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Computational Acceleration for MR Image
Reconstruction in Partially Parallel Imaging

Xiaojing Ye∗, Yunmei Chen, and Feng Huang

Abstract—In this paper, we present a fast numerical algo-
rithm for solving total variation and `1 (TVL1) based image
reconstruction with application in partially parallel MR imaging.
Our algorithm uses variable splitting method to reduce compu-
tational cost. Moreover, the Barzilai-Borwein step size selection
method is adopted in our algorithm for much faster convergence.
Experimental results on clinical partially parallel imaging data
demonstrate that the proposed algorithm requires much fewer
iterations and/or less computational cost than recently developed
operator splitting and Bregman operator splitting methods,
which can deal with a general sensing matrix in reconstruction
framework, to get similar or even better quality of reconstructed
images.

Index Terms—L1 minimization, image reconstruction, convex
optimization, partially parallel imaging.

I. INTRODUCTION

IN this paper we develop a novel algorithm to accelerate the
computation of total variation (TV) and/or `1 based image

reconstruction. The general form of such problems is

min
u

{
α‖u‖TV + β‖Ψ>u‖1 +

1

2
‖Au− f‖2

}
, (1)

where ‖·‖TV is the total variation, ‖·‖1 and ‖·‖ ≡ ‖·‖2 are the
`1 and `2 norms, respectively. For notation simplicity we only
consider two dimensional (2D) images in this paper, whereas
the method can be easily extended to higher dimensional cases.
Following the standard treatment we will vectorize an (2D)
image u into one-dimensional column vector, i.e. u ∈ CN
where N is the total number of pixels in u. Then, the
(isotropic) TV norm is defined by

‖u‖TV =

∫
Ω

|Du| =
N∑
i=1

‖Diu‖ (2)

where for each i = 1, · · · , N , Di ∈ R2×N has two nonzero
entries in each row corresponding to finite difference approx-
imations to partial derivatives of u at the i-th pixel along the
coordinate axes. In (1), α, β ≥ 0 (α + β > 0) are parameters
corresponding to the relative weights of the data fidelity term
‖Au−f‖2 and the terms ‖u‖TV and ‖Ψ>u‖1. Model (1) has
been widely applied to image reconstruction problems. Solving
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(1) yields a restored clean image u from an observed noisy or
blurred image f when A = I or a blurring matrix, respectively.
In compressive sensing (CS) applications, A is usually a large
and ill-conditioned matrix depending on imaging devices or
data acquisition patterns, and f represents the under-sampled
data. In CS Ψ = [ψ1, · · · , ψN ] ∈ CN×N is usually a proper
orthogonal matrix (e.g. wavelet) that sparsifies the underlying
image u.

A. Partially Parallel MR Imaging

The CS reconstruction via TVL1 minimization (1) has been
successfully applied to an emerging MR imaging application
known as partially parallel imaging (PPI). PPI uses multiple
RF coil arrays with separate receiver channel for each RF coil.
A set of multi-channel k-space data from each radiofrequency
(RF) coil array is acquired simultaneously. The imaging is
accelerated by acquiring a reduced number of k-space sam-
ples. Partial data acquisition increases the spacing between
regular subsequent read-out lines, thereby reducing scan time.
However, this reduction in the number of recorded Fourier
components leads to aliasing artifacts in images. There are
two general approaches for removing the aliasing artifacts
and reconstructing high quality images: image domain-based
methods and k-space based methods. Various models in the
framework of (1) have been employed as image domain-based
reconstruction methods in PPI [1], [2], [3], [4], [5], [6], [7],
[8], [9]. Sensitivity encoding (SENSE) [4], [3] is one of the
most commonly used methods of such kind. SENSE utilizes
knowledge of the coil sensitivities to separate aliased pixels
resulted from undersampled k-space.

The fundamental equation for SENSE is as follows: In a
PPI system consisting of J coil arrays, the under-sampled k-
space data fj from the j-th channel relates to the underlying
image u by PF(Sj � u) = fj , j = 1, · · · , J, where F is
the Fourier transform, P is a binary matrix representing the
under-sampling pattern (mask), and Sj ∈ CN is the sensitivity
map of the j-th channel in the vector form as u. The symbol
� is the Hadamard (or componentwise) product between two
vectors. In early works on SENSE, the reconstruction was
obtained by solving a least squares problem

min
u∈CN

J∑
j=1

‖Fp(Sj � u)− fj‖2, (3)

where Fp is the undersampled Fourier transform defined by
Fp , PF . Denote

A = (FpS1;FpS2; · · · ;FpSJ) and f = (f1; · · · ; fJ) , (4)



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

where Sj , diag(Sj) ∈ CN×N is the diagonal matrix with
Sj ∈ CN on the diagonal, j = 1, · · · , J . Here (·; ·) stacks the
arguments vertically to form a matrix. Then problem (3) can
be expressed as

min
u∈CN

‖Au− f‖2, (5)

and then solved by conjugate gradient (CG) algorithm. How-
ever, due to the ill-conditioning of the encoding matrix A,
it has been shown in [6] that the CG iteration sequence
often exhibits a ”semi-convergence” behavior, which can be
characterized as initially converging toward the exact solution
and later diverging. Moreover, the convergence speed is low,
when the acceleration factor is high.

Recently, total variation (TV) based regularization has been
incorporated into SENSE to improve reconstructed image
quality and convergence speed over the un-regularized CG
method ([1], [9]). TV based regularization can be also con-
sidered as forcing the reconstructed image to be sparse with
respect to spatial finite differences. This sparsity along with
the sparsity of MR signals under wavelet transforms have been
exploited in [10], where the framework (1) has been employed
to reconstruct MR images from under-sampled k-space data.

