested in [12]. The true fiber directions are assumed to be
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the eigenvectors corresponding to the largest eigenvalues of the tensor profiles D1

and D2 in the bi-Gaussian model. We calculated the degree of angular difference in
the fiber directions between the estimated ODFs and true ODFs. The estimation
error is represented as the root mean square error (RMSE) of the angular differences
in fiber directions: for estimated fiber directions {dei}Ni=1 and true fiber directions
{dti}Ni=1,

(29) RMSE =

√∑N
i=1 g(dei , d

t
i)

2

N
,

where for any vectors de and dt, g(de, dt) denotes the angle between them (in de-
grees). The parameters are optimized for the best fiber direction estimation. The
results are presented in table 1. We can see that the RMSE is effectively reduced by
our model, and the combination of TV smoothing and Wavelet smoothing provides
the best estimation.

Model

RMSE SNR
15 20 25 30

Ψ2 by equations
5.87 4.70 3.89 3.37

(13)-(15) (Aganj)
Ψ2 by our model,

1.68 1.43 1.42 1.41
µ = 0 (TV regularization only)
Ψ2 by our model, with

1.33 1.32 1.30 1.24
TV and wavelet regularization

Table 1. Comparison of RMSE resulting from three models un-
der SNR = 15, 20, 25, 30 respectively. The angular difference is
measured in degrees.

To show how the regularization parameters affect the performance of the pro-
posed model, we apply the model to two datasets, while varying one parameter
and fixing the other two. In figure 2, from the left to the right, the graphs are the
RMSE of fiber direction estimation results from the proposed model, with vary-
ing TV regularization parameter η (µ and λ are fixed), varying µ (η and λ are
fixed), and varying λ (η and µ are fixed), respectively. We can see from the first
column that when µ and λ are fixed, the RMSE decreases significantly when the
TV regularization parameter η varies from 0 to 0.7 (first column), while the RMSE
decreases slightly when the wavelet regularization parameter µ varies from 0 to 0.3
(η and λ fixed, second column). This shows that the TV regularization is dominant
within spatial regularization. On the other hand, the RMSE decreases greatly when
the angular regularization parameter λ varies from 0 to 0.001 (η and µ fixed, third
column), while barely changed when λ varies from 0.001 to 0.008. This shows that
the angular regularization is important, while insensitive to the choice of λ when
λ > 0.001.

Figure 2 provides a guideline of choosing the regularization parameters. Since
the angular regularization is insensitive to the choice of λ when λ > 0.001, we can
choose a constant small λ for most diffusion MRI problems. Furthermore, since
the TV regularization is dominant among the spatial regularization, we can set the
wavelet regularization parameter µ = 0 first, and fine tune the TV regularization
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parameter η. After we get a desirable range of η, we can start tuning µ to suppress
the staircase effect. In most of our synthetic and practical experiments, we find the
above guideline useful.

Next we show that the proposed model provides more accurate estimation of
spherical harmonic coefficients a2(x), a3(x), . . . , aR(x) of ODFs. In figure 3 the
spherical harmonic coefficients a2(x), a3(x), . . . , aR(x) of ODF estimation is show
as 2D images. The estimation is performed on the synthetic data with SNR 20. We
can see from figure 3 that if only TV regularization is used, a staircase effect can
be observed. On the other hand, the estimation result by implementation of both
TV and wavelet regulariztion is effectively improved.

To quantify the performance of the proposed model under different noise level,
we compare the estimated SHS coefficients of the ODFs and compare them with
the ground truth. We calculate a set of spherical harmonic coefficients at1(x),
at2(x), . . . , atR(x) on the synthetic data with no noise, and use these coefficients
as ground truth. Based on the ground truth, we compare the performance of differ-
ent models by comparing the sum of squares of the deviation (SSD) of the estimated
coefficients {ai(x)}Ri=1 with the ground truth {ati(x)}Ri=1. The SSD is defined as

(30) SSD =

R∑
i=1

(ai(x)− ati(x))2.

The comparison by SSD is listed in table 2. From table 2 we can clearly see that the
combination of both TV and wavelet regularization provides the best estimation of
spherical harmonic coefficients.

Model

SSD SNR

15 20 25 30

Ψ2 by equations
15.40 11.30 9.99 8.49

(13)-(15) (Aganj)
Ψ2 by our model,

9.72 7.05 6.28 5.99
µ = 0 (TV regularization only)
Ψ2 by our model, with

7.18 6.62 6.04 5.90
TV and wavelet regularization

Table 2. Comparison of SSD resulting from three models under
SNR = 15, 20, 25, 30 respectively.