There have been several fast numerical algorithms for
solving (1) that will be briefly reviewed in the next section.
However, computational acceleration is still an important issue
for certain medical applications, such as breath-holding cardiac
imaging. For the application in PPI the computational chal-
lenge is not only from the lack of differentiability of the TV
and `1 terms , but also the large size and severe ill-conditioning
of the inversion matrix A in (4).

The main contribution of this paper is to develop a fast
numerical algorithm for solving (1) with general A. The
proposed algorithm incorporates the Barzilai-Borwein (BB)
method into a variable splitting framework for optimal step
size selection. The numerical results on partially parallel imag-
ing (PPI) problems demonstrate much improved performance
on reconstruction speed for similar image quality.

B. Previous Work

In reviewing the prior work on TVL1-based image recon-
struction, we simplify (1) by taking β = 0. It is worth pointing
out here that TV has much stronger practical performance
than `1 in image reconstructions, yet harder to solve because
the gradient operators involved are not invertible as Ψ in the
`1 term. In [11], [12], a method is developed based on the
following reformulation of (1) with β = 0:

min
u,w

{
α

N∑
i=1

‖wi‖+
1

2
‖Au− f‖2 : wi = Diu,∀ i

}
(6)

Then the linear constraint was treated with a quadratic penalty

min
u,w

{
α

N∑
i=1

‖wi‖+
ρ

2
‖Du− w‖2 +

1

2
‖Au− f‖2

}
, (7)

where w ∈ C2N is formed by stacking the two columns of
(w1, · · · , wN )>, and D = (Dx;Dy) ∈ C2N×N . Dx and Dy

are the horizontal and vertical global finite difference matrices

(N -by-N ), i.e. they consist of the first and second rows of
all Di’s, respectively. For any fixed ρ, (7) can be solved by
alternating minimizations. If both D>D and A>A can be
diagonalized by the Fourier matrix, as they would if A is either
the identity matrix or a blurring matrix with periodic boundary
conditions, then each minimization involves shrinkage and two
fast Fourier transforms (FFTs). A continuation method is used
to deal with the slow convergence rate associated with a large
value for ρ. The method, however, is not applicable to more
general A.

In [13] Goldstein and Osher developed a split Bregman
method for (6). The resulting algorithm has similar compu-
tational complexity to the algorithm in [11]; the convergence
is fast and the constraints are exactly satisfied. Later the split
Bregman method was shown to be equivalent to the alternating
direction method of multipliers (ADMM) [14], [15], [16], [17]
applied to the augmented Lagrangian L(w, u; p) defined by

α

N∑
i=1

‖wi‖+
1

2
‖Au−f‖2 +〈p,Du−w〉+ ρ

2
‖Du−w‖2, (8)

where p ∈ C2N is the Lagrangian multiplier. Nonetheless, the
algorithms in [13], [11], [12] benefit from the special structure
of A, and they lose efficiency if A>A cannot be diagonalized
by fast transforms. To treat a more general A, the Bregman
operator splitting (BOS) method [18] replaces ‖Au− f‖2 by
a proximal-like term δ‖u − (uk − δ−1A>(Auk − f))‖2 for
some δ > 0. BOS is an inexact Uzawa method that depends
on the choice of δ. The advantage of BOS is that it can
deal with general A and does not require the inversion of
A>A during the computation. However, BOS is relatively less
efficient than the method presented in this paper, even if δ is
chosen optimally. The comparison of our method with the BOS
algorithm will be presented in Section IV.

There are also several methods developed to solve the
associated dual or primal-dual problems of (1) based on the
dual formulation of the TV norm:

‖u‖TV = max
p∈X

〈p,Du〉, (9)

where X = {p ∈ C2N : pi ∈ C2, ‖pi‖ ≤ 1,∀ i} and pi
extracts the i-th and (i+N)-th entries of p. Consequently, (1)
can be written as a minimax problem

min
u∈CN

max
p∈X

{
α〈p,Du〉+

1

2
‖Au− f‖2

}
. (10)

In [19], Chan et al. proposed to solve the primal-dual Euler-
Lagrange equations using Newton’s method. This leads to
a quadratic convergence rate and highly accurate solutions;
however, the cost per iteration is much higher since the method
explicitly uses second-order information and the inversion of
a Hessian matrix is required. In [20], Chambolle used the dual
formulation of the TV denoising problem (1) with A = I , and
provided an efficient semi-implicit gradient descent algorithm
for the dual. However, the method does not naturally extend
to the case with more general A. Recently, Zhu and Chan
[21] proposed a primal-dual hybrid gradient (PDHG) method.
PDHG alternately updates the primal and dual variables u and
p. Numerical results show that PDHG outperforms methods in
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[20], [13] for denoising and deblurring problems, but its effi-
ciency again relies on the fact that A>A can be diagonalized
by fast transforms. Later, several variations of PDHG, referred
to as projected gradient descent algorithms, were applied to
the dual formulation of image denoising problem in [22] to
make the method more efficient. Further enhancements involve
different step-length rules and line-search strategies, including
techniques based on the Barzilai-Borwein method [23].