The comparison of computational times is shown in table 3. Our codes are writ-
ten in MATLAB and run on a Linux (version 2.6.38) computer with 2.67 GHz Intel
i5 CPU and 8GB memory. We can see that although our model requires more com-
putational time, but due to the efficient numerical scheme, the total computational
load is still reasonable for the dataset with 45x32x32 spherical harmonic coefficients.
We also perform the ODF estimation on one larger domain of 64x64 voxels, and
from table 4 we can see that the computational load is still reasonable for solving a
set of 45x64x64 spherical harmonic coefficients.

5.2. Real data. We apply the proposed model in a set of real experimental data.
The DWI data is obtained on a SIMENS 3.0 Telsa scanner, with repetition time
(TR)=9835ms, echo time (TE) =96ms, (FOV)=170.1 mm x 204.8 mm, b = 1000,
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Figure 2. The performance of the proposed model while vary-
ing one parameter and fixing the other two. The x-axis denotes
the choices of parameters, and the y-axis denotes the directional
RMSE defined in equation (29). From top to bottom: RMSE un-
der different choices of TV regularization parameter η (with fixed
µ and λ), wavelet regularization parameter µ (with fixed η and λ)
and angular regularization parameter λ (with fixed η and µ), re-
spectively. The left column is the performance on the dataset with
SNR=25 (the best choice of parameters are η = 0.7, µ = 0.3 and
λ = 0.004). The right column is the performance on the dataset
with SNR=30 (the best choice of parameters are η = 0.7, µ = 0.3
and λ = 0.006).

Inverse Problems and Imaging Volume 7, No. 2 (2013), 565–583



580 Yuyuan Ouyang, Yunmei Chen and Ying Wu

Figure 3. The image of spherical harmonic coefficients
a2(x), a3(x), . . . , aR(x) of ODF Ψ2, estimated from a synthetic
dataset with SNR 20. In the first row are the images of coeffi-
cients from different models. The first column is the ground truth,
the second column is the result by Aganj et al. in [1], the third
column is our model with only TV used in spatial regularization,
and the last column is our model with both TV and wavelet in
spatial regularization. For each image of coefficients, the images
a2(x), a3(x), . . . , aR(x) are arranged from top to bottom and left
to right order with a2(x) at the top left corner. The second row is
the zoomed in image of a13(x) (the region inside the red box in the
first row), where the staircase effect of TV regularization can be
observed.

Model

Computational Time SNR
15 20 25 30

Ψ2 by equations
0.27 0.26 0.27 0.30

(13)-(15) (Aganj)
Ψ2 by our model,

0.87 0.77 0.76 0.96
µ = 0 (TV regularization only)
Ψ2 by our model, with

1.43 1.48 1.70 1.66
TV and wavelet regularization

Table 3. Comparison of computational time (in seconds) resulting
from three models under SNR = 15, 20, 25, 30 respectively. The
dataset is on a domain of 32x32 voxels.

M = 30. The smoothing parameters are R = 15, λ = 0.006, η = µ = 0.2. The
region of interest (ROI) is shown in figure 4, and the estimated ODF results is
presented in figure 5. From figure 5 we can see that by the proposed model the
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Model

Computational Time SNR
15 20 25 30

Ψ2 by equations
1.03 1.06 1.06 1.05

(13)-(15) (Aganj)
Ψ2 by our model,

3.58 3.67 3.55 3.35
µ = 0 (TV regularization only)
Ψ2 by our model, with

5.13 5.29 5.37 5.16
TV and wavelet regularization

Table 4. Comparison of computational time (in seconds) resulting
from three models under SNR = 15, 20, 25, 30 respectively. The
dataset is on a domain of 64x64 voxels.

noise on fiber directions is effectively reduced, and a clear track of fiber directions
can be seen.

Figure 4. The region of interest in real data.

Figure 5. Real data. At the left is the result with no spatial
smoothing, and at the right is the smoothed ODF by our frame-
work.
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6. Conclusion. We propose a model for regularization in the estimation of ODFs.
The model performs simultaneous angular and spatial regularization to ODFs fields.
The angular regularization is by using Laplace-Beltrami operator. For the spatial
regularization, we use total variation and wavelet transform. The implemented nu-
merical method is recently developed and very fast. We demonstrate the drawback
of only angular regularization and the advantage of incorporating both angular and
spatial regularization in our synthetic experiments. With our model we can achieve
better orientational information for the reconstructed ODF fields.
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