Another approach that can be applied to (1) in the imaging
context (1) with a general A is the operator splitting (OS)
method. In [24] the OS idea of [25] is applied to image
reconstruction in compressed magnetic resonance imaging.
The OS scheme rewrites (1) as

min
u
α
∑
i

h(Diu) +
1

2
‖Au− f‖2 (11)

where h(·) , ‖ · ‖. Then the optimal conditions for (11) are

w∗i ∈ ∂h(Diu
∗), δ1αD

>
i w
∗
i + δ1A

>(Au∗ − f) = 0, (12)

where ∂h(z) is the subdifferential of h at point z defined by

∂h(z) , {d ∈ CN : h(y)− h(z) ≥ 〈d, y − z〉,∀ y}.

The theory of conjugate duality gives the equivalency
y ∈ ∂h(z) ⇔ z ∈ ∂h∗(y), ∀y, z, where h∗(y) ,
supv {〈y, v〉 − h(v)}. Hence the first condition in (12) can be
written as

0 ∈ δ2h∗(w∗i ) + (w∗i − t∗i ), t∗i = δ2Diu
∗ + w∗i (13)

and then the first one leads to

w∗i ∈ ∂h ((t∗i − w∗i )/δ2) = ∂h(t∗i − w∗i ), (14)

where the equality is due to h(·) = ‖ · ‖. (14) is equivalent to

w∗i = arg min
wi

{
h(t∗i − wi) +

1

2
‖wi‖2

}
(15)

that projects t∗i onto the unit ball in R2. Then, combining (15)
and the last equalities in (12) and (13), the OS scheme iterates
the following for a fixed point (which is also a solution to (1)):

tk+1
i = wki + δ2Diu

k, ∀i

wk+1
i = arg min

wi

{
‖tk+1
i − wi‖+

1

2
‖wi‖2

}
, ∀i

uk+1 = δ1α
∑
i

D>i w
k+1
i + δ1A

>(Auk − f) + uk

OS is efficient for solving (1) with general A when all the
parameters are carefully chosen. However it is still not as
efficient as our method even under its optimal settings. The
comparison of our method with the OS algorithm [24] will be
given in Section IV.

II. PROPOSED ALGORITHM

In this paper, we develop a fast algorithm to numerically
solve problem (1). Note that the computational challenge of
(1) comes from the combination of two issues: one is possibly
huge size and of the inversion matrix A, and the other one is
the non-differentiability of the TV and `1 terms.

As discussed earlier, despite that there were some fast algo-
rithms proposed recently to solve image restoration problems
similar to (1), their efficiency relies on a very special structure
of A such that A>A can be diagonalized by fast transforms,
which is not the case in most medical imaging problems, such
as that in (4) in PPI application.

To tackle the computational problem of (1), we first intro-
duce auxiliary variables wi and zi to transform Diu and ψ>i u
out of the non-differentiable norms:

min
w,z,u

{
α
∑
i

‖wi‖+ β
∑
i

|zi|+
1

2
‖Au− f‖2

}
,

wi = Diu, zi = ψ>i u,∀ i = 1, · · · , N,
(16)

which is clearly equivalent to the original problem (1) as they
share the same solutions u. To deal with the constraints in
(16) brought by variable splitting, we form the augmented
Lagrangian defined by

L(w, z, u; b, c)

= α
∑
i

(
‖wi‖ − ρ〈bi, wi −Diu〉+

ρ

2
‖wi −Diu‖2

)
+ β

∑
i

(
|zi| − ρci(zi − ψ>i u) +

ρ

2
|zi − ψ>i u|2

)
+

1

2
‖Au− f‖2,

(17)

where b ∈ C2N and c = (c1, · · · , cN )> ∈ CN are Lagrangian
multipliers. Here bi ∈ C2 extracts the i-th and (i + N)-
th entries of b. For notation simplicity we used the same
parameter ρ > 0 for all constraints in (17). The method of
multipliers iterates the minimizations of Lagrangian L in (17)
with respect to (w, z, u) and the updates of the multipliers b
and c:

(wk+1, zk+1, uk+1) = arg min
w,z,u

L(w, z, u; bk, ck)

bk+1
i = bki − (wk+1

i −Diu
k+1), ∀ i

ck+1
i = cki − (zk+1

i − ψ>i uk+1), ∀ i

(18)

It is proved that the sequence {(wk, zk, uk)}k generated by
(18) converges to the solution of (16) with any ρ > 0.

Since the updates of bk and ck are merely simple calcula-
tions, we now focus on the minimization of L(w, z, u; bk, ck)
in (18). First we introduce functions

φ1(s, t) = |s|+ (ρ/2) · |s− t|2, s, t ∈ C,
φ2(s, t) = ‖s‖+ (ρ/2) · ‖s− t‖2, s, t ∈ C2.

By completing the squares in (17), we find the equivalency

arg min
w,z,u

L(w, z, u; bk, ck) ≡

arg min
w,z,u

{
α
∑
i

φ2(wi, Diu+ bki ) + β
∑
i

φ1(zi, ψ
>
i u+ cki )

+
1

2
‖Au− f‖2

}
(19)

because the objective functions in these two minimizations are
equal up to a constant independent of (w, z, u).
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To solve (19) we first rewrite the objective function in a
simpler way. Let x = (w; z;u) and B = (0, 0, A), and define
functions Jk(x) ≡ Jk(w, z, u) by

Jk(x) , α
∑
i

φ2(wi, Diu+ bki ) + β
∑
i

φ1(zi, ψ
>
i u+ cki ),

and data fidelity H(x) by

H(x) = (1/2) · ‖Bx− f‖2. (20)

Then problem (19) (or equivalently, the minimization subprob-
lem in (18)) can be expressed as

xk+1 = arg min
x
{Jk(x) +H(x)} , (21)

We further introduce Qδ(x, y) defined by

Qδ(x, y) , H(y) + 〈∇H(y), x− y〉+
δ

2
‖x− y‖2, (22)

which is a linearization of H(x) at point y plus a proximity
term ‖x − y‖2/2 penalized by parameter δ > 0. It has been
shown in [26] that the sequence {xk+1,l}l generated by

xk+1,l+1 = arg min
x

{
Jk(x) +Qδk+1,l

(x, xk+1,l)
}

(23)

converges to the solution xk+1 of (21) with any initial xk+1,0

and proper choice of δk+1,l for l = 0, 1, · · · 1. Interestingly,
we found that in practice the optimal performance can be con-
sistently achieved by only iterating (23) once to approximate
the solution xk+1 in (21).

Therefore, we substitute the first subproblem in (18) by

xk+1 = arg min
x

{
Jk(x) +Qδk(x, xk)

}
, (24)

where δk is chosen based on the Barzilai-Borwein (BB)
method as suggested in [26]. BB method handles ill-
conditioning much better than gradient methods with a Cauchy
step [27]. In the BB implementation, the Hessian of the
objective function is approximated by a multiple of the identity
matrix. We employ the approximation

δk = arg min
δ

∥∥(∇H(xk)−∇H(xk−1)
)
− δ(xk − xk−1)

∥∥2
,

(25)
and get

δk = 〈∇H(xk)−∇H(xk−1), xk − xk−1〉/‖xk − xk−1‖2.
(26)

This makes the iteration (24) exhibit a certain level of quasi-
Newton convergence behavior.

From the definition of Jk and Qδk , (24) is equivalent to

(wk+1, zk+1, uk+1) = arg min
w,z,u

Φk(w, z, u) (27)

where the objective Φk(w, z, u) is defined by

Φk(w, z, u)

, α
∑
i

φ2(wi, Diu+ bki ) + β
∑
i

φ1(zi, ψ
>
i u+ cki )

+
δk

2

(
‖w − wk‖2 + ‖z − zk‖2 +

∥∥∥u− uk + δ−1
k A>(Auk − f)

∥∥∥2)
(28)

1e.g. for fixed k, any limit point of {xk+1,l}l is a solution of (21) when
δk+1,l was chosen such that the objective function Jk(xk+1,l)+H(xk+1,l)
monotonically decreases as l→∞ [26].

Theoretically, an iterative scheme can be applied to obtain
the solution (wk+1, zk+1, uk+1) of (27). However, here we
propose only to do one iteration followed by the updates of
bk, ck and δk in (18). This is an analogue to the split Bregman
method and ADMM applied to the augmented Lagrangians,
and leads to the optimal performance of (18). In summary,
we propose a scheme as in (29) for solving the minimization
problem (16). The updates of bk+1 and ck+1 in (29) are merely
simple calculations. In (29), δk+1 is derived from (26) with
H defined in (20), and also has an explicit form that can be
quickly computed 2. Next, we show that wk+1

i and zk+1
i can

be obtained by soft shrinkages by the following theorem.

Theorem II.1. For given d-vectors t1, t2 ∈ Rd and positive
numbers a1, a2 > 0, the solution to minimization problem

min
s∈Rd

{
‖s‖+

a1

2
‖s− t1‖2 +

a2

2
‖s− t2‖2

}
(30)

is given by the shrinkage of a weighted sum of t1 and t2:

Sd(t1, t2; a1, a2) , shrinkd

(
a1t1 + a2t2

a1 + a2
,

1

a1 + a2

)
(31)

where shrinkd is the d-dimensional soft shrinkage operator
defined by

shrinkd(t, µ) , max{‖t‖ − µ, 0} · t

‖t‖
. (32)

with convention 0 · (0/‖0‖) = 0.

Proof: By completing the squares, the minimization prob-
lem (30) is equivalent to

min
s∈Rd

{
‖s‖+

(
a1 + a2

2

)
·
∥∥∥∥s− a1t1 + a2t2

a1 + a2

∥∥∥∥2
}
, (33)

because the objective functions are the same up to a constant
independent of s. Minimizations of form (33) have a well
known explicit solver shrinkd and hence the conclusion
follows.

According to Theorem II.1, wk+1
i and zk+1

i in (29) can be
obtained by

wk+1
i = S2

(
Diu

k + bki , w
k
i ; ρ, αk

)
(34)

and
zk+1
i = S1

(
ψ>i u

k + cki , z
k
i ; ρ, βk

)
(35)

where αk = δk/α and βk = δk/β. Therefore the computa-
tional costs for (34) and (35) are linear in terms of N .

The u-subproblem in (29) is a least squares problem. The
optimal condition of this problem reads

Lku = rk (36)

where Lk = αρD>D + βρI + δkI and

rk = αρD>wk+1 + βρΨ>zk+1 + δku
k −A>(Auk − f).

Under periodic boundary condition, the matrix D>D is block
circulant and hence can be diagonalized by Fourier matrix F .

2The main computations for updating δk are norm evaluations (no A
operation needed since Auk has been computed in the u-step and can be
saved for use in δ-step in (29)).
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5

wk+1
i = arg min

wi

{
‖wi‖+

ρ

2
‖wi −Diu

k − bki ‖2 +
δk
2α
‖w − wk‖2

}
, ∀ i;

zk+1
i = arg min

zi

{
|zi|+

ρ

2
|zi −Ψ>i u

k − cki |2 +
δk
2β
|zi − zki |2

}
, ∀ i;

uk+1 = arg min
u

{
αρ‖Du− wk+1‖2 + βρ‖Ψ>u− zk+1‖2 + δk

∥∥u− (uk − δ−1
k A>(Auk − f)

)∥∥2
}

;

bk+1
i =bki − (wk+1

i −Diu
k+1), ∀ i;

ck+1
i =cki − (zk+1

i − ψiuk+1), ∀ i;
δk+1 =‖A(uk+1 − uk)‖2/

(
‖wk+1 − wk‖2 + ‖zk+1 − zk‖2 + ‖uk+1 − uk‖2

)
.

(29)

Let Λ = F>D>DF which is a diagonal matrix, then apply
F on both sides of (36) to obtain

L̂kFu = r̂k (37)

where L̂k = αρΛ + βρI + δkI and r̂k = Frk. Note that L̂k
can be ”trivially” inverted because it is diagonal and positive
definite. Therefore, uk+1 can be easily obtained by

uk+1 = F>(L̂−1
k Frk). (38)

As all variables in (29) can be quickly solved, we propose
Algorithm 1, called TVL1rec, to solve problem (16). As

Algorithm 1 TVL1 Reconstruction Algorithm (TVL1rec)
Input α, β, ε and ρ. Set u0 = c = 0, b = 0, δ0 = 1, k = 0.
repeat

Given uk, compute wk+1 and zk+1 using (34) and (35);
Given wk+1 and zk+1, compute uk+1 using (38);
Update bk, ck and δk as in (29);
k ← k + 1

until ‖uk − uk−1‖/‖uk‖ < ε.
return uk

discussed above, w and z can be updated using soft shrinkages
and hence the computational costs are linear in terms of N .
The update of u involves two fast Fourier transforms (FFTs)
which have computational complexity N logN and two oper-
ations of A (one is A>). If β > 0 there are also two wavelet
transforms (in z- and u- steps) involved which require similar
computational cost as FFT. Therefore, unlike most recently
developed algorithms, our algorithm can deal with arbitrary
matrix A and even more general H with nonlinear constraint
(as long as H is convex and ∇H is computable). Also, the per
iteration computation of the proposed algorithm is very cheap,
and thanks to the BB step size δk, the convergence speed is
significantly improved compared to other two modern methods
BOS and OS, as shown in Section IV.

III. METHOD

Experiments were designed to test the effectiveness of
the proposed algorithm TVL1rec on PPI reconstructions. To
demonstrate the potential in clinic applications, the three data
sets used in the experiments were acquired by commercially
available 8-element head coils. For comparison, we also imple-
mented the Bregman operator splitting algorithm (BOS) [18]
and a compressive MR image reconstruction algorithm based
on operator splitting (OS) [24] for solving (1).

TABLE I
TESTS NUMBER, DATA INFORMATION AND PARAMETERS.

No. Image Abbrev. Size(×8) P (α, β)
1 Cart.Sag. data1 512× 512 1 (1e-5∼1e-2,0)
2 Cart.Sag. data2 256× 250 2 (1e-4,5e-5)
3 Rad.Axi. data3 256× 512 3 (1e-4,5e-5)

A. Data Acquisition

The first data set (top left in Figure 2), termed by data1, is
a set of sagittal Cartesian brain images acquired on a 3T GE
system (GE Healthcare, Waukesha, Wisconsin, USA). The data
acquisition parameters were FOV 220mm2, size 512×512×8,
TR 3060ms, TE 126ms, slice thickness 5mm, flip angle 90◦,
and phase encoding direction was anterior-posterior.

The second data set (left in Figure 4) is a Cartesian brain
data set acquired on a 3.0T Philips scanner (Philips, Best,
Netherlands) using T2-weighted turbo spin echo (T2 TSE)
sequence. The acquisition parameters were FOV 205mm2,
matrix 512 × 500 × 8, TR 3000ms, TE 85ms, and the echo
train length was 20. To avoid similar comparison plot due to
the same data size, we reduce the image to 256×250×8 and
obtain full k-space data of this same size, termed by data2.

The last one (right of Figure 4), denoted by data3, is a
radial brain data set acquired on a 1.5T Siemens Symphony
system (Siemens Medical Solutions, Erlangen, Germany). The
acquisition parameters were FOV 220mm2, matrix 256×512×
8 (256 radial lines), slice thickness 5mm, TR 53.5ms, TE
3.4ms, and flip angle 75◦.

All three data sets were fully acquired, and then artificially
down-sampled using the masks in Figure 1 for reconstruction
3. As the overall coil sensitivities of these three data sets are
fairly uniform, we set the reference image to the root of sum
of squares of images which are obtained by fully acquired k-
space of all channels A summary of the data information is in
Table I. In Table I, ”Cart.Sag.” means ”Cartesian sagittal brain
image”, and ”Rad.Axi.” stands for ”radial axial brain image”.
The column P in Table I present the mask number (refer to
Figure 1).

B. Test Environment

All algorithms were implemented in the Matlab program-
ming environment (Version R2009a, MathWorks Inc., Natick,

3The pseudo random sampling can be easily set in 3D imaging. In test2
we simulated the pseudo random trajectory for 2D PPI.
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Fig. 1. k-space masks used (from left to right) for data1, data2 and data3,
respectively. Left: Cartesian mask with net reduction factor 3. Middle: Pseudo
random mask [28] with reduction factor 4. Right: Radial mask with 43 (out
of 256) projections, i.e. reduction factor 6.

MA, USA). The sparsifying operator Ψ is set to Haar wavelet
transform using Rice wavelet toolbox with default settings.
The experiments were performed on a Dell Optiplex desktop
with Intel Dual Core 2.53 GHz processors (only 1 core was
used in computation), 3GB of memory and Windows operating
system.

Theoretically the choice of ρ does not effect the convergence
of TVL1rec. This is also demonstrated by our experiments
since the results are not sensitive to ρ for a large range.
Therefore in all experiments we set ρ to a moderate value
10. Algorithm 1 is automatically terminated if the relative
change of uk is less than a prescribed tolerance ε. In all of
our experiments, we set ε = 10−3. Note that smaller ε leads
to slightly better accuracy at the cost of more iterations and
longer computational time. Other parameter settings are shown
in the next section. For all algorithms tested in this paper, the
sensitivity maps Sj’s were estimated from the central 32× 32
k-space data (which was a subset of the acquired partial data)
and then fixed during the reconstructions, and the initial u0

was set to 0.
The reconstruction results were evaluated qualitatively by

zoomed-in regions of the reconstructed images, and quanti-
tatively by relative error (to the reference image) and CPU
times. Reference and reconstructed images corresponding to
data1 and data3 were brightened by 3 times, and those
corresponding to data2 were brightened by 2 times, to help
visual justifications.

IV. COMPARISON ALGORITHMS AND RESULTS

A. Comparison with BOS

In the first experiment, we use data1 with a Cartesian sam-
pling pattern (left in Figure 1) to undersample k-space data.
We compare TVL1rec with BOS which also solves (1) via a
variable splitting framework (16). To simplify comparison, we
here set β = 0 in (1) and focus on the computational efficiency
of two algorithms in solving (1).

The BOS algorithm solves (1) by iterating

sk+1 =uk − δ−1A>(Auk − f)

wk+1
i = arg min

wi

{
‖wi‖+

ρ

2
‖wi −Diu

k − bki ‖2
}
, ∀ i

uk+1 = arg min
u
{αρ‖Du− wk+1 + bk‖2 + δ

∥∥u− sk+1
∥∥2}

bk+1
i =bki − (wk+1

i −Diu
k+1), ∀ i

(39)

and converges if δ ≥ ‖A>A‖2, i.e. the largest eigenvalue of
A>A. In SENSE applications, the magnitudes of sensitivity
maps are usually normalized into [0, 1]. Therefore from the
definition of A in (4), we have δ ≥ ‖A>A‖2 = 1 and hence
set δ = 1 for optimal performance of BOS. With β = 0,
TVL1rec only updates w, u, b and δ in (29). As can be seen,
the per iteration computational costs for BOS and TVL1rec
are almost identical: the main computations consist of one
shrinkage, A, A> and two FFTs (including one inverse FFT).
Therefore the computation cost for a complete reconstruction
is nearly proportional to the number of iterations required by
BOS and TVL1rec. In this paper, we set the stopping criterion
of BOS the same as TVL1rec, namely the computation will
be automatically terminated when the relative change of the
iterate uk is less than ε = 10−3.

Table II shows the performance results of TVL1rec and BOS
on data1 for different values of TV regularization parameter α.
In Table II, we list the following quantities: the relative error
of the reconstructed images to the reference image (Err), the
final objective function values (Obj), the number of iterations
(Iter), and the CPU time in seconds (CPU). From Table II, we

TABLE II
RESULTS OF BOS AND TVL1REC ON DATA1.

BOS TVL1rec
α Err Obj Iter CPU Err Obj Iter CPU

1e-5 8.1% .281 33 75.1 7.2% .252 7 18.6
1e-4 7.4% 1.01 17 38.9 7.1% .860 11 26.7
1e-3 7.4% 6.00 39 88.2 7.3% 5.98 7 16.0
1e-2 11.5% 41.0 63 142.1 10.6% 40.7 7 15.9

can see that both BOS and TVL1 are able to stably recover the
image from 34% k-space data. This is further demonstrated by
Figure 2, where both method generated images very close to
the reference image. Although there are still few observable
aliasing artifacts due to Cartesian undersampling, the details
such as edges and fine structures were well preserved in both
reconstructions, as can be seen in the zoomed-ins in the right
column of Figure 2. In terms of accuracy, TVL1rec gives
slightly better reconstruction quality in the sense of lower
relative error and objective values.

In terms of efficiency, we found that TVL1rec significantly
outperforms BOS by requiring much fewer iterations (and
hence less CPU time) to obtain the similar or even better image
quality, as shown in Table II. Compared to BOS, TVL1rec is
up to 9 times faster and hence has much higher efficiency.
Although two algorithms have almost the same computational
costs per iteration, TVL1rec benefits from the adaptive choice
of step sizes and readily outperforms BOS which uses fixed
step size δ = ‖A>A‖2 throughout the computations. The
adaptive step size selection makes TVL1rec exhibits a quasi-
Newton convergence behavior in some sense because δkI
implicitly uses partial Hessian (second order) information.

The adaptive step size selection not only leads to higher
efficiency but also better stableness of TVL1rec. As shown
in Table II, for a large range of α in [10−5, 10−2], TVL1rec
always requires 11 or fewer iterations to recover high quality
images. In comparison, BOS appears to be quite sensitive to
the choice of α: this is exemplified by the last row (α = 10−2)
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Fig. 2. Comparison of BOS and TVL1rec on data1 (top left). Bottom row
shows the zoomed-in (square in data1) of images in the top row. From left
to right: reference image, reconstructed image using BOS (Err=7.4%), and
reconstructed image using TVL1rec (Err=7.1%).

of Table II, where BOS required much more iterations than
usual; meanwhile, TVL1rec benefits from the optimal step size
in each iteration and readily approximates the solution in only
few iterations.

The better performance of TVL1rec over BOS relies on two
phases: one is that TVL1rec imposes proximity terms not only
for u but also for w and z in (29), which lead to better choices
of the updates wk+1 and zk+1; the other one is the adoption
of BB method for optimal penalty parameters δk selection,
which affects the updates of all variables as in (29) and leads
much improved convergence speed.

B. Comparison with OS

For data2 and data3, we compare TVL1 with OS [24] for
solving (1) with both TV and `1 terms (α = 10−4, β = α/2).
The OS scheme of [24], with a minor correction, is as follows:

sk+1 =Ψ
(
uk − (d1/λ) ·

(
D>wk + λA>(Auk − f)

))
,

tk+1
i =wki + d2Diu

k, ∀i,
uk+1 =Ψ

(
sign(sk+1)�max{|sk+1| − d1τ/λ, 0}

)
,

wk+1
i = min(1, ‖tk+1

i ‖) · tk+1
i /‖tk+1

i ‖2, ∀i.
(40)

where sk ∈ CN , tki and wki ∈ C2, i = 1, · · · , N ,
wk ∈ C2N is formed by stacking the two columns of
matrix (wk1 , · · · , wkN )>, and the ”max” and ”sign” operations
in the computation of uk+1 are componentwise operations
corresponding to shrinkage. The main computational cost
per iteration in the OS scheme corresponds to the following
operations: a 2D shrinkage during the computation of wk+1,
a projection during the computation of uk+1, two wavelet
transforms during the computation of sk+1 and uk+1, A and
A> during the computation of sk+1. In [24] it is shown that
for d1, d2 > 0 in certain ranges, the OS scheme converges to a
fixed point which is also a solution of (1). The iterations were
stopped when either the following conditions were satisfied:

‖uk+1 − uk‖2/max{1, ‖uk‖2} < ε1

(fk − fk+1)/max{1, fk} < ε2
√
τc/τt,

(41)

Fig. 3. Testing data used for the comparison of OS and TVL1rec: data2
(left) and data3 (right).

Fig. 4. Reconstructions of data2 and data3 by OS and TVL1rec. Top row
(results of data2) from left to right: reference, reconstructed images by OS
(Err=7.6%) and TVL1rec (Err=4.6%). Bottom row (results of data3) from
left to right: reference, reconstructed images by OS (Err=6.7%) and TVL1rec
(Err=6.1%).

where fk is the objective value of (1) at uk, τc and τt are the
current and target values of τ respectively and ε1 and ε2 are
prescribed stopping tolerances.

Since OS has multiple tuning parameters that affect the
convergence speed and image quality: larger di’s and εi’s lead
to faster convergence but result in larger relative error, whereas
smaller di’s and εi’s yield monotonic decreases in objective
values and better image quality at the cost of much longer
computation. Based on the selection by the authors and several
tries, we chose moderate values d1 = d2 = 1, ε1 = 10−4 and
ε2 = 10−3 which appear to give a best compromise between
convergence speed and image quality of the OS scheme. The
results on data2 and data3 are shown in Figure 4, and the
comparison on relative errors and objective values are plotted
in logarithmic scale in Figure 5. The horizontal label is chosen
as CPU time because the per iteration computational costs for
OS and TVL1rec are slightly different.

From Figures 4 and 5 we can see that TVL1rec converges
much faster than OS, and achieved lower relative errors and
objective values than OS overall. Therefore, it is evident that
TVL1rec can outperform OS scheme in efficiency as the
former requires much less computational time to reach the
similar or even better image quality. It is also worth pointing
out that both algorithms can further reduce the relative error
slightly by setting a tighter stopping criterion at the cost of
more iteration numbers. Nevertheless, the TVL1rec still can
maintain lower relative error and objective value than OS
during the reconstruction process.
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Fig. 5. Comparisons of OS and TVL1rec on data2 (blue solid lines) and
data3 (black dashed lines). Left: relative error (in logarithm) versus CPU time
and objective value. Right: objective values (in logarithm) versus CPU time.

Fig. 6. From left to right: reconstructions of data3 by TVL1rec at the 1st,
4th, 10th and 20th iterations, respectively.

We checked the reconstructions of data3 by TVL1rec at
the 1st, 4th, 10th and 20th iterations and depicted the corre-
sponding zoomed-in regions in Figure 6. Recall that the main
computational cost for each iteration is only 2(J + 1) FFTs
and 2 wavelet transforms as shown in (29) and (4), we further
demonstrate that TVL1rec can quickly remove artifacts and
recover fine structures in CS-PPI reconstructions.

V. CONCLUSION

This paper presents a fast numerical algorithm, called
TVL1rec, for TVL1 minimization problem (1) arising from CS
reconstruction problems. The proposed algorithm incorporates
the Barzilai-Borwein (BB) method into a variable splitting
framework to optimize the selection of step sizes. The optimal
step sizes exploit partial Hessian information and hence lead
to a quasi-Newton convergence behavior of TVL1rec. Exper-
imental results demonstrate the outstanding efficiency of the
proposed algorithm in CS-PPI reconstruction.

We compared TVL1rec to another two recently developed
algorithms BOS [18] and OS [24] which also solve the
minimization problem (1). The common property of these
algorithms is that they can deal with general sensing matrix
A, and even nonlinear data fidelity term H(u) other than
‖Au − f‖2 as long as H is convex and ∇H is computable.
Meanwhile, TVL1rec significantly outperforms the other two
algorithms by taking advantages of the optimal step size
selection based on BB method. We hope TVL1rec can be
beneficial to PPI and other medical imaging applications.

REFERENCES

[1] K. Block, M. Uecker, and J. Frahm, “Undersampled radial mri with
multiple coils: Iterative image reconstruction using a total variation
constraint,” Magn. Reson. Med., vol. 57, pp. 1086–1098, 2007.

[2] H. Eggers and P. Boesiger, “Gridding- and convolution-based iterative
reconstruction with variable k-space resolution for sensitivity-encoded
non-cartesian imaging,” in Proc. Intl. Soc. Mag. Reson. Med., 2003, p.
2346.

[3] K. Pruessmann, M. Weiger, P. Bornert, and P. Boesiger, “Advances
in sensitivity encoding with arbitrary k-space trajectories,” Magn. Re-
son. Med., vol. 46, pp. 638–651, 2001.

[4] K. Pruessmann, M. Weiger, M. Scheidegger, and P. Boesiger, “Sense:
Sensitivity encoding for fast mri,” Magn. Reson. Med., vol. 42, pp. 952–
962, 1999.

[5] Y. Qian, Z. Zhang, V. Stenger, and Y. Wang, “Self-calibrated spiral
sense,” Magn. Reson. Med., vol. 52, pp. 688–692, 2004.

[6] P. Qu, K. Zhong, B. Zhang, J. Wang, and G.-X. Shen, “Convergence be-
havior of iterative sense reconstruction with non-cartesian trajectories,”
Magn. Reson. Med., vol. 54, pp. 1040–1045, 2005.

[7] A. Samsonov and C. Johnson, “Non-cartesian pocsense,” in
Proc. Intl. Soc. Mag. Reson. Med., 2004, p. 2648.

[8] E. Yeh, M. Stuber, C. McKenzie, R. B. RM, T. Leiner, M. Ohliger,
A. Grant, J. Willig-Onwuachi, and D. Sodickson, “Inherently self-
calibrating non-cartesian parallel imaging,” Magn. Reson. Med., vol. 54,
pp. 1–8, 2005.

[9] L. Ying, B. Liu, M. Steckner, G. Wu, and S.-J. L. M. Wu, “A statistical
approach to sense regularization with arbitrary k-space trajectories,”
Magn. Reson. Med., vol. 60, pp. 414–421, 2008.

[10] A. Larson, R. White, G. Laub, E. McVeigh, D. Li, and O. Simonetti,
“Self-gated cardiac cine mri,” Magn. Reson. Med., vol. 51, pp. 93–102,
2004.

[11] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating
minimization algorithm for total variation image reconstruction,”
SIAM J. Imag. Sci., vol. 1, no. 3, pp. 248–272, 2008.

[12] J. Yang, Y. Zhang, and W. Yin, “A fast tvl1-l2 minimization algorithm
for signal reconstruction from partial fourier data,” CAAM Rice Univ.,
Tech. Rep. 08-29, 2008.

[13] T. Goldstein and S. Osher, “The split bregman method for l1 regularized
problems,” SIAM J. Imag. Sci., vol. 2, pp. 323–343, 2009.

[14] D. Bertsekas, Parallel and Distributed Computation. Prentice Hall,
1989.

[15] J. Eckstein and D. Bertsekas, “On the douglas-rachford splitting method
and the proximal point algorithm for maximal monotone operators,”
Mathematical Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

[16] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite-element approximations,” Com-
put. Math. Appl., vol. 2, pp. 17–40, 1976.

[17] R. Glowinski and A. Marrocco, “Sur lapproximation par elements
nis dordre un, et la resolution par penalisation-dualite dune classe de
problemes de dirichlet nonlineaires, rev. francaise daut.” Inf. Rech. Oper.,
vol. R-2, pp. 41–76, 1975.

[18] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized
nonlocal regularization for deconvolution and sparse reconstruction,”
CAM UCLA, Tech. Rep. 09-03, 2009.

[19] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method
for total variationbased image restoration,” SIAM J. Optim., vol. 20, pp.
1964–1977, 1999.

[20] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imaging Vis., vol. 20, pp. 89–97, 2004.

[21] M. Zhu and T. Chan, “An efficient primal-dual hybrid gradient algorithm
for total variation image restoration,” CAM UCLA, Tech. Rep. 08-34,
2008.

[22] M. Zhu, S. Wright, and T. Chan, “Duality-based algorithms for total-
variation-regularized image restoration,” Comput. Optim. Appl., 2008.

[23] J. Barzilai and J. Borwein, “Two-point step size gradient methods,”
IMA J. Numer. Anal., vol. 8, no. 1, pp. 141–148, 1988.

[24] S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, “An efficient algo-
rithm for compressed mr imaging using total variation and wavelets,”
IEEE Proc. Conf. on Comp. Vis. Patt. Recog., pp. 1–8, 2008.

[25] P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two
nonlinear operators,” SIAM J. Numer. Anal., vol. 16, pp. 964–979, 1979.

[26] S. J. Wright, R. D. Nowak, and M. Figueiredo, “Sparse reconstruction by
separable approximation,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, 2009.

[27] H. Akaike, “On a successive transformation of probability distribution
and its application to the analysis of the optimum gradient method,”
Ann. Inst. Statist. Math. Tokyo, vol. 11, pp. 1–17, 1959.

[28] M. Lustig and J. Pauly, “Spirit: Iterative self-consistent parallel imaging
reconstruction from arbitrary k-space,” Magn. Reson. Med., vol. 64,
no. 2, pp. 457–471, 2010.


